

SKRIPSI

PENURUNAN COD DAN WARNA PADA AIR LINDI DI TPA SUPIT URANG MENGGUNAKAN METODE AERASI DENGAN PRETREATMENT KOAGULASI-FLOKULASI-SEDIMENTASI

Oleh:
REDHY WULAN SARI
01.26.027

PROGRAM STUDI TEKNIK LINGKUNGAN
JURUSAN TEKNIK LINGKUNGAN
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI NASIONAL MALANG
2007

LEMBAR PERSETUJUAN

SKRIPSI

PENURUNAN COD DAN WARNA PADA AIR LINDI DI TPA SUPIT URANG MENGGUNAKAN METODE AERASI DENGAN *PRETREATMENT* KOAGULASI-FLOKULASI-SEDIMENTASI

Oleh:

REDHY WULAN SARI

01.26.027

Menyetujui Tim Pembimbing

Dosen Pembimbing I

Sudiro ST. MT NIP. Y. 1039900327 **Dosen Pembimbing II**

Candra Dwi Ratna, ST.MT NIP. Y. 1030000349

Mengetahui

Ketua Jurusan/Prodi Teknik Lingkungan

Sudifo, ST. MT P. X. 1039900327

LEMBAR PENGESAHAN

SKRIPSI

PENURUNAN COD DAN WARNA PADA AIR LINDI DI TPA SUPIT URANG MENGGUNAKAN METODE AERASI DENGAN PRETREATMENT KOAGULASI-FLOKULASI-SEDIMENTASI

Oleh:

REDHY WULAN SARI

01.26.027

Telah dipertahankan dihadapan Dewan Penguji pada Ujian Komprehensip Skripsi Jurusan/Program Studi Teknik Lingkungan Jenjang Strata satu (S-1), dan diterima untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Teknik pada tanggal 22 Maret 2007.

> Mengetahui Panitia Ujian Komprehensip Skripsi

Ketua

DEMM Agustina Nurul H., MTP

NIP. Y. 103900214

Sekretaris

NIP. Y/1039900327

Dewan Penguji

Dosen Penguji I

Dosen Penguji II

Evy Hendriarianti, ST.MMT

NIP.P. 1030300382

Tuani Lidiawati, ST. MT

LENBAR PERSEMBAHAN

Jangan Memikirkan Sesuatu Yang Tidak Berharga Dan Membuatmu Berputus Asa. Tupakanlah Keberadaannya Dan Berkonsentrasilah Untuk Kesuksesan

Puji Syukur Kehadirat Allah Swt. atas limpahan rahmat dan hidayahnya, yang telah memberikan waktu kepadaku untuk menyelesaikan skripsi ini dengan sebaik-baiknya.

Kupersembahkan skripsi ini kepada orang tuaku tercinta. Terima kasih atas dukungan, doa dan semangatnya. Meski kalian tidak pernah berada disamping wulan setiap saat, tetapi berkat doa dan semangat dari Bapak dan Ibu, akhirnya wulan bisa lulus.

Terima kasih kepada Pakpuh Prayit dan Bude Yayuk, yang telah memberikan doa, dukungan dan dana kepada Wulan. Setiap detik nasehatmu akan selalu terpatri dalam diri wulan.

Kuucapkan terima kasihku kepada seluruh kelurgaku di Mojokerto, mbak nanik (mbak, kapan jalan-jalan ke Matos lagi?), Mas Aan (Mana Hp-koe?, udah kangen berat nie ma hp-koe), firda (Ndut, ayo ajak mama-mu jalan-jalan ke araya apa ke matos), Mas Hery (Mas Her, ojok bosen nganter aku kemana-mana n ojok bosen juga ngasih kucuran dana ke aku...he...he..he), Dek pipit (kamu nie bisnis parfum apa bisnis jual beli Hp?), Mbak Tyas (Mbak, makasih udah dipenjemin rok buat seminar).

Terima Kasih buat seluruh keluargaku di Jombang, Mbak Pin dan Mas Sodik (kapan nie punya momongan?), Mbak Utami dan Mas Aji (Buruan nikah, biar keponakan Wulan nambah..he..he..he), Mas Agus (Thanks yo atas doa dan kiriman pulsanya...he...he..he)

Terima kasih kuhaturkan untuk kelurga besar Sigilipu, Tante Any (Tante, makasih atas doanya, akhirnya Wulan bisa lulus bareng Nensy), Pak Frans (Pak, makasih atas doa dan semangatnya), Andri (Nder, kapan lagi nonton film bareng?)

Boeat Nanank, mas makasih ya atas doa dan semangatnya. Thanks juga atas perhatian dan kasih sayangmu yang dulu pernah kau berikan kepadaku. Meski sekarang kita sudah tidak bersama lagi, tetapi kenangan kita masih selalu tersimpan di hati-koe.

Buat "Cancer Boy", thanks atas perhatian, doa dan semangatmu. Ayo jangan males, cepet selesaikan kuliahmu.

Teman-temankoe di jurusan teknik Lingkungan, Bengky (jangan males, ayo buruan selesaikan kuliahmu), Putu (Thanks ya udah mau bantuin aku pas penelitian), Eka (ka, buruan susul aku untuk lulus cepat), Mita (mit,

jangan mau jadi penghuni terakhir ITN), Indra (thankş udah bantuin ngolah data statistik-koe), Gafur, Erwin, Nesta, Bayu, Zaki, Evelin, Nini, Devi (Mbokde, thankş udah bantuin aku nyusun skripsiku, kapan mau maen ke rumah-koe?), Mas Pay (thankş yo udah mau bantu aku and nganter aku kemana-mana), Fian (kapan ke payung lagi?), Yusri (makasih udah bantu aku pas foto alatku), dan seluruh teman -teman yang tidak dapat kusebutkan satu persatu, makasih atas semuanya.

Kuucapkan terima kasih-koe toek Mas Rudy (Mas makasih udah dipenjemin komputer), Amik (mik, akhirnya kita bisa lulus bareng), Mas Zulfi, Mami, Mas Erwin (kapan ngajak aku karaokean bareng lagi?), fery (sekali jadi cassanova ya tetep cassanova...he...he..he), Jemblong di Surabaya (Man, akhirnya aku bisa jalan-jalan ke Surabaya lage), Vivi (vi, kapan ajak aku makan bakso lagi?), Feri Unbraw (dek, cepetan selesaiin kuliahmu, jangan mikirin nikah mulu), Indah (Ayo ndah, kapan mau lulus nie?)

Boeat teman-temankoe yang lulus bareng, Yuda (Yud, habis nie teknik Lingkungan akan kehilangan maskotnya...he...he.), Nensi (Nen, akhirnya kita bisa wisuda bareng), Lili, Desy, Eva, Weny, Diah, Hermawan, Mas Bangun (Hore, kita bisa wisuda bareng), Ajeng (Jeng, akhirnya kita balik juga ke Mojokerto).

ABSTRAKSI

Wulan Sari Redhy., Sudiro, Dwiratna, C., 2007. Penurunan COD dan Warna Pada Air Lindi di TPA Supit Urang Menggunakan Metode Aerasi Dengan *Pretreatment* Koagulasi-Flokulasi-Sedimentasi (KFS). Skripsi Jurusan Teknik Lingkungan Institut Teknologi Nasional Malang.

Sampah adalah bahan buangan yang dihasilkan dari aktifitas manusia dan binatang, karena tidak dapat dipergunakan dan diinginkan. Sampah harus ditangani dengan baik, sebab dapat menjadi media penebar bibit penyakit, dan secara estetika tidak sedap dipandang mata serta menimbulkan bau tak sedap. Proses dekomposisi sampah akan melepaskan gas dan lindi. Lindi adalah cairan yang melewati sampah dan telah melarutkan mineral tersuspensi ataupun terlarut dari sampah. Salah satu metode untuk menurunkan konsentrasi lindi adalah dengan menggunakan proses aerasi, proses yang dilakukan menggunakan pretreatment koagulasi-flokulasi-sedimentasi (KFS) maupun tanpa menggunakan pretreatment koagulasi-flokulasi-sedimentasi (KFS).

Penelitian ini bertujuan untuk mengetahui efektifitas proses aerasi dengan menggunakan *pretreatment* maupun tanpa *pretreatment*, pengaruh debit udara dan variasi waktu aerasi terhadap konsentrasi COD dan warna. Penelitian dilakukan dengan menggunakan variasi debit udara 500 l/jam, 700 l/jam, 900 l/jam, dan waktu aerasi yaitu 3,5 jam, 4 jam, 6 jam. Penentuan dosis optimum koagulan menggunakan metode jar test.

Hasil penelitian menunjukkan bahwa semakin besar debit udara dan semakin lamanya waktu proses aersi yang dilakukan maka semakin efektif menurunkan COD dan warna. Kombinasi debit udara 900 l/jam dengan waktu aerasi 6 jam (dengan *pretreatment*) dapat menurunkan COD 70 % dan warna 71,76 %, lalu kombinasi debit udara 900 l/jam dengan waktu aerasi 6 jam (tanpa *pretreatment*) dapat menurunkan COD 58,33 % dan warna 60,34 %.

Kata Kunci: Lindi, COD, Warna, Aerasi, Koagulasi-Flokulasi-Sedimentasi, Pretreatment

ABSTRAC

Wulan Sari Redhy., Sudiro, Dwiratna, C., The Removing of COD and Color of Leachateate at TPA Supit Urang use Aeration Methode with Pretreatment Coagulation-Floculation-Sedimentation (CFS). Thesis Sub Faculty Of Environmental Engineering. National Institut Technology Malang.

Solid waste is resulted of human activities and animals, because they cannot be used or not wanted. Solid waste should be handled well, because it can be source of diseases. Solid waste decomposition released gas and leachate. Leachate is liquid which pass through and has dissolved the suspended mineral or soluble from the waste. One methode to remove concentration of leachate is using aeration process, this process done with pretreatment coagulation-floculation-sedimentation (CFS) or without pretreatment coagulation-floculation-sedimentation (CFS).

The aims of the research was investigated the effetiveness aeration methode with or without pretreatment it, the effect of air discharge and aeration time to COD and color concentration. Air discharge variation was 500 l/hours, 700 l/hours, 900 l/hours and variations of time 3,5 hours, 4 hours, and 6 hours. Coagulant opimum dosage determined by jar test.

The result of the research is number of air discharge and time of aeration, the more effective process will be able to remove the concentration of COD and color. Combination of air discharge 900 l/hours and 6 hours time of aeration (with pretreatment) remove COD 70 % and color 71,76 %, combination of air discharge 900 l/hours and 6 hours time of aeration (without pretreatment) remove COD 58,33 % and color 60,34 %.

Key words: Leachate, COD, Color, Aeration, Coagulation-Floculation-Sedimentation, Pretreatment

KATA PENGANTAR

Puji syukur kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya, sehingga penyusun dapat menyelesaikan penyusunan skripsi yang berjudul "Penurunan COD Dan Warna Pada Air Lindi di TPA Supit Urang Menggunakan Metode Aerasi Dengan Pretreatment Koagulasi-Flokulasi-Sedimentasi (KFS)" ini tepat pada waktunya.

Skripsi ini disusun setelah melalui penelitian, analisa data dan pembahasan dari data yang telah diperoleh dari penelitian. Skripsi ini dapat terselesaikan berkat bantuan, kerja sama dan bimbingan dari semua pihak. Dalam kesempatan ini penyusun mengucapkan terima kasih yang sebesar-besarnya kepada yang terhormat:

- Bapak Sudiro, ST. MT., selaku Ketua Jurusan Teknik Lingkungan ITN Malang, sekaligus selaku dosen wali dan dosen pembimbing yang telah memberikan bimbingan, masukan dan saran demi kesempurnaan laporan skripsi ini.
- Ibu Candra Dwi Ratna, ST. MT., selaku Kepala Laboratorium Teknik Lingkungan ITN Malang, sekaligus selaku dosen pembimbing yang telah memberikan bimbingan, masukan dan saran demi kesempurnaan laporan skripsi ini.
- Ibu Anis Artiyani, ST., selaku sekretaris Jurusan Teknik Lingkungan ITN Malang.
- 4. Ibu Evy Hendriarianti, ST.MMT, selaku dosen penguji.
- 5. Ibu Tuani Lidiawati, ST.MT, selaku dosen penguji.
- 6. Kepala Dinas Kebersihan Kota Malang beserta seluruh staf dan karyawan
- 7. Dosen-dosen pengajar dan staf JurusanTeknik Lingkungan ITN Malang.
- 8. Teman-teman Tenik Lingkungan seperjuangan Angkatan '01 yang telah membantu dan memberi dukungan dalam penyusunan laporan skripsi ini.

DAFTAR ISI

LEMBAR PERSETUJUA	N	
ABSTRAKSI		i
KATA PENGANTAR		ii
DAFTAR ISI		iii
DAFTAR TABEL		vii
DAFTAR GAMBAR		x
BAB I. PENDAHULUAN		
1.1 Latar Belakang		1
1.2 Permasalahan		2
1.3 Rumusan Masala	ah	2
1.4 Tujuan Penelitia	n	3
1.5 Ruang Lingkup.		3
BAB II. TINJAUAN PUST		
	indi	
	tik Lindi	
	Flokulasi	
	koagulasi Dan Flokulasi	
2.2.1.1	Proses Koagulasi Flokulasi	9
2.2.1.2	Faktor-Faktor yang Mempengaruhi Koagulasi-	
	Flokulasi	10
2.2.2. Koagular	n	14
2.3 Aerasi		14
2.3.1 Definisi A	verasi	14
2.3.2 Macam-M	lacam Metode Aerasi	16
2.4 Parameter Uji		17
2.4.1. COD		17
2.4.2. Warna		18
2 4 3 Poly Alu	ninium Chloride (PAC)	19

2.5 Analisa Data	20
2.5.1 Analisa Deskriptif	20
2.5.2 Analisa Statistik Inferensi Uji F (ANOVA)	20
2.5.3 Koefisien Korelasi	21
2.5.4 Analisa Regresi	22
BAB III. METODE PENELITIAN	
3.1 Variabel Penelitian	23
3.2 Alat Dan Bahan	23
3.2.1 Alat-Alat Penelitian	23
3.2.1.1 Reaktor Koagulasi-Flokulasi-Sedimentasi	23
3.2.1.2 Reaktor Unit Aerasi	24
3.2.2 Bahan Penelitian	25
3.3 Prosedur Penelitian	25
3.3.1 Perlakuan Tanpa Pretreatment	25
3.3.2 Perlakuan Dengan Pretreatment	26
3.4 Analisa Hasil Percobaan	27
3.5 Analisa Data	27
3.6 Kerangka Penelitian	28
BAB IV. ANALISA DATA DAN PEMBAHASAN 4.1 Karakteristik Lindi	30
4.2 Analisa Data	
4.2.1 Analisa Deskriptif Penurunan COD Pada Penelitian	
Pendahuluan	30
4.2.2 Analisa ANOVA	33
4.2.3 Analisa Korelasi	34
4.2.4 Analisa Regresi	35
4.2.5 Analisa Deskriptif Penurunan Warna Pada Penelitian	
Pendahuluan	
4.2.6 Analisa ANOVA	40
4.2.7 Analisa Korelasi	41

4.2.8	Analisa Regresi	42
4.2.9	Analisa Deskriptif Penurunan COD Setelah Aerasi Tanpa	
	Pretreatment KFS	44
4.2.10	Analisa ANOVA	46
4.2.11	Analisa Korelasi	48
4.2.12	Analisa Regresi	49
4.2.13	Analisa Deskriptif Penurunan COD Setelah Aerasi	
	Dengan Pretreatment PAC	51
4.2.14	Analisa ANOVA	54
4.2.15	Analisa Korelasi	56
4.2.16	Analisa Regresi	57
4.2.17	Analisa Deskriptif Penurunan Warna Setelah Aerasi Tanpa	
	Pretreatment PAC	59
4.2.18	Analisa ANOVA	62
4.2.19	Analisa Korelasi	64
4.2.20	Analisa Regresi	65
4.2.21	Analisa Deskriptif Penurunan Warna Setelah Aerasi Dengan	
	Pretreatment PAC	67
4.2.22	Analisa ANOVA	70
4.2.23	Analisa Korelasi	72
4.2.24	Analisa Regresi	73
4.3 Pembah	asan	76
4.3.1	Pembahasan Persentase Penurunan COD Pada Penelitian	
	Pendahuluan	76
4.3.2	Pembahasan Persentase Penurunan Warna Pada Penelitian	
	Pendahuluan	.77
4.3.3	Pembahasan Persentase Penurunan COD Setelah Aerasi Tanpa	
	Pretreatment KFS	.79
4.3.4	Pembahasan Persentase Penurunan COD Setelah Acrasi	
	Dengan Pretreatment KFS	.81
4.5.3	Pembahasan Persentase Penurunan Warna Setelah Aerasi	
	Tanpa Pretreatment KFS	.83

4.3.	6 Pembahasan	Persentase	Penurunan	Warna	Setelah	Aerasi	
	Dengan Pres	treatment KI	⁷ S	••••••	••••••	***********	85
BAB V. PENUT	UP						
5.1 Kesi	mpulan	•••••	•••••	•••••	•••••••	••••••	87
5.2 Sara	n	•••••••	•••••••	••••••	••••••	••••••	87
DAFTAR PUST	CAKA						
LAMPIRAN							

DAFTAR TABEL

Γabel 2.1	Kisaran Kandungan Komposisi Kimia Lindi	5
Tabel 4.1	Konsentrasi Awal Air Lindi Sebelum Proses Aerasi	30
Tabel 4.2	Nilai Konsentrasi Akhir COD Pada Penelitian Pendahuluan	31
Tabel 4.3	Nilai Persentase Penurunan COD Pada Penelitian Pendahuluan	32
Tabel 4.4	Hasil Uji ANOVA Presentase Penurunan COD Pada Penelitian	
	Pendahuluan	33
Tabel 4.5	Korelasi antara Persentase Penurunan COD Dengan Konsentrasi PAC	
	Pada Penelitian Pendahuluan	34
Tabel 4.6	Koefisien Persamaan Regresi Persentase Penurunan COD Pada	
	Penelitian Pendahuluan	35
Tabel 4.7	Hasil Uji Kelinieran Analisa Regresi Presentase Penurunan COD Pada	
	Penelitian Pendahuluan	35
Tabel 4.8	Nilai Konsentrasi Akhir Warna Pada Penelitian Pendahuluan	37
Tabel 4.9	Nilai Persentase Penurunan Warna Pada Penelitian Pendahuluan	39
Tabel 4.10	Hasil Uji ANOVA Persentase Penurunan Warna Pada Penelitian	
	Pendahuluan	40
Tabel 4.11	Korelasi antara Persentase Penurunan Warna Dengan Konsentrasi PAC	
	Pada Penelitian Pendahuluan	41
Tabel 4.12	Koefisien Persamaan Regresi Persentase Penurunan Kandungan Warna	
	Pada Penelitian Pendahuluan	42
Tabel 4.13	Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan Warna	
	Pada Penelitian Pendahuluan	42
Tabel 4.14	Nilai Konsentrasi Akhir COD Setelah Aerasi Tanpa Pretreatment KFS	44
Tabel 4.15	Nilai Persentase Penurunan COD Setelah Aerasi Tanpa Pretreatment	
	KFS	45
Tabel 4.16	Hasi Uji ANOVA Persentase Penurunan COD Setelah Aerasi Tanpa	
	Pretreatment KFS (% Removel Versus Debit Udara)	46
Tabel 4.17	Hasil Uji ANOVA Persentase Penurunan COD Setelah Aerasi Tanpa	
	Pretreatment KFS (% Removel Versus Waktu)	47

Tabel 4.18 Korelasi antara Persentase Penurunan COD Dengan Debit Udara Dan	
Waktu Setelah Aerasi Tanpa Pretreatment KFS	48
Tabel 4.19 Koefisien Persamaan Regresi Persentase Penurunan COD Setelah	
Aerasi Tanpa Pretreatment KFS	49
Tabel 4.20 Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan COD	
Setelah Aerasi Tanpa Pretreatment KFS	50
Tabel 4.21 Nilai Konsentrasi Akhir COD Setelah Aerasi Dengan Pretreatment	
KFS	52
Tabel 4.22 Nilai Persentase Penurunan COD Setelah Aerasi Dengan Pretreatment	
KFS	53
Гаbel 4.23 Hasi Uji ANOVA Persentase Penurunan COD Setelah Aerasi Dengan	
Pretreatment KFS (% Removel Versus Debit Udara)	54
Tabel 4.24 Hasil Uji ANOVA Persentase Penurunan COD Setelah Aerasi Dengan	
Pretreatment KFS (% Removel Versus Waktu)	55
Tabel 4.25 Korelasi antara Persentase Penurunan COD Dengan Debit Udara Dan	
Waktu Setelah Aerasi Dengan Pretreatment KFS	56
Tabel 4.26 Koefisien Persamaan Regresi Persentase Penurunan COD Setelah	
Aerasi Dengan Pretreatment KFS	57
Tabel 4.27 Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan COD	
Setelah Aerasi Dengan Pretreatment KFS	58
Tabel 4.28 Nilai Konsentrasi Akhir Warna Setelah Aerasi Tanpa Pretreatment	
KFS	60
Tabel 4.29 Nilai Persentase Penurunan Warna Setelah Aerasi Tanpa Pretreatment	
KFS	61
Tabel 4.30 Hasi Uji ANOVA Persentase Penurunan Warna Setelah Aerasi Tanpa	
Pretreatment KFS (% Removel Versus Debit Udara)	62
Tabel 4.31 Hasil Uji ANOVA Persentase Penurunan Warna Setelah Aerasi Tanpa	
Pretreatment KFS (% Removel Versus Waktu)	63
Tabel 4.32 Korelasi antara Persentase Penurunan Warna Dengan Debit Udara	
Dan Waktu Setelah Aerasi Tanpa Pretreatment KFS	64
Tabel 4.33 Koefisien Persamaan Regresi Persentase Penurunan Warna Setelah	
Aerasi Tanpa Pretreatment KFS	65

Tabel 4.34 Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan Warna	
Setelah Aerasi Tanpa Pretreatment KFS	66
Tabel 4.35 Nilai Konsentrasi Akhir Warna Setelah Aerasi Dengan	
Pretreatment KFS	68
Tabel 4.36 Nilai Persentase Penurunan Warna Setelah Aerasi Dengan	
Pretreatment KFS	69
Tabel 4.37 Hasi Uji ANOVA Persentase Penurunan Warna Setelah Aerasi	
Dengan Pretreatment KFS (% Removel Versus Debit Udara)	70
Tabel 4.38 Hasil Uji ANOVA Persentase Penurunan Warna Setelah Aerasi	
Dengan Pretreatment KFS (% Removel Versus Waktu)	71
Tabel 4.39 Korelasi antara Persentase Penurunan Warna Dengan Debit Udara	
Dan Waktu Setelah Aerasi Dengan Pretreatment KFS	72
Tabel 4.40 Koefisien Persamaan Regresi Persentase Penurunan Warna Setelah	
Aerasi Dengan Pretreatment KFS	73
Tabel 4.41 Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan Warna	
Setelah Aerasi Dengan Pretreatment KFS	74

DAFTAR GAMBAR

Gambar 2.1	Hubungan Antara pH Dengan Zeta Potensial	13
Gambar 4.1	Grafik Konsentrasi Akhir COD Pada Penelitian Pendahuluan	31
Gambar 4.2	Grafik Persentase Penurunan COD Pada Penelitian Pendahuluan	33
Gambar 4.3	Grafik Konsentrasi Akhir Warna Pada Penelitian Pendahuluan	38
Gambar 4.4	Grafik Persentase Penurunan Warna Pada Penelitian Pendahuluan	39
Gambar 4.5	Grafik Konsentrasi Akhir COD Setelah Aerasi Tanpa Pretreatment	
	KFS	45
Gambar 4.6	Grafik Persentase Penurunan COD Setelah Aerasi Tanpa Pretreatment	
	KFS	46
Gambar 4.7	Grafik Konsentrasi Akhir COD Setelah Aerasi Dengan Pretreatment	
	KFS	52
Gambar 4.8	Grafik Persentase Penurunan COD Setelah Aerasi Dengan	
	Pretreatment KFS	54
Gambar 4.9	Grafik Konsentrasi Akhir Warna Setelah Aerasi Tanpa Pretreatment	
	KFS	60
Gambar 4.10	Grafik Persentase Penurunan Warna Setelah Aerasi Tanpa	
	Pretreatment KFS	62
Gambar 4.11	Grafik Konsentrasi Akhir Warna Setelah Aerasi Dengan Pretreatment	
	KFS	. 68
Gambar 4.12	Grafik Persentase Penurunan Warna Setelah Aerasi Dengan	
	Pretreatment KFS	. 7 0

BAB I PENDAHULUAN

1.1. Latar Belakang

Seiring dengan bertambahnya jumlah penduduk, secara langsung mengakibatkan bertambahnya jumlah buangan padat (sampah). Dengan banyaknya jumlah sampah, maka tumpukan sampah semakin meningkat. Tumpukan sampah yang belum diolah akan mengalami proses pembusukan yang nantinya menghasilkan lindi. Lindi merupakan air yang terbentuk dalam timbunan sampah yang melarutkan banyak sekali senyawa sehingga memiliki kandungan bahan pencemar khususnya zat organik yang sangat tinggi, antara lain COD (Chemical Oxygen Demand) dan warna. Lindi ini dapat bergerak dan merembes ke dalam tanah yang pada akhirnya dapat mencemari air tanah maupun air permukaan apabila konsentrasi kontaminannya tinggi.

Untuk mengurangi tingginya kandungan organik yang terdapat pada lindi maka diperlukan suatu proses pengolahan yang dapat mengurangi konsentrasi kontaminannya. Pada penelitian sebelumnya, proses pengolahan dilakukan dengan menggunakan metode aerasi, dimana air lindi yang diletakkan dalam suatu bak aerasi diberikan penambahan oksigen. Hasil penelitian tersebut menunjukkan bahwa dalam waktu 6 jam dengan debit udara 5 l/menit mampu menurunkan konsentrasi BOD (Biologycal Oxygen Demand) sebesar 4,79-15,16%; NO3 sebesar 7,15-38,13 % dan PO4 sebesar 17,15-70,91 % (Yetty Haryuna, 2005). Dengan adanya pengaturan udara/oksigen pada bak aerasi maka bakteri aerob akan menguraikan zat organik dalam air lindi dengan bantuan oksigen (O2).

Mengingat penurunan konsentrasi kandungan organik dengan metode aerasi pada penelitian sebelumnya masih belum optimal, maka dipandang perlu untuk melakukan proses tambahan. Proses tambahan tersebut merupakan suatu proses pengolahan pendahuluan (pretreatment) yang terdiri dari proses koagulasi-flokulasi, dan sedimentasi. Koagulan yang

digunakan adalah Poly Aluminium Chloride (PAC) yang berfungsi untuk mengurangi kandungan organik dan warna sebelum masuk ke aerasi.

1.2. Permasalahan

Tingginya bahan pencemar yang terkandung pada air lindi seperti COD dan warna akan menimbulkan suatu pencemaran karena lindi ini dapat bergerak dan merembes ke dalam tanah yang akhirnya mencemari air tanah maupun air permukaan. Pada penelitian sebelumnya, pengolahan lindi ini dilakukan dengan menggunakan proses aerasi tanpa disertai proses pendahuluan. Hasil penelitian tersebut menunjukkan bahwa penurunan konsentrasi kandungan organik yang dilakukan dengan metode aerasi masih belum optimal, sehingga diperlukan suatu proses tambahan.

Atas dasar permasalahan tersebut, maka untuk mengurangi tingginya konsentrasi COD dan warna pada air lindi diperlukan suatu proses pengolahan menggunakan metode aerasi dengan dan tanpa pretreatment koagulasi-flokulasi-sedimentasi, selain itu harus diketahui juga seberapa besar pengaruh debit udara dan waktu terhadap penurunan COD dan warna serta seberapa efektif proses aerasi dengan pretreatment koagulasi-flokulasi-sedimentasi terhadap penurunan COD dan warna. Hal ini dilakukan supaya air lindi tidak mencemari air tanah maupun air permukaan di sekitar TPA Supit Urang.

1.3. Rumusan Masalah

- 1. Seberapa besar penurunan COD dan warna pada pengolahan air lindi dengan dan tanpa *pretreatment* koagulasi-flokulasi-sedimentasi?
- 2. Seberapa besar pengaruh debit udara dan waktu terhadap penurunan COD dan warna pada pengolahan air lindi dengan metode aerasi?
- 3. Seberapa efektif pengolahan air lindi menggunakan metode aerasi dengan *pretreatment* koagulasi-flokulasi-sedimentasi terhadap penurunan COD dan warna?

प्रमानिकार । अन्य का की कि प्रेस्टिकार मानुवार कुनाईक क्रान्य का की कि

The second content of the content of

ikan iki sengapi (ili)

ARAN CART CONSIDER OF THE CONTROL OF THE CONTROL OF THE CART OF TH

1.4. Tujuan Penelitian

- 1. Mengetahui penurunan COD dan warna pada pengolahan air lindi dengan dan tanpa *pretreatment* koagulasi-flokulasi-sedimentasi.
- 2. Mengetahui pengaruh debit udara dan waktu terhadap penurunan COD dan warna pada pengolahan air lindi dengan metode aerasi.
- 3. Mengetahui keefektifan pengolahan air lindi dengan menggunakan metode aerasi dengan *pretreatment* koagulasi-flokulasi-sedimentasi terhadap penurunan COD dan warna.

1.5. Ruang Lingkup

- 1. Penelitian ini menggunakan skala laboratorium.
- 2. Air lindi yang digunakan diambil langsung dari timbunan sampah di TPA Supit Urang Malang.
- 3. Parameter yang diteliti meliputi : COD dan Warna.
- 4. Operasional reaktor secara batch.
- 5. Pada penelitian ini cara penambahan oksigen dilakukan dengan cara memasukkan udara atau oksigen ke dalam air dengan bantuan *Water Pump* sehingga terbentuk gelembung-gelembung udara.
- 6. Proses aerasi menggunakan aerasi tipe konvensional dengan bantuan pengaduk (paddle), berfungsi untuk memecah lindi dalam bak, sehingga menjadi bagian yang lebih kecil, dengan demikian kontak udara dengan lindi lebih besar.

BAB II

TINJAUAN PUSTAKA

2.1. Lindi

2.1.1. Definisi Lindi

Banyaknya jumlah sampah yang semakin menumpuk mengakibatkan terjadinya proses pembusukan sampah yang menghasilkan lindi dan gas. Lindi (*Leachate*) adalah cairan hasil proses dekomposisi timbunan sampah yang terkumpul di bagian dasar timbunan. Lindi umumnya merupakan hasil lapisan *presipitasi*, *run off* yang tidak terkontrol dan masuk ke dalam *landfill* dan dapat menginfiltrasi air tanah (*Tchobanoglous*, 1993).

Volume lindi tergantung pada jumlah air yang masuk ke lahan pembuangan. Air yang masuk ke lahan pembuangan antara lain berasal dari air hujan dan air embun yang melekat pada sampah padat. Air hujan merupakan faktor utama yang mempengaruhi debit lindi yang dihasilkan. Semakin kecil rembesan air hujan yang masuk ke timbunan sampah, akan semakin kecil pula debit lindi yang dihasilkan, yang pada gilirannya akan memperkecil kebutuhan unit pengolahannya.

Lindi dapat merembes ke dalam tanah dan mencemari air tanah. Perembesan ini sangat tergantung dari sifat tanah dasar dari TPA. Sifat tanah dasar dari TPA dibagi menjadi dua yaitu tanah yang dapat dirembesi oleh lindi secara perlahan dan tanah kedap air. Jika lokasi TPA mempunyai struktur tanah yang dapat dirembesi air secara bersamaan akan terjadi penyaringan, sehingga kandungan zat pencemar menjadi berkurang. Pada lokasi TPA dengan struktur tanah kedap air, lindi tidak dapat merembes dan kemungkinan dapat melimpah keluar TPA yang pada akhirnya mencemari air di sekitar TPA, sehingga diperlukan pengolahan lebih lanjut.

2.1.2. Karakteristik Lindi

Lindi terjadi karena adanya proses dekomposisi dalam tanah. Yang dimaksud dengan lindi adalah cairan yang melewati sampah dan telah melarutkan material tersuspensi ataupun terlarut dari sampah. Cairan lindi bersumber dari air yang terjadi dari dekomposisi dan cairan yang masuk ke landfill dan sumber luar, seperti aliran permukaan, air hujan, air tanah maupun dari sumber lain.

Sesuai dengan proses terjadinya, maka lindi mengandung bahan-bahan yang dapat menimbulkan pencemaran, terutama bila sampah mengandung bahan beracun dan berbahaya. Lindi dan sampah domestik dapat menimbulkan pencemaran karena kandungan bahan organiknya yang tinggi. Adapun kandungan komposisi kimia lindi adalah sebagai berikut:

Tabel 2.1 Kisaran Kandungan Komposisi Kimia Lindi

Parameter	Kisaran
COD (mg/l)	150-100000
BOD (mg/l)	100-90000
pH	5,3-8,5
Alkalinity (mg CaCO ₃ /l)	300-11500
Kesadahan (mg CaCO ₃ /I)	500-8900
NH4 (mg/l)	1-1500
N- organik (mg/l)	1-2000
N-tot (mg/l)	50-50000
NO ₃ (mg/l)	0,1-50
NO ₂ (mg/l)	0-25
P-total (mg/l)	0,1-30
PO ₄ (mg/l)	0,3-25
Ca(mg/l)	10-2500
Mg (mg/l)	50-1150

Parameter	Kisaran
Na (mg/l)	50-4000
K (mg/l)	10-2500
/SO ₄ (mg/l)	10-12003
Cl (mg/l)	0-4000
Fe (mg/l)	0,4-2200
Zn (mg/l)	0,05-170
Mn (mg/l)	0,4-50
CN (mg/l)	0,04-90 .
Phenol (mg/l)	0,04-44
AOX(μg/l)	320-3500
As(μg/l)	5-1600
Cd (μg/l)	0,5-140
Co (µg/l)	4-950
Ni (µg/l)	20-2050
Pb(μg/1)	8-1020
Cr (µg/l)	30-1600
Cu (μg/l)	4-1400
Hg (μg/l)	0,2-50

(Sumber: Yetty Haryuna, 2005).

Ada beberapa faktor yang mempengaruhi karakteristik lindi yang terbentuk di tempat pembuangan akhir sampah. Dimana faktor tersebut adalah:

1. Komposisi Sampah

Karena lindi berasal dan proses dekomposisi sampah, maka komposisi sampah yang berbeda akan menghasilkan karakteristik yang berbeda.

2. pH

pH mempengaruhi proses kimia yang didasarkan pada transfer masa seperti presipitasi, pelarutan, reaksi redoks dan penyerapan (adsorbsi). Pada kondisi pH yang berbeda akan terjadi transfer masa yang berbeda pula sehingga akan dihasilkan karakteristik yang berbeda.

3. Umur landfill

Variasi karakteristik lindi yang dihubungkan dengan *landfill* adalah pada derajat/tingkat stabilitas sampah yang terjadi.

4. Pengolahan Lindi

Lindi berasal dari pembusukan sampah, untuk menampung lindi harus dibuat lapisan dasar tanah yang kedap air dan saluran pengumpul lindi ke dalam tanah. Debit lindi akan semakin besar manakala terjadi hujan lebat, namun kualitas air lindi akan menurun. Untuk membuang lindi ke dasar lahan, lindi dialirkan ke suatu saluran yang direncanakan dan kemudian diolah terlebih dahulu dengan maksud menurunkan kadar pencemar yang terkandung di dalamnya. Salah satu usaha dalam pengelolaan lindi dalam sanitary landfill adalah mengusahakan pengurangan kuantitas yang lolos ke lapisan tanah di bawah timbunan, yaitu dengan:

- 1. Menampung dan menyalurkan lindi yang keluar dari lahan efektif.
- 2. Memperbaiki kuantitas dan kualitas lindi yaitu dengan pengelolaan lindi yang tertampung (Sumber: Yetty Haryuna, 2005).

2.2. Koagulasi dan Flokulasi

2.2.1. Definisi Koagulasi dan Flokulasi

Koagulasi merupakan proses destabilisasi koloid dan partikel dalam air dengan menggunakan bahan kimia (koagulan) yang menyebabkan pembentukan inti gumpalan (presipitat) (Ali Masduki dan Agus Slamet, 2002).

Pada umumya proses koagulasi dilakukan dengan pengadukan cepat selama kurang lebih 10-60 detik dengan kecepatan putaran pengaduk lebih dari 100 *rate per minute* (rpm) dan kogulan yang ditambahkan biasanya mempunyai muatan yang berlawanan dengan partikel yang ada dalam air.

Flokulasi adalah proses penggabungan inti flok sehingga menjadi flok yang berukuran lebih besar (*Ali Masduki dan Agus Slamet, 2002*). Proses flokulasi terjadi bila terdapat pengadukan lambat, hal ini dilakukan untuk mempertahankan flok yang sudah terbentuk agar tidak pecah. Waktu

pengadukan pada proses flokulasi antara 15-30 menit dengan kecepatan pengaduk kurang dari 100 rpm. Pengertian koagulasi dan flokulasi menurut beberapa ilmuwan dapat didefinisikan sebagai berikut :

1. Menurut Lamer

Koagulasi adalah destabilisasi partikel yang dihasilkan melalui prosesproses kompresi lapisan rangkap bermuatan listrik yang mengelilingi permukaan partikel.

Flokulasi adalah destabilisasi partikel melalui adsorbsi polimer organik yang diikuti dengan pembentukan gabungan partikel-polimer-partikel (Trivas Yekti, W. 2005).

2. Menurut E. Hudson Jr.

Koagulasi adalah proses pencampuran pada fase turbulen , sehingga terjadi hidrolisa karena garam-garam yang mengandung ion logam.

Flokulasi adalah proses pencampuran pada fase turbulen, sehingga akan terjadi dispersi (penyebaran ke berbagai arah dalam air), hidrolisa (reaksi yang terjadi antara suatu molekul dengan air) dan polimerisasi oleh koagulan pada rapid mix (Triyas Yekti, W, 2005).

3. Menurut Charles R. Cox, 1969

Koagulasi adalah suatu proses penyebaran zat kimia di dalam air sehingga terjadi reaksi secara seragam ke seluruh badan air dengan menggunakan pengaduk cepat.

Flokulasi adalah proses pembentukan aglomerat partikel yang lembut menjadi flok-flok, sehingga flok-flok tersebut dapat mengendap(*Triyas Yekti*, *W*, 2005) .

4. Menurut Rahardjo, 1993

Koagulasi adalah suatu proses pembentukan partikel yang disebut mikroflok dari partikel-partikel koloid dan partikel halus lainnya yang tersuspensi dengan cara penambahan koagulan, sehingga partikel-partikel tersebut dapat mengendap. Penggunaanya dilakukan terutama untuk memisahkan koloid yang dapat mengalami aglomerisasi dalam bentuk flok. Koagulasi kimia termasuk dalam destabilisasi yaitu dapat membentuk agregasi dan ikatan bersama koloid. Koloid yang terjadi

membentuk gumpalan atau flok yang mengadsorbsi, menangkap atau mungkin mengendapkan suspensi padat yang ada pada air limbah (Triyas Yekti, W, 2005).

5. Menurut Sumestri, 1985

Flokulasi adalah proses pembesaran ukuran flok yang telah terbentuk pada proses koagulasi dan akan diendapakan secara grafitasi. Ukuran flok hasil koagulasi biasanya lebih kecil dari 0,1 mm dan flok setelah flokulasi berukuran 0,1-3 mm dan dapat dilihat dengan mata.

Dari berbagai definisi yang telah disebut sebelumnya, maka dapat disimpulkan bahwa koagulasi dan flokulasi merupakan serangkaian proses-proses sebagai berikut:

a. Destabilisasi muatan partikel karena adanya penambahan zat koagulan.

b. Proses destabilisasi.

Koagulasi adalah proses penggumpalan zat-zat yang terlarut dalam air yang berbentuk suspensi ataupun koloid yang biasanya dilakukan dengan pengadukan lambat.

Flokulasi adalah proses lanjutan dari koagulasi yaitu terbentuknya flok-flok yang lebih besar sehingga terjadi penggumpalan dan pengendapan. Dalam proses flokulasi ditambah zat-zat kimia. Flokulen adalah zat yang mempunyai kemampuan untuk mengikat partikel-partikel koloid dan digunakan pada air yang tidak dapat langsung mengadakan reaksi terhadap koagulasi dan flokulasi. Zat-zat tersebut adalah Silika aktif, Natrium Alginat, dan Poli Elektrolit(*Triyas Yekti .W., 2005*).

2.2.1.1. Proses Koagulasi-flokulasi

Proses koagulasi dan flokulasi merupakan penambahan suatu reagen kimia pembentuk flok ke air/air limbah untuk menggabungkan padatan koloid dan padatan tersuspensi yang selanjutnya flok dipisahkan dengan sedimentasi (*Triyas Yekti .W., 2005*).

Proses koagulasi dan flokulasi berlangsung dalam dua tahap yaitu proses pengadukan cepat dan pengadukan lambat.

1. Proses pengadukan cepat

Proses pengadukan cepat dimaksudkan untuk meratakan campuran antara koagulan dengan air buangan sehingga diperoleh suatu kondisi campuran yang homogen. Molekul-molekul serta partikel-partikel yang bermuatan negatif dalam air seperti koloid akan diikat oleh molekul-molekul serta ion-ion yang bermuatan positif dari koagulan. Dalam proses pengadukan cepat diperlukan tenaga pengadukan yang kuat dan waktu pengadukan yang cepat karena hidrolisa koagulasi terjadi dalam waktu yang sangat cepat. Waktu yang diperlukan untuk pengadukan cepat antara 10-60 detik sedangkan gradient kecepatan > 300 detik-1 (*Triyas Yekti.W., 2005*).

2. Proses pengadukan lambat.

Proses pengadukan lambat bertujuan untuk mendapatkan partikel-partikel flokulen yang lebih berat sehingga dapat mempercepat proses pengendapan. Waktu yang diperlukan untuk pengadukan cepat antara 10-30 menit, sedangkan gradient kecepatan 5-100 detik-1 (Trivas Yekti. W., 2005).

2..2.1.2. Faktor-faktor yang mempengaruhi koagulasi-flokulasi

Pada proses koagulasi dan flokulasi ini dipengaruhi oleh beberapa faktor yaitu:

a. pH

pH merupakan besaran yang menyatakan sifat asam basa suatu larutan. Sifat kimia koagulan juga tergantung pada pH, karenanya pada proses koagulasi dan flokulasi batasan pH sangat penting mengingat pH air dapat mempengaruhi kelarutan bahan kimia (Al Layla, 1977). pH sebagai derajat keasaman merupakan variabel penting pada proses koagulasi dan flokulasi, karena hanya pada pH optimum proses ini akan berlangsung dengan baik serta hanya akan memerlukan waktu yang sangat singkat pada pemberian

dosis tertentu. Batasan nilai pH akan terjadi karena pengaruh jenis koagulan dan komposisi zat kimia dalam air.

b. Pengaruh garam-garam asam di air.

Di dalam air terlarut garam mineral sangat dipengaruhi oleh senyawa pembentuk konsentrasinya. Pengaruh yang disebabkan oleh garam mineral dalam air adalah kemampuannya dalam menggantikan kedudukan ion hidroksinya pada senyawa komplek hidroksit. Selain hal tersebut diatas, garam mineral berpengaruh pada penentuan pH dan dosis koagulan. Adanya senyawa ini dalam sampel akan mengakibatkan perubahan range pH optimum koagulan, waktu yang diperlukan koagulasi, dosis koagulan optimum, dan residu koagulan pada effluent.

c. Kekeruhan

Hal - hal yang diperlukan dalam proses koagulasi dan flokulasi adalah :

- 1. Kebutuhan koagulan tergantung pada kekeruhan
- 2. Kekeruhan tinggi membutuhkan dosis koagulan yang relatif rendah, adanya kemungkinan terjadi tumbukan.
- 3. Ukuran partikel yang tidak seragam lebih mudah di koagulasi. (Triyas Yekti, 2005).

d. Jenis koagulan

Jenis koagulan harus disesuaikan dengan jenis koloid yang terdapat dalam air. Jenis koagulan yang tepat akan sangat efisien dalam proses karena dapat memperkecil gaya tolak menolak sesama partikel koloid sehingga membentuk flok.

e. Temperatur

Temperatur erat hubungannya dengan viskositas air, semakin tinggi suhu air maka semakin kecil viskositas. Viskositas ini akan berpengaruh pada pengendapan flok. Hal ini terjadi karena bertambahnya suhu, sehingga akan meningkatkan gradient kecepatan sehingga flok akan terlarut kembali. Di samping itu peningkatan suhu akan menyebabkan peningkatan dosis koagulan pada pH netral

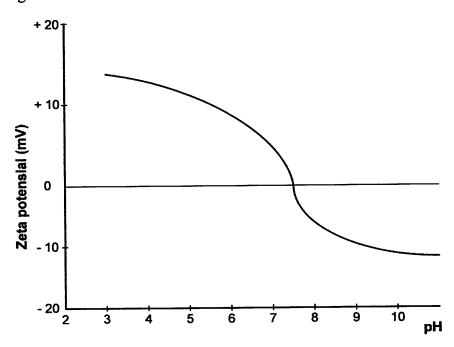
spesies muatan positif menurun dengan peningkatan temperatur (P.Juli Ni Ketut, 2005).

f. Waktu detensi (td)

Merupakan fungsi debit dan aliran waktu detensi lebih lama dari kriteria desain akan menyebabkan pengendapan pada sistem kontinyu, sedangkan waktu detensi yang lebih singkat menyebabkan pembentukan flok yang relatif kecil dan sukar mengendap.

g. Warna

Warna dalam suatu sampel disebabkan oleh adsorbsi selektif matahari oleh atom dan molekul penyusun benda. Warna terbagi menjadi dua yaitu warna tampak dan warna sebenarnya. Semakin besar kandungan warna dalam sampel maka semakin besar kebutuhan koagulan.


h. Pengaruh pengadukan

Dilakukan dua tahap pengadukan yaitu pengadukan cepat untuk mendistribusikan koagulan secara merata dengan waktu detensi 30-60 detik. Sedangkan pengadukan lambat adalah tumbukan antara partikel sehingga menghasilkan bertambahnya ukuran flok. Waktu detensi minimal 10 menit dan umumnya 30-60 menit.

Kecepatan pengadukan merupakan karakteristik untuk pencampuran fluida yang dinyatakan dalam rpm dan harus dipilih sesuai tujuan dari proses. Untuk koagulasi, kecepatan pengadukan harus tinggi agar proses pencampuran benar-benar merata ke seluruh campuran, sedangkan untuk fokulasi, kecepatan pengadukan harus rendah karena kecepatan yang lebih tinggi akan menyebabkan pecahnya flok yang terbentuk. Kecepatan pengadukan yang umum dipakai untuk pengadukan cepat 60-100 rpm, sedangkan untuk pengadukan lambat 20-60 rpm (*Triyas Yekti, 2005*).

i. Zeta potensial

Zeta potensial adalah potensial elektrostatis yang ada di sekitar kulit suatu partikel yang dapat mempengaruhi stabilitas koloid. Harga zeta potensial mempengaruhi kemudahan destabilisasi partikel koloid untuk pembentukan flok. Dalam air, gaya tarik menarik akan dilawan oleh gaya tolak menolak oleh zeta potensial. Resultan gaya yang terjadi akan menentukan terbentuknya flok. Jika elektrostatis yang ada di sekitar partikel bermuatan negatif maka harga zeta potensial juga negatif sehingga lapisan ion negatif tersebut akan menarik ion positif yang berada di sekitarnya. Proses koagulasi optimum akan terjadi ketika zeta potensial bernilai 0 (nol) (Eckenfelder, 2000 dalam Taufikkurahman, 2006). Zeta potensial dipengaruhi oleh pH, dimana zeta potensial bernilai nol berada pada pH 7-8. Hubungan antara pH dengan zeta potensial tertuang dalam gambar 2.1.

Gambar 2.1 Hubungan Antara pH dengan Zeta Potensial (Sumber: Eckenfelder, 2000 dalam Taufikkurahman, 2006)

2.2.2. Koagulan

Koagulan adalah zat-zat yang mempunyai kemampuan untuk menetralisir muatan partikel koloid dan mempunyai kemampuan untuk mengikat partikel-partikel tersebut. Macam-macam koagulan diantaranya:

- a. Aluminium Sulfat atau Tawas (A1₂(S0₄)₃.14H₂O)
 - Koagulan tawas banyak digunakan karena sangat baik dalam pembentukan flok dan mudah dalam pengerjaan. Tawas bersifat asam sehingga untuk koagulasi yang terbaik pada pH 7,5-8,5.
- b. Poly Aluminium Chlorida ((AlCl₃)n.6H₂O)
 Koagulan ini relatif lebih baik dibandingkan dengan tawas. Flok yang dihasilkan lebih besar, sehingga proses penjernihan lebih singkat.
- c. Sodium Aluminat (NaAlO₂)
 Koagulan ini lebih baik dipakai bersama sama dengan tawas karena akan menurunkan pemakaian dan menghilangkan warna.
- d. Ferro Sulfat (Fe₂SO₄.7H₂O)
 Koagulan ini membentuk flok lebih berat daripada flok yang dibentuk oleh tawas. Ferro sulfat lebih efektif pada range pH 4-9. Pemakaian koagulan ini tidak cocok untuk air berwama yang mempunyai derajat kesadahan yang rendah.
- e. Amonia Alum

Koagulan ini dipakai dengan cara dilarutkan terlebih dahulu di dalam suatu pot dengan memakai tekanan kemudian larutannya di injeksikan ke dalam air. (*Triyas Y W, 2005*).

2.3. Aerasi

2.3.1. Definisi Aerasi

Perpindahan massa zat dan fase gas ke cair atau sebaliknya, terjadi bila ada kontak intim antar permukaan cairan dengan gas atau udara atau juga merupakan suatu proses penambahan oksigen ke dalam air yang bertujuan untuk menurunkan konsentrasi zat pencemar. Penambahan oksigen adalah salah satu usaha dari pengambilan zat tercemar tersebut, sehingga konsentrasi zat pencemar yang terdapat di dalam air akan

berkurang atau bahkan dapat dihilangkan sama sekali tergantung dari konsentrasi zat pencemar tersebut. Faktor-faktor yang mempengaruhi aerasi adalah:

a. Suhu

Koefisisen penyerapan oksigen (K_{La}) akan meningkat seiring dengan kenaikan suhu, karena suhu dalam air akan mempengaruhi tingkat difusi, tegangan permukaan dan kekentalan air. Kemampuan difusi oksigen meningkat dengan peningkatan suhu, sedangkan tegangan permukaan dan kekentalan menurun seiring dengan kenaikan suhu.

b. Kejenuhan oksigen

Konsentrasi jenuh oksigen dalam air tergantung pada derajat salinitas air, suhu, dan tekanan parsial oksigen yang berkontak dengan air.

c. Karakteristik air

Dalam praktek ada perbedaan nilai koefisien penyerapan oksigen (K_{La}) air limbah yang mengandung materi tersuspensi, surfaktan (detergen) dalam larutan dan perbedaan temperatur.

d. Derajat turbulensi.

Derajat turbulensi dalam tangki aerasi akan mempengaruhi hal-hal dibawah ini:

- 1. Turbulensi akan menurunkan derajat tahanan liquid film.
- 2. Turbulensi akan meningkatkan laju perpindahan massa oksigen karena terjadi percepatan laju pergantian permukaan bidang kontak yang berakibat pada defisit oksigen supaya tetap konstan.
- 3. Turbulensi secara langsung akan meningkatkan nilai koefisien perpindahan oksigen (*Ali Masduki dan Agus Slamet, 2002*).

Pada prakteknya terdapat 2 cara menambahkan oksigen dalam air yaitu:

1. Memasukkan udara ke dalam air.

Adalah proses memasukkan udara atau oksigen ke dalam air dengan water pump dengan tekanan udara 0,03 Mpa. Apabila water pump diletakkan di tengah-tengah, maka akan meningkatkan kecepatan berkontaknya gelembung udara dengan air, sehingga proses pemberian

oksigen akan berjalan lebih cepat. Oleh karena itu, biasanya water pump ini diletakkan pada dasar bak aerasi dengan memasukkan udara yang diberi tekanan 0,03 Mpa.

2. Memaksa air untuk berkontak dengan oksigen

Adalah cara mengontakkan air dengan oksigen melalui pemutaran baling baling-baling yang diletakkan pada permukaan air. Akibat dari pemutaran air ini, air akan terangkat ke atas dan dengan terangkatnya maka air akan mengadakan kontak langsung dengan udara di sekitarnya.(Sugiharto, 1987)

2.3.2. Macam-macam Metode Aerasi

Proses aerasi dapat dibedakan dalam beberapa jenis sesuai dengan sifat operasinya, yaitu:

a. Aerasi metode jatuhan

Aerasi dapat dilakukan dengan memompa air pada ketinggian tertentu kemudian dilepaskan pada titik pancaran pada bagian paling atas dari alat. Suhu udara dan kecepatan angin sangat berpengaruh pada laju aerasi. Waktu kontak ditentukan oleh tinggi jatuhan dan kapasitas aliran air yang direncanakan.

b. Aerasi dengan metode semprot/spray

Aerasi ini dilakukan dengan cara menyemprotkan butiran air ke udara melalui lubang atau water pump. Instalasi bangunan terdiri dari sebuah penampang yang dilengkapi dengan alat semprot (nozzles) dengan lubang-lubang semprot di sepanjang kisi-kisi pendistribusian pipa.

Diameter lubang alat semprot (nozzles) sekitar 10-40 mm dengan jarak interval tiap pipa berkisar 0,5-1 m atau lebih. Secara khusus jenis alat alat semprot ini harus tahan karat. Tekanan air yang harus dipenuhi pada nozzles sekitar 18-36 m³/jam, dengan debit air 0,03-0,09 m³/jam.

c. Aerasi Udara terdifusi

Aerasi dilakukan dengan memindahkan oksigen dan udara bertekanan yang diinjeksikan dalam air. Injeksi udara berlangsung dalam bak besar melalui difuser berpori berbentuk plat atau tabung. Udara yang

keluar dari difuser biasa berbentuk gelembung udara yang akan menyebabkan peningkatan turbulensi air. Ukuran tinggi tangki kolam adalah sekitar 3-4,5 m dengan lebar 3-9 m. Sistem kerjanya adalah udara diinjeksikan lewat pompa tekan dari dasar naik ke atas secara terus menerus di permukaan air. Perbandingan kedalaman tidak melebihi 2:1 untuk memperoleh efektifitas pengadukan dengan waktu detensi sekitar 10-30 menit. Jumlah udara yang diperlukan adalah 0,06-1 m³ udara per m³ air yang diolah. Udara untuk difusi ditempatakan pada sisi atas tangki. Tenaga untuk blower yang dibutuhkan adalah sekitar 3-13 watt/m³/jam.

d. Aerasi mekanik

Aerasi ini dilakukan dengan menggunakan suatu alat pengaduk yang digerakkan oleh motor (*Ali Masduki dan Agus Slamet, 2002*).

2.4. Parameter Uji.

2.4.1. COD

Merupakan jumlah oksigen (mgO₂) yang dibutuhkan untuk mengoksidasi zat- zat organis yang ada dalam satu liter sampel air, dimana pengoksidasi K₂Cr₂O₇ digunakan sebagai sumber oksigen (*oxidizing agent*). Angka COD merupakan ukuran bagi pencemaran air oleh zat-zat organis yang secara alamiah dapat dioksidasikan melalui proses mikrobiologis, dan mengakibatkan berkurangnya oksigen terlarut di dalam air (*Alaerts dan Santika*, 1987). Ada beberapa keuntungan tes COD dibandingkan dengan tes BOD:

- Analisa COD hanya memakan waktu kurang lebih 3 jam, sedangkan analisa BOD memerlukan waktu 5 hari.
- Untuk menganalisa COD antara 50 sampai 800 mg/l, tidak dibutuhkan pengenceran sampel, sedang pada umnya analisa BOD selalu membutuhkan pengenceran.
- 3. Ketelitian dan ketepatan tes COD adalah 2 sampai 3 kali lebih tinggi dari tes BOD.

4. Gangguan dari zat-zat yang bersifat racun terhadap mikroorganisme pada tes BOD, tidak menjadi soal pada tes COD (Alaerts dan Santika, 1987).

Analisa COD dapat dilakukan dengan berbagai cara diantaranya dengan metode spektrofotometri dan closed reflux titrimetric. Metode spektrofotometri dalam membaca nilai COD menggunakan alat spektrofotometer, sedangkan metode closed reflux titrimetric menggunakan titrasi. Menurut(Sawyer, 1994, dalam Taufikkurahman, 2006), tes COD dalam aplikasinya digunakan untuk menganalisis limbah industri secara intensif, terutama untuk menentukan ukuran-ukuran desain dan kontrol kualitas pada sistem pembuangan.

2.4.2 Warna

Warna di dalam air dapat disebabkan oleh adanya ion-ion logam alam (besi dan mangan), humus, plankton, tanaman air, dan buangan industri. Secara visualisasi konsentrasi warna yang tinggi mengindikasikan konsentrasi COD yang tinggi pula. Karakteristik warna dibagi dua macam yaitu warna sebenarnya dan warna nampak. Warna sebenarnya adalah warna nyata yaitu warna setelah kekeruhan sampel dihilangkan. Sedangkan warna nampak adalah warna yang tidak hanya disebabkan zatzat terlarut dalam air akan tetapi juga zat tersuspensi. Metode pengukuran konsentrasi warna dapat dilakukan dengan metode perbandingan warna dan metode spektrofotometri. Prinsip dari metode perbandingan warna adalah membandingkan secara visual warna dari sampel dengan larutan standar warna yang diketahui konsentrasinya, dalam hal ini standar warna yang digunakan adalah larutan platina kobalt dengan satuan mg/l Pt-Co (Alaerts dan Santika, 1987). Sedangkan prinsip metode spektrofotometri adalah membuat kurva kalibrasi dari larutan standar warna yang telah diketahui konsentrasinya, kemudian menghitung konsentrasi warnanya berdasarkan kurva yang telah terbentuk.

2.4.3 Poly Aluminium Chloride (PAC)

Poly aluminium adalah zat yang merupakan bentuk polimer dari garam dasar aluminum klorida yang digunakan sebagai koagulan dan flokulasi dalam proses penjernihan air baku dan pengolahan limbah cair industri untuk menangkal pencemaran, sehingga unsur dasarnya aluminium ini berhubungan dengan unsur lain membentuk unit yang berulang dalam suatu ikatan rantai molekul yang cukup panjang. Rumus empiris dari PAC adalah Aln(OH)mCl3 n-m. Bila dibandingkan dengan Alum, PAC mempunyai banyak kelebihan dalam segi teknis yaitu:

- PAC berbentuk serbuk yang mudah larut dalam pelarutannya, jadi waktu yang diperlukan untuk pelarutan PAC lebih cepat daripada waktu untuk pelarutan Alum. Rentang pH untuk PAC adalah 6-9 lebih besar daripada rentang pH Alum 6-8 dan PAC hanya sedikit sekali atau tidak menyebabkan penurunan pH air setelah koagulasi. Hal ini dapat menghemat bahkan meniadakan alkali pembantu.
- Daya koagulasi PAC lebih kuat daripada Alum dan flok (gumpalan) yang dihasilkan relatif lebih besar daripada Alum. Hal ini berarti dosis PAC dan Alum yang sama turbiditi (kekeruhan) air yang diolah dengan PAC lebih rendah daripada air yang diolah dengan Alum. Upaya mencapai nilai turbiditi yang sama, dosis PAC lebih kecil dari Alum dan waktu pengendapan flok dengan PAC lebih singkat daripada Alum, sehingga proses penjernihan air keseluruhan dapat dipersingkat.

Kelebihan PAC dari segi ekonomis adalah:

- 1. Menghemat biaya listrik yang berasal dari motor pengaduk untuk pelarut Alum.
- Menghemat dan bisa meniadakan biaya pembelian atau penyediaan alkali pembantu.
- 3. Konsumsi PAC lebih sedikit sehingga biaya penjernihan air per satuan waktu lebih kecil daripada Alum.
- 4. Akibat langsung dari proses penjernihan keseluruhan yang lebih singkat adalah kapasitas penjernihan air.

Selain kelebihan, juga ada kekurangan atau segi negatif penggunaan PAC, yaitu :

- PAC merupakan koagulan yang relatif baru sehingga perlu pengarahan dan penelitian lebih lanjut mengenai pemakaiannya.
- 2. Penyimpanan PAC cair memerlukan kondisi temperatur maksimal $40^{0} \, \mathrm{C}.$

2.5. Analisa Data

Analisa data statistik hasil penelitian dilakukan dengan metode analisa deskriptif, inferensi uji F (ANOVA), koefisien korelasi, analisis regresi.

2.5.1. Analisa Deskriptif

Analisa deskriptif lebih berhubungan dengan pengumpulan dan peringkasan data, serta penyajian hasil peringkasan tersebut. Data yang diperoleh dan hasil sensus, survei, atau pengamatan lainnya, umumnya masih acak dan tidak terorganisir dengan baik. Data tersebut harus diringkas baik dalam bentuk tabel atau persentasi grafis, sebagai dasar untuk berbagai pengambilan keputusan (statistik inferensi). (S. Singgih, 2005).

2.5.2. Analisa Satatistik Inferensi Uji F (ANOVA)

Istilah ANOVA (Analisis Of Varians) berarti suatu teknik untuk menganalisa atau menguraikan seluruh variansi atas bagian-bagian yang mempunyai makna. Varian untuk sekumpulan data ini menggambarkan derajat perbedaan atau variansi nilai data individu yang ada dalam kelompok atau kumpulan data tersebut. Variansi ini dihitung dari rata-rata kumpulan data.

Menurut Singgih S. (2005), Uji F atau ANOVA digunakan untuk pengujian lebih dari dua sampel. Sedangkan esensi dan pengujian itu adalah sama, yakni ingin mengetahui apakah ada perbedaan yang

signifikan (jelas) antara rata-rata hitung tiga kelompok data atau lebih. Asumsi yang digunakan pada pengujian ANOVA terdiri atas:

- Populasi yang akan diuji berdistribusi normal.
- Varians dan populasi tersebut adalah sama.
- Sampel tidak berhubungan satu dengan yang lain.

Uji statistik yang digunakan untuk menguji hipotesis nol bahwa semua kelompok mempunyai mean populasi yang sama adalah uji F. Harga F diperoleh dan rata-rata jumlah kuadrat (mean square) antar kelompok yang dibagi dengan rata-ratajumlah kuadrat dalam kelompok dengan rumus:

$$F = \frac{Varians\ antar\ kelompok}{Varians\ dalam\ kelompok}$$
(Sudjana, 2001).

2.5.3. Koefisien korelasi

Koefisien korelasi adalah ukuran yang dipakai untuk mengetahui derajat hubungan, terutama untuk data kuantitatif. Untuk sekumpulan data berbentuk linier, maka derajat hubungannya akan dinyatakan dengan r.

Rumus yang digunakan sebagai berikut:

$$r^{2} = \frac{\sum \left(Y_{i} - \bar{Y}\right)^{2} - \sum \left(Y_{i} - \bar{Y}\right)^{2}}{\sum \left(Y_{i} - \bar{Y}\right)^{2}}$$

Dari rumus diatas akan berlaku $0 \le r^2 \le 1$ sehingga untuk koefisien korelasi didapat hubungan $-1 \le r \le +1$. Harga r=-1 menyatakan adanya hubungan linier sempurna tak langsung antara X dan Y. ini berarti bahwa titik-titik yang ditentukan oleh (X_i,Y_i) seluruhnya terletak pada garis regresi linier dan harga X yang besar menyababkan atau berpasangan dengan Y yang kecil sedangkan harga X yang kecil berpasangan dengan Y yang besar. Harga r=+1 menyatakan adanya hubungan linier sempurna langsung antara X dan Y. Letak titik-titik ada pada garis regresi linier

dengan sifat bahwa harga X yang besar berpasangan dengan harga Y yang besar, sedangkan harga X yang kecil berpasangan dengan Y yang kecil pula. Khusus untuk r=0, maka dinyatakan tidak terdapat hubungan linier antara variabel-variabel X dan Y. (Sudjana, 2001).

2.5.4. Analisa Regresi

Analisis regresi merupakan suatu alat ukur yang digunakan untuk mngukur ada atau tidaknya korelasi antar variabel. Anlisis regresi ini lebih akurat dibandingkan dengan analisis lainnya karena pada analisis ini kesulitan dalam menunjukkan slope (tingkat perubahan suatu variabel terhadap variabel lainnya) dapat teratasi.

Untuk analisis regresi akan dibedakan dua jenis variabel ialah variabel bebas atau variabel prediktor dan variabel tak bebas atau variabel respon. Variabel bebas akan dinyatakan dengan $X1, X2,...,X_k$ $(k \ge 1)$ sedangkan variabel tak bebas akan dinyatakan dengan Y. (Sudjana, 2001).

BAB III

METODE PENELITIAN

Metode penelitian yang akan digunakan adalah metode eksperimental. Pengumpulan data dilakukan dengan mencatat kuantitatifnya kemudian dibuat hasil perhitungan dan grafik untuk mendapat kesimpulan.

3.1. Variabel Penelitian

Beberapa variabel yang terdapat dalam penelitian ini adalah sebagai berikut:

- 1. Variabel terikat
 - a. COD
 - b. Warna
- 2. Variabel bebas
 - a. Debit Udara: 500 l/jam; 700 l/jam; 900 l/jam
 - b. Waktu: 3,5 jam, 4 jam, 6 jam
 - c. Konsentrasi PAC: 3000 mg/l; 3250 mg/l; 3500 mg/l; 3750 mg/l; 4000 mg/l; 4250 mg/l; 4500 mg/l (Pretreatment)
- 3. Variabel tetap

Kecepatan putaran motor 100 rpm

3.2. Alat dan Bahan

3.2.1. Alat-alat Penelitian

Alat-alat yang digunakan dalam penelitian ini adalah sebagai berikut:

- 1. Jar test
- 2. . Reaktor koagulasi-flokulasi-sedimentasi (pretreatment)
- 3. Reaktor pada unit aerasi

3.2.1.1 Reaktor Koagulasi-Flokulasi-Sedimentasi (Peralatan untuk prereatment)

- 1. Bak penampung air lindi
 - Bak plastik dengan kapasitas ± 60 liter

- Lindi dialirkan secara gravitasi dengan menggunakan selang
- Untuk mengatur debit aliran digunakan valve

2. Bak penampung koagulan

- Bak plastik dengan kapasitas 5 liter
- Koagulan dialirkan secara gravitasi dengan menggunakan selang
- Untuk mengatur debit aliran digunakan valve

3. Bak koagulasi dengan spesifikasi:

- Terbuat dari kaca dengan kapasitas 0,5 liter
- Dimensi bak p = 1 = t = 8 cm
- Panjang paddle 6,4 cm; lebar 1,1 cm; tinggi paddle terhadap dasar bak 3,2 cm
- Kecepatan putaran motor 200 rpm dengan waktu pengadukan selama 1 menit

4. Bak flokulasi dengan spesifikasi:

- Terbuat dari kaca dengan kapasitas 15 liter
- Dimensi bak p = l = t = 22 cm
- Panjang paddle 18 cm; lebar 3 cm; tinggi paddle terhadap dasar bak 9 cm.
- Kecepatan putaran motor 40 rpm dengan waktu pengadukan selama 30 menit.

5. Bak Sedimentasi

- Terbuat dari kaca dengan kapasitas 30 liter dan dilengkapi ruang lumpur dengan volume 3 liter
- Zona inlet (p = 16,5 cm; l = 22 cm; t = 21 cm)
- Zona Settling (p = 66 cm; l = 22cm; t = 21 cm)
- Zona Lumpur ($A_1 = 22$ cm x 22 cm; $A_2 = 13,2$ cm x 7,33 cm, t = 11 cm)
- Waktu detensi (td) 60 menit

3.2.1.2. Reaktor Unit Aerasi

- 1. Dimensi bak aerasi P = 1 = t = 30 cm
- 2. Pipa dengan ukuran 0,5 dim

- 3. Aerator menggunakan *water pump* dengan debit udara : 500 l/jam; 700 l/jam; 900 l/jam
- 4. Botol penampung lindi
- 5. Dimensi paddle:

• D =
$$50 \% \times 30 \text{ cm}$$

= 15cm

• Lebar = 1/6x 15cm

= 2.5 cm

• Penempatan paddle dari dasar bak = 7,5 cm

- 6. Debit influent masing masing =
 - Pada waktu 6 jam = 14 ml/mnt
 - Pada waktu 4 jam = 21 ml/mnt
 - Pada waktu 3,5 jam = 24 ml/mnt

3.2.2 Bahan Penelitian

Bahan-bahan yang digunakan dalam penelitian ini adalah sebagai berikut:

- 1. Poly Aluminium Chloride (PAC)
- 2. Air Lindi (leachate)

3.3. Prosedur Penelitian

Penelitian dilakukan dalam dua metode eksperimen yaitu perlakuan tanpa *pretreatment* dan perlakuan dengan *pretreatment* koagulasi-flokulasi-sedimentasi. Kerja perlakuan tersebut sebagai berikut:

3.3.1. Perlakuan tanpa pretratment

- a. Menyiapkan air lindi yang akan di aerasi.
- b. Mengendapkan lindi selama 60 menit, kemudian memasukkan lindi yang tidak terendap ke dalam bak aerasi.
- c. Melakukan proses aerasi dengan debit udara 500 l/jam; 700 l/jam; dan 900 l/jam serta waktu aerasi selama 3,5 jam; 4 jam; dan 6 jam.
- d. Menganalisa parameter COD dan warna pada tiap sampel yang diambil.

3.3.2. Perlakuan dengan pretreatment

Metode perlakuan dengan *pretreatment* memiliki tahapan-tahapan sebagai berikut:

1. Uji Optimalisasi PAC

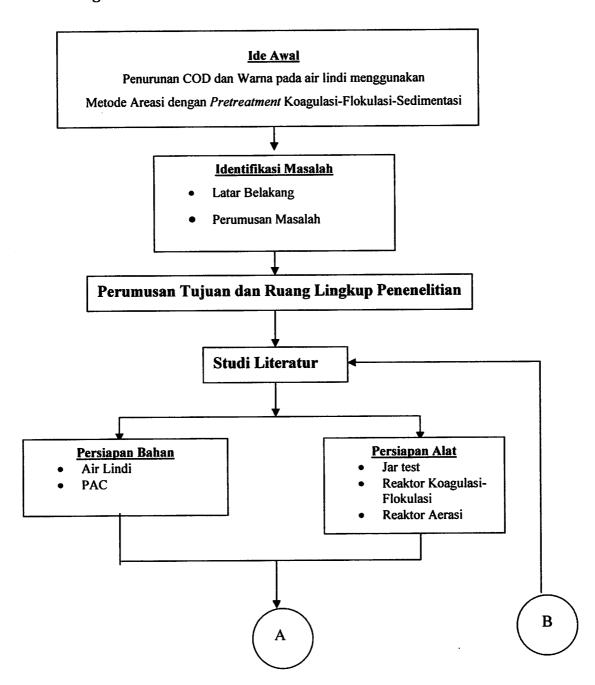
Pada penelitian ini bertujuan untuk menentukan dosis optimum koagulan PAC (*Poly Alumunium Chloride*) yang akan digunakan. Penelitian pendahuluan menggunakan analisa jar test.

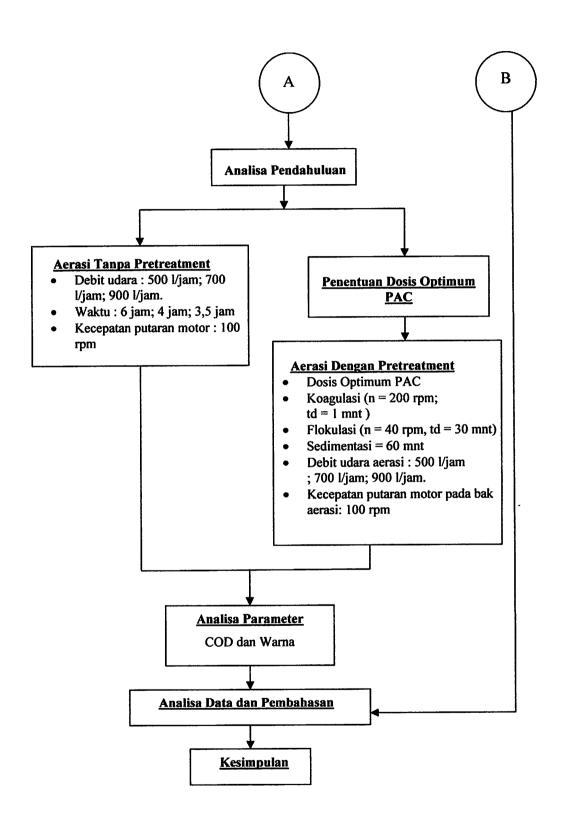
- a. Menyiapkan limbah dan peralatan yang akan digunakan.
- b. Menyiapkan larutan koagulan PAC dengan konsentrasi masing-masing 3000 mg/l, 3250 mg/l, 3500 mg/l, 3750 mg/l, 4000 mg/l, 4250 mg/l, 4500 mg/l, 4750 mg/l.
- c. Memasukkan lindi sebanyak 1 liter kedalam 6 buah beaker glass kemudian menambahkan koagulan dengan berbagai variasi dosis yang telah ditentukan.
- d. Melakukan pengadukan cepat menggunakan jar test (kecepatan putaran 100 rpm) selama 1 menit.
- e. Melakukan pengadukan lambat dengan kecepatan putaran jar test 40 rpm selama 30 menit.
- f. Mengendapkan sampel selama 1 jam.
- g. Menganalisa parameter COD dan warna.
- h. Mengulangi langkah ke-3 hingga ke-7 untuk sisa variasi dosis yang belum dicampur dengan limbah.
- Menentukan dosis optimum dari hasil analisa parameter COD dan warna.

2. Pretreatment Koagulasi-Flokulasi-Sedimentasi

- a. Melakukan kalibrasi alat dengan beberapa kali pengulangan yaitu pada motor pengaduk unit koagulasi dan flokulasi dan debit yang dialirkan oleh bak penampung limbah dan bak koagulan.
- b. Menyiapkan lindi yang akan diolah, kemudian memasukkannya ke dalam bak penampung limbah.

- c. Menyiapkan larutan koagulan dengan konsentrasi sesuai dengan dosis optimum yang dihasilkan pada penelitian pendahuluan. Kemudian memasukkannya ke dalam bak penampung koagulan.
- d. Mengalirkan lindi (Q = 0,5 l/menit) dan koagulan (Q = 50 ml/menit) ke dalam bak koagulasi secara gravitasi dengan kecepatan putaran pengadukan 200 rpm selama 1 menit.
- e. Dari pengadukan cepat, mengalir secara gravitasi ke dalam bak pengadukan lambat dengan kecepatan putaran pengadukan 40 rpm selama 30 menit.
- f. Dari bak pengaduk lambat, mengalir secara gravitasi ke dalam bak sedimentasi, dan diendapkan selama 1 jam.
- g. Memasukkan lindi yang sudah diendapkan ke dalam bak aerasi.
- h. Menjalankan proses aerasi sesuai dengan variabel debit udara dan waktu
- i. Mengambil sampel yang telah di aerasi untuk dianalisa parameter
 COD dan warna.


3.4. Analisa Hasil Percobaan


Sampel hasil uji optimalisasi PAC, pretreatment KFS dan operasional reaktor aerasi dianalisa konsentrasi COD dan warna. Metode pengukuran yang digunakan untuk analisa COD adalah closed reflux titrimetric (metode dikromat) dari Standart Method 5220 C. Dengan metode dikromat ini, zat organik akan dioksidasi oleh K₂Cr₂O₇ (kalium dikromat) dalam suasana asam pada suhu 150° C selama 2 jam. Sedangkan untuk pemerikasaan warna ditentukan dengan membandingkan pembacaan skala warna pada warna sampel dengan larutan standard warna yang diketahui konsentrasinya dengan spektrofotometer (Alaerts dan Santika, 1987).

3.5. Analisa Data

Analisa data statistik hasil penelitian dilakukan dengan metode analisa deskriptif, inferensi uji F (ANOVA), koefisien korelasi, analisis regresi.

3.6. Kerangka Penelitian

BAB IV

ANALISA DATA DAN PEMBAHASAN

4.1. Karakteristrik Lindi

Dalam penelitian ini dilakukan analisa pendahuluan untuk memperoleh data karakteristik air lindi yang akan digunakan sebagai sampel sebelum di aerasi. Berdasarkan analisa laboratorium yang dilakukan, diperoleh data karakteristik air lindi sebagai berikut :

Tabel 4.1. Konsentrasi Awal Air Lindi Sebelum Proses Aerasi

Parameter	Hasil
COD	78545,45 mg/lt
Warna	8,63 Pt-Co

Sumber: Hasil Penelitian.

Berdasarkan hasil analisa awal telihat bahwa air lindi memiliki kandungan COD dan warna yang sangat tinggi.

4.2. Analisa Data

4.2.1 Analisa Deskriptif Penurunan COD Pada Penelitian Pendahulan

Hasil Penelitian menunjukkan bahwa PAC yang digunakan sebagai koagulan mampu menurunkan konsentrasi COD, namun pada dosis tertentu konsentrasi COD dapat meningkat kembali. Hasil penelitian pada tabel 4.2 diplotkan ke dalam grafik seperti pada gambar 4.1

Tabel 4.2. Nilai Konsentrasi Akhir COD Pada Penelitian Pendahuluan

No	Konsentrasi	Konsentrasi Akhir
	PAC (mg/l)	COD Setelah
		Perlakuan (mg/l)
1	3000	9163,64
2	3250	2618,18
3	3500	10472,73
4	3750	14400,00
5	4000	18327,27
6	4250	22254,55
7	4500	24741,82
8	4750	27490,91

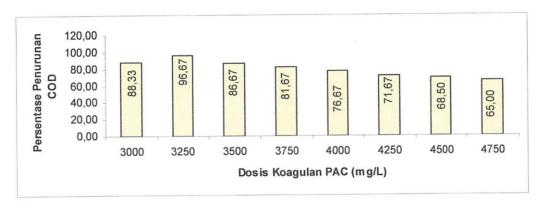
Sumber: Hasil Penelitian

30000,00 Konsentrasi Akhir COD (mg/l) 25000,00 82 20000,00 27490,91 15000,00 ,27 22254, 2618,18 10000,00 14400,00 64 5000,00 9163, 0,00 3000 3250 3500 3750 4000 4500 4250 4750 Dosis Koagulan PAC (mg/l)

Gambar 4.1. Grafik Konsentrasi Akhir COD Pada Penelitian Pendahuluan

Berdasarkan tabel 4.2. dan gambar 4.1, pada penambahan dosis PAC 4750 mg/l didapatkan kandungan COD sebesar 27490,91mg/lt (terbesar) sedangkan pada penambahan dosis 3250 mg/l didapatkan kandungan COD sebesar 2618,18 mg/l (terendah).

Untuk Mengetahui presentase penurunan konsentrasi COD berdasarkan variasinya, digunakan rumus :


% Penurunan =
$$\frac{Konsentrasi\ Awal - Konsentrasi\ Akhir}{Konsentrasi\ Awal} \times 100\%$$

Tabel 4.3. Nilai Persentase Penurunan COD Pada Penelitian
Pendahuluan

No	Konsentrasi	Penurunan COD
	PAC (mg/l)	Setelah Perlakuan
		(%)
1	3000	88,33
2	3250	96,67
3	3500	86,67
4	3750	81,67
5	4000	76,67
6	4250	71,67
7	4500	68,50
8	4750	65,00

Sumber: Hasil Penelitian

Berdasarkan tabel 4.3 diperoleh persentase penurunan tertinggi terjadi pada dosis 3250 mg/l yaitu 96,67 %, sedangkan persentase penurunan terendah terjadi pada dosis 4750 mg/l yaitu 65,00 %. Dari tabel 4.3 diplotkan ke dalam bentuk grafik batang yang dapat dilihat pada gambar 4.2

Gambar 4.2. Grafik Presentase Penurunan COD Pada Penelitian Pendahuluan

4.2.2 Analisa Anova

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan terhadap persentase konsentrasi akhir COD pada penelitian pendahuluan, maka dilakukan analisa dengan menggunakan uji One-way ANOVA. Hasil tersebut tersaji pada tabel 4.4

Tabel 4.4. Hasil Uji ANOVA Persentase Kandungan COD Pada Penelitian Pendahuluan

		A CARGOOM			
Source	DF	SS	MS	F	P
Perlakuan	1	57626393	57626393	307,24	0,000
Error	14	2625829	187559		
Total	15	60252223			

Tabel 4.4 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah :

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

 H_1 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1 Nilai Probabilitas

- Jika probabilitas $\geq 0,05$, H_0 diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,000 <0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi konsentrasi PAC terhadap persentase penurunan COD.

2 Nilai F

Berdasarkan tabel 4.4 nilai F hitung sebesar 307,24 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 4,60. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang tidak sama.

4.2.3. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.5.

Tabel 4.5. Analisa Korelasi antara Persentase Kandungan COD dengan Konsentrasi PAC Pada Penelitian Pendahuluan

		Konsentrasi PAC (mg/l)
% Penurunan COD	Pearson	-0,949
	correlation	-0,949
	P-Value	0,000

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H₁ = Ada korelasi antara dua variabel

Dasar pengambilan keputusan :

- Jika probabilitas ≥ 0,05; maka Ho diterima
- Jika probabilitas < 0,05; maka Ho ditolak

Dari tabel 4.5. menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

Nilai koefisien korelasi antara persentase penurunan COD dengan variabel konsentrasi PAC adalah -0,949. Hal ini menunjukkan adanya hubungan yang kuat karena memiliki nilai diantara 0,7-0,9 (Soleh, 2005). Sedangkan tanda negatif, menyatakan hubungan bertolak belakang, yang berarti semakin besar konsentrasi PAC maka persentase penurunan COD semakin menurun. Tingkat signifikan persentase penurunan COD dan konsentrasi PAC yang ditunjukkan dengan nilai P-Value 0,000 lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2.4. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan/korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.6 dan 4.7.

Tabel 4.6. Koefisien Persamaan Regresi Persentase Kandungan COD Pada Penelitian Pendahuluan

Predictor	Coef	T	P
Constant	144,748	16,12	0,000
Konsentrasi PAC (mg/l)	- 0,016865	- 7,36	0,000
	<u> </u>	 	1"\ 00.40/

S = 3,71430 R-Sq = 90,0 % R-Sq(adj) = 88,4 %

Tabel 4.7. Hasil Uji Kelinieran Analisa Regresi Persentase Kandungan COD
Pada Penelitian Pendahuluan

Source	DF	SS	MS	F	P
Regression	1	746,60	746,60	54,12	0,000
Residual	6	82,78	13,80		
Total	7	829,38			

Pada tabel 4.6 dan 4.7 dapat kita ketahui:

A. Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu:

$$Y = 145 - 0.0169 X$$

Dimana:

Y = persentase penurunan COD

X = konsentrasi PAC (mg/lt)

Adapun interpretasi dari persamaan diatas adalah:

Nilai konstanta 145

Nilai konstanta 145 menyatakan bahwa jika konsentrasi PAC konstan, maka persentase penurunan COD yang dihasilkan adalah 145 %.

• Koefisien regresi – 0,0169

Nilai koefisien regresi sebesar -0.0169 untuk variabel X_1 (variasi konsentrasi PAC) menyatakan bahwa apabila terjadi penambahan konsentrasi PAC sebesar 1 mg/l, maka persentase penurunan COD yang dihasilkan rata-rata akan berkurang sebesar 0.0169 % dengan tingkat keakuratan 90.0 %.

- B. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 90,0 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 88,4 %, menyatakan besarnya pengaruh konsentrasi PAC terhadap persentase penurunan COD. Artinya sebesar 90,0 % persentase penurunan COD dipengaruhi oleh konsentrasi PAC. Sedangkan sisanya 10 % dijelaskan oleh sebabsebab lain yang tidak masuk ke dalam model.
- C. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 54.12. Dari tabel distribusi F didapatkan F tabel 5,99. Karena F hitung lebih besar dari F tabel, maka kesimpulannya adalah persentase penurunan COD dengan konsentrasi PAC mempunyai hubungan linier.

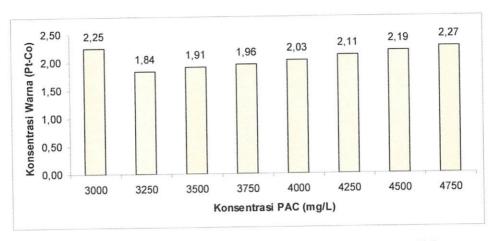
D. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).

Hipotesis:

Ho = koefisien regresi tidak signifikan

 H_1 = koefisien regresi signifikan

Dengan membandingkan statistik t hitung dengan statistik t tabel.
 Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.6 adalah -7,36 (konsentrasi PAC). Karena t hitung < t tabel maka koefisien regresi tidak signifikan.


4.2.5. Analisa Deskriptif Konsentrasi Warna Pada Penelitian Pendahuluan

Hasil Penelitian menunjukkan bahwa PAC yang digunakan sebagai koagulan mampu menurunkan konsentrasi warna, namun pada dosis tertentu konsentrasi warna dapat meningkat kembali. Hasil penelitian pada tabel 4.8 diplotkan ke dalam grafik seperti pada gambar 4.3.

Tabel 4.8. Nilai Konsentrasi Akhir Warna Pada Penelitian Pendahuluan

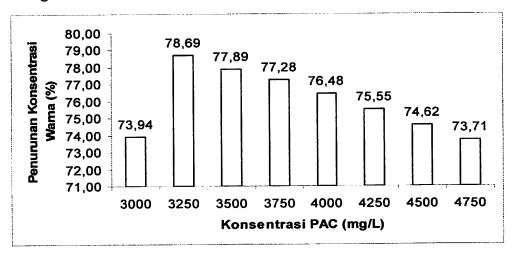
No	Konsentrasi PAC (mg/l)	Konsentrasi Akhir Warna Setelah
		Perlakuan (Pt-Co)
1	3000	2,25
2	3250	1,84
3	3500	1,91
4	3750	1,96
5	4000	2,03
6	4250	2,11
7	4500	2,19
8	4750	2,27

Sumber: Hasil Penelitian

Gambar 4.3. Grafik Konsentrasi Akhir Warna Pada Penelitian Pendahuluan

Berdasarkan tabel 4.8. dan gambar 4.3, penurunan warna terbesar adalah pada konsentrasi PAC 4750 mg/l sebesar 2,27 Pt-Co, sedangkan penurunan warna terendah adalah pada konsentrasi PAC 3250 mg/l sebesar 1,84 Pt-Co.

Untuk Mengetahui presentase penurunan konsentrasi COD berdasarkan variasinya, digunakan rumus :


% Penurunan =
$$\frac{Konsentrasi\ Awal - Konsentrasi\ Akhir}{Konsentrasi\ Awal} \times 100\%$$

Tabel 4.9. Nilai Persentase Penurunan Warna Pada Penelitian Pendahuluan

No	Konsentrasi	Penurunan Warna
	PAC (mg/l)	Setelah Perlakuan
		(%)
1	3000	73,94
2	3250	78,69
3	3500	77,89
4	3750	77,28
5	4000	76,48
6	4250	75,55
7	4500	74,62
8	4750	73,71

Sumber: Hasil Penelitian

Berdasarkan tabel 4.9 diperoleh persentase penurunan tertinggi terjadi pada dosis 3250 mg/l yaitu 78,69 %, sedangkan persentase penurunan terendah terjadi pada dosis 4750 mg/l yaitu 73,71 %. Dari tabel 4.9 diplotkan ke dalam bentuk grafik batang yang dapat dilihat pada gambar 4.4.

Gambar 4.4. Grafik Persentase Penurunan Warna Pada Penelitian Pendahuluan

4.2.6. Analisa Anova

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan terhadap persentase konsentrasi akhir warna pada penelitian pendahuluan, maka dilakukan analisa dengan menggunakan uji One-way ANOVA. Hasil tersebut tersaji pada tabel 4.10.

Tabel 4.10. Hasil Uji ANOVA Persentase Kandungan Warna Pada Penelitian Pendahuluan

		I CHOHELE I C			
Source	DF	SS	MS	F	P
Perlakuan	1	57728996	57728996	307,89	0,000
Error	14	2625024	187502		
Total	15	60354020			

Tabel 4.10 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah :

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
: $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

- 1. Nilai Probabilitas
 - Jika probabilitas \geq 0,05, H_0 diterima.
 - Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,000 <0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi konsentrasi PAC terhadap persentase penurunan warna.

2. Nilai F

Berdasarkan tabel 1 nilai F hitung sebesar 307,89 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 4,60. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis

awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang tidak sama.

4.2.7. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.11.

Tabel 4.11. Analisa Korelasi antara Persentase Kandungan Warna dengan Konsentrasi PAC Pada Penelitian Pendahuluan

		Kónsentrási PAC
% Penurunan Warna	Pearson correlation	-0,466
- Tonus and Washington	P-Value	0,000

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H₁ = Ada korelasi antara dua variabel

2. Dasar pengambilan keputusan:

- Jika probabilitas ≥ 0,05; maka Ho diterima
- Jika probabilitas < 0,05; maka Ho ditolak

Dari tabel 4.11. menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

Nilai koefisien korelasi antara persentase penurunan warna dengan konsentrasi PAC adalah -0,466. Hal ini menunjukkan adanya hubungan yang lemah karena memiliki nilai diantara 0,2-0,4 (Soleh, 2005). Sedangkan tanda negatif, menyatakan hubungan bertolak belakang, yang berarti semakin besar konsentrasi PAC maka persentase penurunan warna semakin menurun. Tingkat signifikan persentase penurunan warna dan konsentrasi PAC yang ditunjukkan

dengan nilai P-Value 0,000 lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2. 8. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan / korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.12 dan 4.13.

Tabel 4.12. Koefisien Persamaan Regresi Persentase Kandungan Warna Pada Penelitian Pendahuluan

raga renentian renganggan					
Predictor	Coef	T	P		
Constant	81,515	18,95	0,000		
Konsentrasi PAC (mg/l)	- 0,001418	- 1,29	0,244		
2 – 1 77002	$R_{-}S_{0} = 21.8\%$	R-Sa((adi) = 8.7%		

 $\ddot{S} = 1,77902$ R-Sq = 21,8 % R-Sq(adj) = 8,7 %

Tabel 4.13. Hasil Uji Kelinieran Analisa Regresi Persentase Kandungan Warna Pada Penelitian Pendahuluan

	Warna Pada Penentian Pendanuluan					
Source	DF	SS	MS	F	P	
Regression	1	5,279	5,279	1,67	0,244	
Residual	6	18,990	3,165			
Total	7	24,268				

Pada tabel 4.12 dan 4.13 dapat kita ketahui :

Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu :

$$Y = 81,5 - 0,0142 X$$

Dimana:

Y = persentase penurunan Warna

X = konsentrasi warna (Pt-Co)

Adapun interpretasi dari persamaan diatas adalah:

Nilai konstanta 81,5

Nilai konstanta sebesar 81,5 ini menyatakan bahwa jika konsentrasi PAC konstan, maka persentase penurunan warna yang dihasilkan adalah 81,5 %.

Koefisien regresi – 0,0142

Nilai koefisien regresi menyatakan bahwa apabila terjadi penambahan konsentrasi PAC sebesar 1 mg/l maka persentase penurunan warna yang dihasilkan rata-rata akan berkurang sebesar 0,0142 % dengan tingkat keakuratan 21,7 %.

- A. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 21,7 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 8,7 %, menyatakan besarnya pengaruh konsentrasi PAC terhadap persentase penurunan warna. Artinya sebesar 21,8 % persentase penurunan warna dipengaruhi oleh konsentrasi PAC. Sedangkan sisanya 78,2 % dijelaskan oleh sebab-sebab lain yang tidak masuk ke dalam model.
- B. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 1,67. Dari tabel distribusi F didapatkan F tabel 5,99. Karena F hitung lebih kecil dari F tabel, maka kesimpulannya adalah persentase penurunan warna dengan konsentrasi PAC mempunyai hubungan linier.
- C. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).

Hipotesis:

Ho = koefisien regresi tidak signifikan

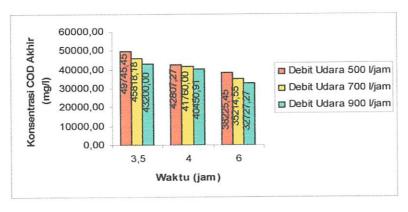
 H_1 = koefisien regresi signifikan

Dengan membandingkan statistik t hitung dengan statistik t tabel.
 Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.12 adalah -1,29

(konsentrasi PAC). Karena t hitung < t tabel maka koefisien regresi tidak signifikan.

4.2.9. Analisa Deskriptif kandungan COD Setelah Proses Aerasi Tanpa *Pretreatment* Koagulasi-Flokulasi-Sedimentasi*

Data kandungan COD setelah proses aerasi tanpa pretreatment PAC pada variasi debit udara 500 l/jam, 700 l/jam, 900 l/jam dan waktu 3,5 jam, 4 jam, serta 6 jam dapat dilihat pada tabel 4.14.


Berdasarkan tabel 4.14. penurunan COD terbesar adalah pada debit udara 500 l/jam pada waktu 3,5 jam sebesar 49745,45 mg/lt sedangkan penurunan COD terendah adalah pada debit udara 900 l/jam pada waktu 6 jam sebesar 32727,27mg/l.

Tabel 4.14. Kandungan COD Setelah Proses Aerasi Tanpa Pretreatment KFS

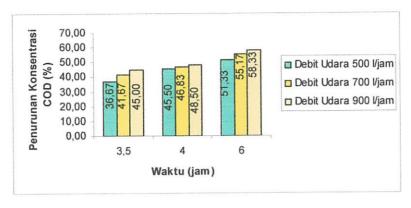
Krs			KI'S
No	Debit Udara (l/jam)	Waktu (jam)	Konsentrasi Akhir COD (mg/l) Setelah Perlakuan
1	500		49745,45
2	700	3.5	45818,18
3	900		43200,00
4	500		42807,27
5	700	4	41760,00
6	900		40450,91
7	500		38225,45
8	700	6	35214,55
9	900		32727,27

Sumber : Hasil Penelitian

Dari tabel 4.14. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.5.

Gambar 4.5. Kandungan Akhir COD Setelah Proses Aerasi Tanpa Pretreatment KFS

Untuk mengetahui persentase penurunan COD pada setiap variasinya digunakan rumus :


% Penurunan =
$$\frac{Konsentrasi\ awal-Konsentrasi\ akhir}{Konsentrasi\ awal} \times 100\%$$

Hasil perhitungan persentase penurunan COD dapat dilihat pada tabel 4.15.

Tabel 4.15. Persentase Penurunan COD Setelah Proses Aerasi
Tanna Pretreatment KFS

D.T.	Debit Udara	Waktu	Penurunan COD
No	(l/jam)	(jam)	Setelah Perlakuan (%)
1	500		36,67
2	700	3.5	41,67
3	900		45,00
4	500		45,50
5	700	4	46,83
6	900	1	48,50
7	500		51,33
8	700	6	55,17
9	900		58,33

Sumber: Hasil Penelitian

Gambar 4.6. Grafik Persentase Penurunan COD Setelah Proses Aerasi Tanpa *Pretreatment* KFS

Berdasarkan tabel 4.3 dan gambar 4.6 didapatkan persentase penurunan COD berada diantara 36,67 % - 58,33 %. Untuk persentase penurunan terendah sebesar 36,67 % terjadi pada perlakuan debit udara 500 l/jam pada waktu 3,5 jam. Sedangkan untuk persentase tertinggi sebesar 58,33 % terjadi pada perlakuan debit udara 900 l/jam pada waktu 6 jam.

4.2.10. Analisa ANOVA

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan dalam persentase penurunan COD setelah aerasi tanpa *pretreatment* KFS, maka dilakukan analisa dengan menggunakan uji One-way ANOVA. Hasil uji tersebut tersaji pada tabel 4.16.

Tabel 4.16. Hasil Uji ANOVA Persentase Kandungan COD Setelah Aerasi Tanna *Pretreatment* KFS (% Removel versus Debit Udara)

Source	DF	SS	MS	F	P
Perlakuan	2	56,2	28,1	0,57	0,595
Error	6	297,3	49,5		
Total	8	353,5			

Tabel 4.16 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah :

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas ≥ 0.05 , H₀ diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,595 > 0,05; maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara (l/jam) terhadap persentase penurunan COD.

2. Nilai F

Berdasarkan tabel 1 nilai F hitung sebesar 0,57 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih kecil dari F tabel maka kesimpulannya adalah menerima hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang sama.

Tabel 4.17. Hasil Uji ANOVA Persentase Kandungan COD Setelah Aerasi Tanpa *Pretreatment* KFS (% Removel versus Waktu)

Source	DF	SS	MS	F	P
Perlakuan	2	289,3	144,6	13,51	0,006
Error	6	64,3	10,7		
Total	8	353,5			

Tabel 4.18 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah :

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas $\geq 0,05$, H_0 diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,006 < 0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi waktu (jam) terhadap persentase penurunan COD.

2. Nilai F

Berdasarkan tabel 1 nilai F hitung sebesar 13,51 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang tidak sama.

4.2.11. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.20.

Tabel 4.18. Analisa Korelasi antara Persentase Kandungan COD Dengan Debit Udara Dan Waktu Setelah Aerasi Tanpa *Pretreatment* KFS

		Debit Udara (L/jam)	Waktu (jam)
% Penurunan COD	Pearson correlation	0,398	0,878
70 T GRAIT AREA 0 0 2	P-Value	0,289	0,002

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H₁ = Ada korelasi antara dua variabel

2. Dasar pengambilan keputusan:

- Jika probabilitas ≥ 0,05; maka Ho diterima

- Jika probabilitas < 0,05; maka Ho ditolak

Dari tabel 4.18. menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

- Nilai koefisien korelasi antara persentase penurunan COD dengan variabel debit udara adalah 0,398. Hal ini menunjukkan adanya hubungan yang lemah karena memiliki nilai diantara 0,2-0,4 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar debit udara maka persentase penurunan COD semakin meningkat. Tingkat signifikan persentase penurunan COD dan variasi debit udara yang ditunjukkan dengan nilai P-Value 0,289 lebih besar dari 0,05 maka korelasinya tidak nyata (tidak signifikan).
- Nilai koefisien korelasi antara persentase penurunan COD dengan variasi waktu adalah 0,878. Hal ini menunjukkan adanya hubungan korelasi yang kuat karena memiliki nilai diantara 0,7-0,9 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar waktu maka persentase penurunan COD semakin meningkat. Tingkat signifikan persentase penurunan COD dan variasi waktu yang ditunjukkan dengan nilai P-Value 0,002 lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2.12. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan/korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.21 dan 4.22.

Tabel 4.19. Koefisien Persamaan Regresi Persentase Kandungan COD Setelah Aerasi Tanpa *Pretreatment* KFS

Predictor	Coef	T	P
Constant	14,050	3,41	0,014
Debit Udara (L/jam)	0,015275	3,66	0,011
Waktu (jam)	5,0943	8,08	0,000

Tabel 4.20. Hasil Uji Kelinieran Analisa Regresi Persentase Kandungan COD Setelah Aerasi Tanpa *Pretreatment* KFS

Source	DF	SS	MS	F	P
Regression	2	328,49	164,25	39,38	0,000
Residual	6	25,02	4,17		
Total	8	353,51			

Pada tabel 4.19 dan 4.20 dapat kita ketahui:

A. Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu:

$$Y = 14 + 0,0153 X_1 + 5,09 X_2$$

Dimana:

Y = persentase penurunan COD

 $X_1 = debit udara (1/jam)$

 X_2 = waktu (jam)

Adapun interpretasi dari persamaan diatas adalah:

• Nilai konstanta 14

Nilai konstanta sebesar 14 ini menyatakan bahwa jika debit udara dan waktu konstan, maka persentase penurunan COD yang dihasilkan adalah 14%.

Nilai koefisien regresi 0,0153

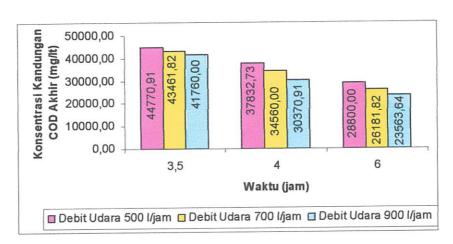
Nilai koefisien regresi sebesar 0,0153 untuk variabel X_1 (variasi debit udara) menyatakan apabila terjadi penambahan debit udara sebesar 1 l/jam, maka persentase penurunan COD yang dihasilkan rata-rata akan bertambah sebesar 0,0153 % dengan tingkat keakuratan 92,9 %.

• Nilai koefisien regresi 5,09

Nilai koefisien regresi sebesar 5,09 untuk variabel X_2 (variasi waktu) menyatakan apabila terjadi penambahan waktu sebesar 1 jam, maka

- persentase penurunan COD yang dihasilkan rata-rata akan bertambah sebesar 5,09 % dengan tingkat keakuratan 92,9 %.
- B. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 92,9 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 90,6 %, menyatakan besarnya pengaruh debit udara dan waktu terhadap persentase penurunan COD. Artinya sebesar 92,9 % persentase penurunan COD dipengaruhi oleh debit udara dan waktu. Sedangkan sisanya 7,1 % dijelaskan oleh sebab-sebab lain yang tidak masuk ke dalam model.
- C. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 39,38. Dari tabel distribusi F didapatkan F tabel 5,14. Karena F hitung lebih besar dari F tabel, maka kesimpulannya adalah persentase penurunan COD dengan variabel debit udara dan waktu mempunyai hubungan linier.
- D. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).
 - Dengan membandingkan statistik t hitung dengan statistik t tabel.
 Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.21 adalah 3,66 (debit udara) dan 8,08 (waktu). Karena t hitung > t tabel maka koefisien regresi signifikan.

4.2.13. Analisa Deskriptif Kandungan COD Setelah Proses Aerasi Dengan Pretreatment koagulasi-Flokulasi-Sedimentasi


Berdasarkan hasil penelitian yang telah dilakukan, maka penurunan konsentrasi COD pada variasi debit udara 500 l/jam, 700 l/jam, 900 l/jam dan waktu 3,5 jam, 4 jam, serta 6 jam dapat dilihat pada tabel 4.21.

Tabel 4.21. Kandungan COD Setelah Proses Aerasi Dengan Pretreatment KFS

No	Debit Udara (l/jam)	Waktu (jam)	Konsentrasi Akhir COD Setelah Perlakuan (mg/l)
1	500		44770,91
2	700	3.5	43461,82
3	900		41760,00
4	500		37832,73
5	700	4	34560,00
6	900		30370,91
7	500		28800,00
8	700	6	26181,82
9	900		23563,64

Sumber: Hasil Penelitian

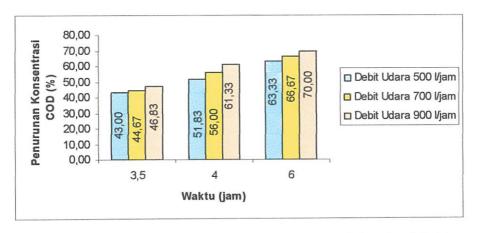
Dari tabel 4.21. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.7.

Gambar 4.7. Konsentrasi Akhir COD Setelah Proses Aerasi Dengan Pretreatment KFS

Berdasarkan tabel 4.21. dan gambar 4.7 penurunan COD terbesar adalah pada debit udara 500 l/jam dengan waktu 3,5 jam sebesar 4470,91 mg/lt

sedangkan penurunan COD terendah adalah pada debit udara 900 l/jam dengan waktu 6 jam sebesar 23563,64 mg/lt.

Untuk mengetahui persentase penurunan COD pada setiap variasinya digunakan rumus :


% Penurunan =
$$\frac{Konsentrasi\ awal\ - Konsentrasi\ akhir}{Konsentrasi\ awal} \times 100\%$$

Hasil perhitungan persentase penurunan COD dapat dilihat pada tabel 4.22.

Tabel 4.22. Persentase Penurunan COD Setelah Proses Aerasi Dengan Pretreatment KFS

No	Debit Udara (l/jam)	Waktu (jam)	Penurunan COD Setelah Perlakuan (%)
1	500		43,00
2	700	3.5	44,67
3	900		46,83
4	500		51,83
5	700	4	56,00
6	900		61,33
7	500		63,33
8	700	6	66,67
9	900		70,00

Sumber: Hasil Penelitian

Gambar 4.8. Grafik Persentase Penurunan COD Setelah Proses Aerasi Dengan *Pretreatment* KFS

Berdasarkan tabel 4.22 dan gambar 4.8 didapatkan persentase penurunan COD berada diantara 43 % - 70 %. Untuk persentase penurunan terendah sebesar 43 % terjadi pada perlakuan debit udara 500 l/jam pada waktu 3,5 jam. Sedangkan untuk persentase tertinggi sebesar 70 % terjadi pada perlakuan debit udara 900 l/jam pada waktu 6 jam

4.2.14. Analisa ANOVA

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan dalam persentase penurunan COD setelah proses aerasi dengan pretreatment KFS, maka dilakukan analisa dengan menggunakan uji Oneway ANOVA. Hasil uji tersebut tersaji pada tabel 4.25.

Tabel 4.23. Hasil Uji ANOVA Persentase Penurunan COD Setelah Aerasi Dengan *Pretreatment* KFS (% Removel versus Debit Udara

		(1)	Jam))		
Source	DF	SS	MS	F	P
Perlakuan	2	67	33	0,28	0,767
Error	6	724	121		
Total	8	791			
			Constant to the second		

Tabel 4.23 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1 : \tau_i \neq 0$$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas ≥ 0.05 , H_0 diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,767 ≥ 0,05; maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara (1/jam) terhadap persentase penurunan COD.

2 Nilai F

Berdasarkan tabel 4.23 nilai F hitung sebesar 0,28 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih kecil dari F tabel maka kesimpulannya adalah menerima hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang sama.

Tabel 4.24. Hasil Uji ANOVA Persentase Penurunan COD Setelah Aerasi Dengan *Pretreatment* KFS (% Removel versus Waktu (jam))

Source	DF	SS	MS	F	P
Perlakuan	2	715,9	357,9	28,65	0,001
Error	6	75,0	12,5		
Total	8	790,8			

Tabel 4.24 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan COD diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
: $\tau_i \neq 0$

(rata-rata sampel tiap perlakuan berbeda nyata/ tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas \geq 0,05, H_0 diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,001 < 0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi waktu (jam) terhadap persentase penurunan COD.

2. Nilai F.

Berdasarkan tabel 1 nilai F hitung sebesar 28,65 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang tidak sama.

4.2.15. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.25.

Tabel 4.25. Analisa Korelasi antara Persentase Penurunan COD dengan *Pretreatment* KFS

		Debit Udara (L/jam)	Waktu (jam)
% Penurunan	Pearson correlation	0,290	0,888
СОР	P-Value	0,449	0,001

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H_1 = Ada korelasi antara dua variabel

2. Dasar pengambilan keputusan:

- Jika probabilitas ≥ 0,05; maka Ho diterima

- Jika probabilitas < 0,05; maka Ho ditolak

Dari tabel 4.28 menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

- Nilai koefisien korelasi antara persentase penurunan COD dengan variabel debit udara adalah 0,290. Hal ini menunjukkan adanya hubungan yang lemah karena memiliki nilai diantara 0,2-0,4 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar debit udara maka persentase penurunan COD semakin meningkat. Tingkat signifikan persentase penurunan COD dan variasi debit udara yang ditunjukkan dengan nilai P-Value 0,449 jauh lebih besar dari 0,05 maka korelasinya tidak nyata (tidak signifikan).
- Nilai koefisien korelasi antara persentase penurunan COD dengan variasi waktu adalah 0,888. Hal ini menunjukkan adanya hubungan yang kuat karena memiliki nilai diantara 0,7-0,9 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar waktu maka persentase penurunan COD semakin meningkat. Tingkat signifikan persentase penurunan COD dan variasi waktu yang ditunjukkan dengan nilai P-Value 0,001 jauh lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2.16. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan / korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.26.

Tabel 4.26. Koefisien Persamaan Regresi Persentase Penurunan COD Setelah Aerasi Dengan *Pretreatment* KFS

P T Coef Predictor 0.289 1,16 9,616 Constant 0,093 1,99 0,016667 Debit Udara (L/jam) 0,001 7,707 6,10 Waktu (jam)

Tabel 4.27. Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan COD Setelah Aerasi dengan *Pretreatment* KFS

Source	DF	SS	MS	F	P
Regression	2	690,29	345,15	20,60	0,002
Residual	6	100,53	16,76		
Total	8	790,82			

A. Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu :

$$Y = 9.62 + 0.0167 X1 + 7.71 X2$$

Dimana:

Y = persentase penurunan COD

X1 = debit udara (1/jam)

X2 = waktu (jam)

Adapun interpretasi dari persamaan diatas adalah:

Konstanta 9,62

Nilai konstanta sebesar 9,62 menyatakan bahwa jika debit udara dan waktu konstan, maka persentase COD yang dihasilkan adalah 9,62 %.

Nilai koefisien regresi 0,0167

Nilai koefisien regresi sebesar 0,0167 untuk variabel X₁ (variasi debit udara) menyatakan apabila terjadi penambahan debit udara sebesar 1 l/jam, maka persentase penurunan COD yang dihasilkan rata-rata akan bertambah sebesar 0,0167 % dengan tingkat keakuratan 87,3 %.

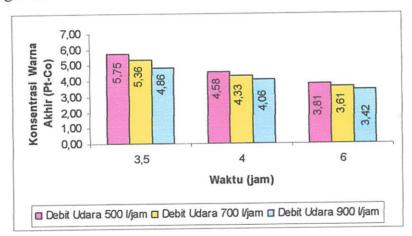
Nilai koefisisen regresi 7,71

Nilai koefisien regresi sebesar 7,71 untuk variabel X_2 (variasi waktu) menyatakan apabila terjadi penambahan waktu sebesar 1

jam, maka persentase penurunan COD yang dihasilkan rata-rata akan bertambah sebesar 7,71 % dengan tingkat keakuratan 87,3 %.

- B. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 87,3 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 86,2 %, menyatakan besarnya pengaruh debit udara dan waktu terhadap persentase penurunan COD. Artinya sebesar 87,3 % persentase penurunan COD dipengaruhi oleh debit udara dan waktu. Sedangkan sisanya 12,7 % dijelaskan oleh sebab-sebab lain yang tidak masuk ke dalam model.
- C. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 20,60. Dari tabel distribusi F didapatkan F tabel 5,14. Karena F hitung lebih besar dari F tabel, maka kesimpulannya adalah persentase penurunan COD dengan variabel debit udara dan waktu mempunyai hubungan linier.
- D. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).
 - Dengan membandingkan statistik t hitung dengan statistik t tabel.
 Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.26 adalah 1,99 (debit udara) dan 6,10 (waktu). Karena t hitung > t tabel maka koefisien regresi signifikan.

4.2.17. Analisa Deskriptif Penurunan Warna Dengan Metode Aerasi Tanpa *Pretreatment* Kagulasi-Flokulasi-Sedimentasi (KFS)


Berdasarkan hasil penelitian yang telah dilakukan, maka data konsentrasi warna pada variasi debit udara 500 l/jam, 700 l/jam,900 l/jam dan waktu 3,5 jam, 4 jam, serta 6 jam dapat dilihat pada tabel 4.28.

Tabel 4.28. Konsentrasi Warna Setelah Proses Aerasi Tanpa
Pretreatment KFS

No	Debit Udara (l/jam)	Waktu (jam)	Konsentrasi Akhir Warna Setelah Perlakuan (Pt-Co)
1	500		5,75
2	700	3.5	5,36
3	900		4,86
4	500		4,58
5	700	4	4,33
6	900		4,06
7	500		3,81
8	700	6	3,61
9	900		3,42

Sumber: Hasil Penelitian

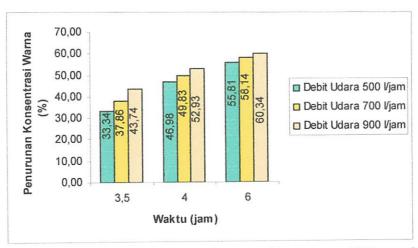
Dari tabel 4.28. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.9.

Gambar 4.9. Konsentrasi Akhir Warna Setelah Proses Aerasi Tanpa Pretreatment KFS

Berdasarkan tabel 4.28. dan gambar 4.9. penurunan warna terbesar adalah pada debit udara 500 l/jam dengan waktu 3,5 jam sebesar 5,75 Pt-Co. sedangkan penurunan warna terendah adalah pada debit udara 900 l/jam dengan waktu 6 jam sebesar 3,42 Pt-Co.

Untuk mengetahui persentase penurunan warna pada setiap variasinya digunakan rumus :

% Penurunan =
$$\frac{Konsentrasi\ awal - Konsentrasi\ akhir}{Konsentrasi\ awal} \times 100\%$$


Hasil perhitungan persentase penurunan warna dapat dilihat pada tabel 4.29.

Tabel 4.29. Penurunan Warna Dengan Metode Aerasi Tanpa Pretreatment KFS

	Pretreatment KFS						
Debit Udara	Waktu	Penurunan Warna					
(l/jam)	(jam)	Setelah Perlakuan (%)					
500		33,34					
700	3.5	37,86					
900		43,74					
500		46,98					
700	4	49,83					
900		52,93					
500		55,81					
700	6	58,14					
900		60,34					
	(l/jam) 500 700 900 500 700 900 500 700	(l/jam) (jam) 500 3.5 700 3.5 900 4 900 4 900 500 700 6					

Sumber: Hasil Penelitian

Berdasarkan tabel 4.29 dan gambar 4.8 penurunan konsentrasi warna terbesar adalah pada debit udara 900 l/jam pada waktu 6 jam sebesar 60,34 %, sedangkan penurunan konsentrasi warna terendah adalah pada debit udara 500 l/jam pada waktu 3,5 jam sebesar 33,34 %. Dari tabel 4.29. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.10.

Gambar 4.10. Grafik Persentase Penurunan Konsentrasi Warna Setelah Proses Aerasi Tanpa *Pretreatment* KFS

4.2.18. Analisa ANOVA

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan dalam persentase penurunan warna setelah proses aerasi tanpa pretreatment KFS, maka dilakukan analisa dengan menggunakan uji Oneway ANOVA. Hasil uji tersebut tersaji pada tabel 4.30.

Tabel 4.30. Hasil Uji ANOVA Persentase Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* KFS (% Removel versus Debit Udara

(l/jam). F P MS SS Source DF 0.710 36 0.36 73 2 Perlakuan 6 602 100 Error 675 Total

Tabel 4.30 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan warna diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas ≥ 0.05 , H_0 diterima.
- Jika probabilitas < 0.05, H_0 ditolak.

Dengan nilai probabilitas $0,710 \ge 0,05$; maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara (l/jam) terhadap persentase penurunan warna.

2. Nilai F

Berdasarkan tabel 1 nilai F hitung sebesar 0,36 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih kecil dari F tabel maka kesimpulannya adalah menerima hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang sama.

Tabel 4.31. Hasil Uji ANOVA Persentase Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* PAC (% Removel versus Waktu (iam).

Aerasi Source	DF	treatment PA SS	MS	F	P
Perlakuan	2	592,9	296,5	21,60	0,002
Error	6	82,4	13,7		
Total	8	675,3			

Tabel 4.31 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan warna diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1 \qquad : \tau_i \neq 0$$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas ≥ 0.05 , H_0 diterima.
- Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,002 < 0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi waktu (jam) terhadap persentase penurunan warna.

2. Nilai F

Berdasarkan tabel 1 nilai F hitung sebesar 21,60 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan tidak sama.

4.2.19. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.32.

Tabel 4.32. Analisa Korelasi antara Persentase Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* KFS

		Debit Udara (L/jam)	Waktu (jam)
% Penurunan	Pearson correlation	0,552	0,851
Warna	P-Value	0,123	0,004

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H₁ = Ada korelasi antara dua variabel

2. Dasar pengambilan keputusan:

- Jika probabilitas ≥ 0,05; maka Ho diterima
- Jika probabilitas < 0,05 ; maka Ho ditolak

Dari tabel 4.32 menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

- Nilai koefisien korelasi antara persentase penurunan warna dengan variabel debit udara adalah 0,552. Hal ini menunjukkan adanya hubungan yang sedang karena memiliki nilai diantara 0,5-0,6 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar debit udara maka persentase penurunan warna semakin meningkat. Tingkat signifikan persentase penurunan warna dan variasi debit udara yang ditunjukkan dengan nilai P-Value 0,123 lebih besar dari 0,05 maka korelasinya tidak nyata (tidak signifikan).
- Nilai koefisien korelasi antara persentase penurunan warna dengan variabel waktu adalah 0,851. Hal ini menunjukkan adanya hubungan yang kuat karena memiliki nilai diantara 0,7-0,9 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar waktu maka persentase penurunan warna semakin meningkat. Tingkat signifikan persentase penurunan warna dan variasi waktu yang ditunjukkan dengan nilai P-Value 0,004 lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2.20. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan/korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.33 dan 4.34.

Tabel 4.33. Koefisien Persamaan Regresi Persentase Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* KFS

Predictor	Coef	T	P
Constant	13,697	2,18	0,072
Debit Udara (L/jam)	0,012170	2,17	0,073
Waktu (jam)	6,091	4,58	0,004

S = 4,17291 R-Sq = 84,5% R-Sq(adj) = 79,4%

Tabel 4.34. Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* KFS

Source	DF	SS	MS	F	P
Regression	2	570,79	285,40	16,39	0,004
Residual	6	104,48	17,41		
Total	8	675,27			

Pada tabel 4.33 dan 4.34 dapat kita ketahui:

A. Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu :

$$Y = 13.7 + 0.0122 X_1 + 6.09 X_2$$

Dimana:

Y = persentase penurunan warna

 $X_1 = debit udara (l/jam)$

 $X_2 = waktu (jam)$

Adapun interpretasi dari persamaan diatas adalah:

Nilai konstanta 13,7

Nilai konstanta sebesar 13,7 ini menyatakan bahwa jika debit udara dan waktu konstan, maka persentase penurunan warna yang dihasilkan adalah 13,7 %.

Nilai koefisien regresi 0,0122

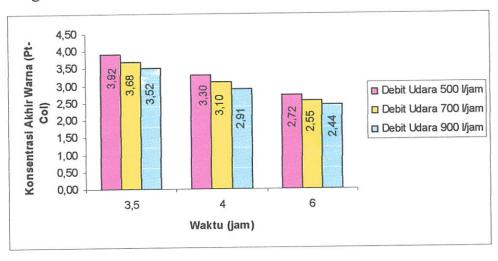
Nilai koefisien regresi sebesar 0,0122 untuk variabel X_1 (variasi debit udara) menyatakan apabila terjadi penambahan debit udara sebesar 1 l/jam, maka persentase penurunan warna yang dihasilkan rata-rata akan bertambah sebesar 0,0122 % dengan tingkat keakuratan 84,5 %.

Nilai koefisien regresi 6,09

Nilai koefisien regresi sebesar 6,09 untuk variabel X_2 (variasi waktu) menyatakan apabila terjadi penambahan waktu sebesar 1 jam, maka persentase penurunan warna yang dihasilkan rata-rata akan bertambah sebesar 6,09 % dengan tingkat keakuratan 84,5 %.

- B. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 84,5 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 79,4 %, menyatakan besarnya pengaruh debit udara dan waktu terhadap persentase penurunan warna. Artinya sebesar 84,5 % persentase penurunan warna dipengaruhi oleh debit udara dan waktu. Sedangkan sisanya 15,5 % dijelaskan oleh sebab-sebab lain yang tidak masuk ke dalam model.
- C. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 16,39. Dari tabel distribusi F didapatkan F tabel 5,14. Karena F hitung lebih besar dari F tabel, maka kesimpulannya adalah persentase penurunan warna dengan variabel debit udara dan waktu mempunyai hubungan linier.
- D. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).
 - Dengan membandingkan statistik t hitung dengan statistik t tabel.
 Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.33 adalah 2,17 (debit udara) dan 4,58 (waktu). Karena t hitung > t tabel maka koefisien regresi signifikan.

4.2.21. Analisa Deskriptif Penurunan Warna Menggunakan Metode Aerasi Dengan *Pretreatment* Koagulasi-Flokulasi-Sedimentasi


Berdasarkan hasil penelitian yang telah dilakukan, maka data. konsentrasi warna pada variasi debit udara 500 l/jam, 700 l/jam,900 l/jam dan waktu 3,5 jam, 4 jam, serta 6 jam dapat dilihat pada tabel 4.35.

Tabel 4.35. Konsentrasi Warna Setelah Proses Aerasi Dengan Pretreatment KFS

No	Debit Udara (l/jam)	Waktu (jam)	Konsentrasi Akhir Warna Setelah Perlakuan (Pt-Co)
1	500		3,92
2	700	3.5	3,68
3	900		3,52
4	500		3,30
5	700	4	3,10
6	900		2,91
7	500		2,72
8	700	6	2,55
9	900		2,44

Sumber: Hasil Penelitian

Dari tabel 4.35. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.11

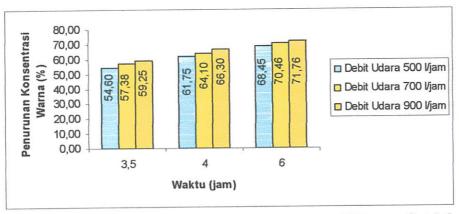
Gambar 4.11. Konsentrasi Warna Setelah Proses Aerasi Dengan Pretreatment KFS

Berdasarkan tabel 4.35 dan gambar 4.11 penurunan warna terbesar adalah pada debit udara 500 l/jam dengan waktu 3,5 jam sebesar 3,92 Pt-Co,

sedangkan penurunan warna terendah adalah pada debit udara 900 l/jam dengan waktu 3,5 jam sebesar 2,44 Pt-Co.

Untuk mengetahui persentase penurunan warna pada setiap variasinya digunakan rumus :

% Penurunan =
$$\frac{Konsentrasi\ Awal - Konsentrasi\ Akhir}{Konsentrasi\ Awal} \times 100\ \%$$


Hasil perhitungan persentase penurunan warna dapat dilihat pada tabel 4.40.

Tabel 4.36. Penurunan Warna Setelah Proses Aerasi Dengan Pretreatment KFS

	Pretreatment Kr5							
No	Debit Udara	Waktu	Penurunan Warna					
No	(l/jam)	(jam)	Setelah Perlakuan (%)					
1	500		54.60					
2	700	3.5	57.38					
3	900		59.25					
4	500		61.75					
5	700	4	64.10					
6	900		66.30					
7	500		68.45					
8	700	6	70.46					
9	900		71.76					
9	900		/1.70					

Sumber: Hasil Penelitian

Dari tabel 4.36. dapat diplotkan pada grafik batang yang dapat dilihat pada gambar 4.12.

Gambar 4.12. Persentase Penurunan Konsentrasi Warna Setelah Proses Aerasi Dengan *Pretreatment* KFS

Berdasarkan tabel 4.36 dan gambar 4.12 penurunan konsentrasi warna terbesar adalah pada debit udara 900 l/jam pada waktu 6 jam sebesar 71,76 %, sedangkan penurunan konsentrasi warna terendah adalah pada debit udara 500 l/jam dan pada waktu 3,5 jam sebesar 54,60 %.

4.2.22. Analisa ANOVA

Untuk mengetahui ada tidaknya kesamaan berbagai perlakuan dalam persentase penurunan warna dengan *ptretreatment* KFS, maka dilakukan analisa dengan menggunakan uji One-way ANOVA. Hasil uji tersebut tersaji pada tabel 4.37.

Tabel 4.37. Hasil Uji ANOVA Persentase Penurunan Warna Dengan Pretreatment KFS (%Removel versus Debit Udara (l/jam))

Source	DF	SS	MS	F	P
Perlakuan	2	26,33	13,1	0,30	0,749
Error	6	260,2	43,4		
Total	8	286,4			

Tabel 4.37 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan warna diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

 H_1 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

- 1. Nilai Probabilitas
 - Jika probabilitas ≥ 0,05, H₀ diterima.
 - Jika probabilitas < 0,05, H₀ ditolak.

Dengan nilai probabilitas 0,749 ≥ 0,05; maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara (1/jam) terhadap persentase penurunan warna.

2. Nilai F

Berdasarkan tabel 4.37 nilai F hitung sebesar 0,30 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih kecil dari F tabel maka kesimpulannya adalah menerima hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang sama.

Tabel 4.38. Hasil Uji ANOVA Persentase Penurunan Warna Dengan Pretreatment PAC (%Removel versus Waktu (jam))

Source	DF	SS	MS	F	P
Perlakuan	2	259,57	129,79	28,98	0,001
Error	6	26,87	4,48		
Total	8	286,44			

Tabel 4.38 dapat dilihat apakah terdapat perbedaan nyata dalam persentase penurunan warna diantara kelompok perlakuan. Adapun yang diberikan adalah:

$$H_0: \tau 1 = \tau 2 = \tau 3 = \tau 4 = \tau 5 = 0$$

(rata-rata sampel tiap perlakuan tidak berbeda nyata/identik)

$$H_1$$
 : $\tau_i \neq 0$

(ada perlakuan yang berbeda nyata/tidak identik)

Pengambilan keputusan berdasarkan:

1. Nilai Probabilitas

- Jika probabilitas ≥ 0.05 , H_0 diterima.
- Jika probabilitas < 0,05, H₁ ditolak.

Dengan nilai probabilitas 0,001 < 0,05; maka Ho ditolak. Artinya ada perbedaan yang signifikan antara variasi waktu (jam) terhadap persentase penurunan warna.

2. Nilai F

Berdasarkan tabel 4.38 nilai F hitung sebesar 28,98 dan jika dilihat pada tabel distribusi F, nilai F tabel adalah 5,14. Karena nilai F hitung lebih besar dari F tabel maka kesimpulannya adalah menolak hipotesis awal (H₀). Artinya ada beberapa perlakuan yang memiliki persentase penurunan yang tidak sama.

4.2.23. Analisa Korelasi

Untuk mengetahui ada atau tidaknya dan kuat lemahnya hubungan antara variabel yang diamati, maka digunakan analisa korelasi. Hasil analisa korelasi dapat dilihat pada tabel 4.39.

Tabel 4.39. Analisa Korelasi antara Persentase Penurunan Warna Dengan Pretreatment KFS

		Debit Udara (L/jam)	Waktu (jam)
% Penurunan Warna	Pearson correlation	0,302	0,888
	P-Value	0,430	0,001

1. Hipotesa yang diberikan:

- Ho = Tidak ada korelasi antara dua variabel
- H₁ = Ada korelasi antara dua variabel

2. Dasar pengambilan keputusan:

- Jika probabilitas ≥ 0,05; maka Ho diterima
- Jika probabilitas < 0,05; maka Ho ditolak

Dari tabel 4.44 menunjukkan bahwa tingkat hubungan antara variabel yang dapat diketahui dari koefisien korelasi adalah :

- Nilai koefisien korelasi antara persentase penurunan warna dengan variabel debit udara adalah 0,302. Hal ini menunjukkan adanya hubungan yang lemah karena memiliki nilai diantara 0,2-0,4 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar debit udara maka persentase penurunan warna semakin meningkat. Tingkat signifikan persentase penurunan warna dan variasi debit udara yang ditunjukkan dengan nilai P-Value 0,430 jauh lebih besar dari 0,05 maka korelasinya tidak nyata (tidak signifikan).
- Nilai koefisien korelasi antara persentase penurunan warna dengan variabel waktu adalah 0,888. Hal ini menunjukkan adanya hubungan yang kuat karena memiliki nilai diantara 0,7-0,8 (Soleh, 2005). Sedangkan tanda positif, menyatakan hubungan kedua variabel searah, yang berarti semakin besar waktu maka persentase penurunan warna semakin meningkat. Tingkat signifikan persentase penurunan warna dan variasi waktu yang ditunjukkan dengan nilai P-Value 0,001 jauh lebih kecil dari 0,05 maka korelasinya nyata (signifikan).

4.2.24. Analisa Regresi

Untuk mengetahui pengaruh variabel bebas terhadap variabel terikat digunakan uji regresi, sehingga diketahui ketepatan dan atau signifikan prediksi dari hubungan / korelasi data. Hasil analisa tersebut dapat kita lihat pada tabel 4.40.

Tabel 4.40. Koefisien Persamaan Regresi Persentase Penurunan Warna Dengan *Pretreatment* KFS

Predictor	Coef	T	P
Constant	35,614	7,35	0,000
Debit Udara (L/jam)	0,010425	2,13	0,077
Waktu (jam)	4,6381	6,27	0,001

R-Sq(adj) = 84 %

Tabel 4.41. Hasil Uji Kelinieran Analisa Regresi Persentase Penurunan Warna dengan *Pretreatment* KFS

Source	DF	SS	MS	F	P		
Regression	2	251,96	125,98	21,92	0,002		
Residual	6	34,48	5,75				
Total	8	286,44					

Pada tabel 4.40 dan 4.41 dapat kita ketahui :

A. Dari analisa regresi yang dilakukan, model regresi yang didapat yaitu :

$$Y = 35.6 + 0.0104 X1 + 4.64 X2$$

Dimana:

Y = persentase penurunan COD

X1 = debit udara (l/jam)

X2 = waktu (jam)

Adapun interpretasi dari persamaan diatas adalah:

• Nilai konstanta 35,6

Nilai konstanta sebesar 35,6 ini menyatakan bahwa jika debit udara dan waktu konstan, maka persentase penurunan warna yang dihasilkan adalah 35,6 %

Nilai koefisien regresi 0,0104

Nilai koefisien regresi sebesar 0,0104 untuk variabel X_1 (variasi debit udara) menyatakan apabila terjadi penambahan debit udara sebesar 1 l/jam, maka persentase penurunan warna yang dihasilkan rata-rata akan bertambah sebesar 0,0104 % dengan tingkat keakuratan 84,5 %.

• Nilai koefisien regresi 4,64

Nilai koefisien regresi sebesar 4,64 untuk variabel X_2 (variasi waktu) menyatakan apabila terjadi penambahan waktu sebesar 1

- jam, maka persentase penurunan warna yang dihasilkan rata-rata akan bertambah sebesar 4,64 % dengan tingkat keakuratan 84,5 %.
- B. Dari hasil analisa regresi juga didapatkan koefisien determinasi (R Square= r²) sebesar 88 % dengan koefisien determinasi yang terkoreksi dari faktor kesalahan (bias) sebesar 84 %, menyatakan besarnya pengaruh debit udara dan waktu terhadap persentase penurunan COD. Artinya sebesar 88 % persentase penurunan warna dipengaruhi oleh debit udara dan waktu. Sedangkan sisanya 12 % dijelaskan oleh sebab-sebab lain yang tidak masuk ke dalam model.`
- C. Dari uji kelinieran untuk analisa regresi atau F test, didapat nilai F hitung (tabel 4) 21,92. Dari tabel distribusi F didapatkan F tabel 5,14. Karena F hitung lebih besar dari F tabel, maka kesimpulannya adalah persentase penurunan warna dengan variabel debit udara dan waktu mempunyai hubungan linier.
- D. Uji t untuk menguji signifikan konstanta dan variabel independen (bebas).
 - Dengan membandingkan statistik t hitung dengan statistik t tabel. Jika statistik t hitung < statistik t tabel, maka H₀ diterima dan H₁ ditolak dan begitu juga sebaliknya. Nilai t tabel adalah 1,943; sedangkan nilai t hitung berdasarkan tabel 4.40 adalah 2,13 (debit udara) dan 6,27 (waktu). Karena t hitung > t tabel maka koefisien regresi signifikan.

4.3. Pembahasan

4.3.1 Pembahasan Penurunan COD Pada Penelitian Pendahuluan

Pada gambar 4.2 terlihat bahwa persentase penurunan COD tertinggi terjadi pada dosis 3250 mg/l yaitu 96,67 %, sedangkan persentase penurunan terendah terjadi pada dosis 4750 mg/l yaitu 65 %. COD dalam air lindi disebabkan oleh adanya material organik yang terkandung di dalamnya. Penambahan koagulan PAC dalam air akan menyebabkan PAC terdisosiasi sehingga melepaskan kation Al³⁺ yang akan menurunkan zeta potensial dari partikel (Taufikkurahman, 2006). Zeta potensial merupakan potensial elektrostatik yang ada di sekitar kulit suatu partikel yang dapat mempengaruhi stabilitas koloid (Taufikkurahman, 2006). Kation Al³⁺ yang memiliki muatan berlawanan dengan material organik, akan menempel pada material organik dan menurunkan zeta potensial pada material tersebut. Zeta potensial yang turun akan membuat gaya tolak menolak antar material menjadi berkurang, akibatnya penambahan gaya mekanis seperti pengadukan akan mempermudah terjadinya tumbukan yang dilanjutkan dengan penggabungan material membentuk flok berukuran besar. Terbentuknya flok yang berukuran besar akan mempermudah proses pengendapan.

Dari hasil analisa ANOVA menunjukkan persentase penurunan COD pada setiap penambahan dosis koagulan PAC apabila dilihat dari nilai probabilitasnya, maka Ho ditolak. Artinya ada beberapa perlakuan berdasarkan penambahan konsentrasi PAC tidak signifikan atau tidak sama. Hal ini menyatakan dalam pemilihan variasi konsentrasi PAC mempunyai range terlalu dekat. Berdasarkan analisa korelasi pearson pada tabel 4.5, nilai koefisien korelasi antara dosis koagulan PAC dengan persentase penurunan COD sebesar – 0,949 yaitu berada pada range diantara 0,7-0,9 (Soleh,2005) yang artinya hubungan kedua variabel kuat, sedangkan tanda negatif menyatakan bahwa hubungan antara kedua variabel saling bertolak belakang. Hal ini dapat dilihat bahwa semakin besar dosis koagulan PAC, maka persentase penurunan COD akan semakin menurun. Hal ini terjadi pada penambahan dosis 3500 mg/l, 3750

mg/l, 4000 mg/l, 4250 mg/l, 4250 mg/l, dan 4750 mg /l secara berurutan persentase mengalami penurunan yaitu 86,67 %, 81,67 %, 76,67 %, 71, 67 %,68,50 %, 65,00 %. Terjadinya penurunan persentase dapat disebabkan telah terjadinya proses koagulasi optimum yaitu pada penambahan konsentrasi 3250 mg/l. Untuk memprediksi persentase penurunan COD berdasarkan variasi konsentrasi PAC dalam penelitian ini, maka dapat digunakan persamaan regresi sebagai berikut:

$$Y = 145 - 0.0169 X_1$$

Dimana:

Y = persesentase penurunan COD

X = konsentrasi PAC (mg/l)

Dari analisa regresi dapat disimpulkan, bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan COD, yang ditunjukkan dengan F hitung (54,12) lebih besar dari F tabel (5,99). Hasil analisa regresi menunjukkan hubungan yang kuat antara persentase penurunan COD dengan variasi konsentrasi PAC, dimana 90 % persentase penurunan COD dipengaruhi oleh konsentrasi PAC. Penurunan ini disebabkan karena muatan yang terdapat pada material organik saling berikatan dengan muatan yang terdapat pada flok dari koloid dan koagulan PAC yang kemudian mengendap bersama sama karena gaya beratnya (Yudistira Hasnan, 2000). Sedangkan sisanya 10 % dijelaskan oleh sebab-sebab dari luar.

4.3.2 Pembahasan Penurunan Warna Pada Penelitian Pendahuluan

Hasil penelitian menunjukkan bahwa PAC yang digunakan sebagai koagulan mampu menurunkan konsentrasi warna, namun pada dosis tertentu konsentrasi warna dapat meningkat kembali. Hal ini menunjukkan bahwa dosis koagulasi optimum telah tercapai, dimana pada dosis 3500 mg/l hingga 4750 mg/l konsentrasi warna mengalami peningkatan sebesar 1,91 mg/l hingga 2,27 mg/l. Begitu juga pada penurunan warna terlihat bahwa pada konsentrasi 3250 mg/l mengalami penurunan sebesar 78,69 %, tetapi pada saat konsentrasi 3500 mg/l dan seterusnya penurunan warna semakin menurun. Hal ini menunjukkan bahwa penambahan dosis PAC

tidak selalu menyebabkan peningkatan persentase penurunan warna. Terjadinya penurunan persentase disebabkan telah terjadinya konsentrasi PAC optimum yaitu pada penambahan konsentrasi 3250 mg/l. Penambahan dosis yang berlebih akan menyebabkan penambahan suspensi dalam air lindi. Hal ini disebabkan koagulan PAC yang mengandung garam Aluminium, dimana molekul Aluminium (Al³+) tersebut terdisosiasi kembali menjadi partikel-partikel dan koloid akibat pengaruh zeta potensial dan molekul Aluminium (Al³+) itu sendiri tidak dapat saling berikatan akibat muatannya yang sama. Tidak terjadinya proses ikatan akan menambah suspensi di dalam limbah, sehingga ketika dilakukan analisa warna terjadi peningkatan kembali konsentrasi warna pada konsentrasi 3500 mg/l hingga 4750 mg/l.

Dari hasil analisa ANOVA menunjukkan bahwa persentase penurunan warna pada setiap penambahan dosis koagulan PAC apabila dilihat dari nilai probabilitasnya, maka Ho ditolak. Artinya ada beberapa perlakuan berdasarkan penambahan konsentrasi PAC tidak signifikan atau tidak sama. Hal ini menyatakan dalam pemilihan variasi konsentrasi PAC mempunyai range terlalu dekat. Berdasarkan analisa korelasi pearson pada tabel 4.11, nilai koefisien korelasi antara dosis koagulan PAC dengan persentase penurunan warna sebesar - 0,466 yaitu berada pada range diantara 0,2-0,4 (Soleh,2005) yang artinya hubungan kedua variabel lemah, sedangkan tanda negatif menyatakan bahwa hubungan antara kedua variabel saling bertolak belakang. Hal ini dapat dilihat bahwa semakin besar dosis koagulan PAC, maka persentase penurunan warna akan semakin menurun. Tetapi jika dilihat dari nilai probabilitas pada analisa korelasi, memperlihatkan bahwa nilai P adalah 0,000. Karena nilai P lebih kecil dari 0,05, maka Ho ditolak dan menerima H₁, yang menyatakan ada korelasi antara dua variabel. Untuk memprediksi persentase penurunan warna berdasarkan variasi konsentrasi PAC pada penelitian ini, maka dapat digunakan persamaan regresi sebagai berikut:

$$Y = 81,5 - 0,0142 X_1$$

Dimana:

Y = persentase penurunan warna

X = konsentrasi PAC

Dari analisa regresi dapat disimpulkan bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan warna, yang ditunjukkan dengan F hitung (1,67) lebih kecildari F tabel (5,99). Hasil analisa regresi menunjukkan hubungan yang lemah antara persentase penurunan warna dengan variasi konsentrasi PAC, dimana 21,7 % persentase penurunan warna dipengaruhi oleh variasi dosis koagulan PAC. Penurunan warna ini terjadi karena dua kemungkinan yaitu, pertama warna yang disebabkan oleh material organik tersebut diendapkan sebagai flok oleh proses koagulasi-flokulasi dengan adanya koagulan. Mekanisme yang kedua yang mungkin terjadi adalah warna dalam bentuk material organik (koloid) akan berikatan dengan flok kemudian mengendap bersama sama karena gaya beratnya (Yudistira Hasnan, 2000). Sedangkan sisanya 78,3 % dipengaruhi hal-hal lain yang tidak diukur dalam penelitian.

4.3.3 Pembahasan Penurunan COD Setelah Aerasi Tanpa *Pretreatment* Koagulasi-Flokulasi-Sedimentasi

Pada tabel 4.15 dan gambar 4.6 terlihat bahwa debit udara yang makin meningkat dan waktu operasi yang semakin lama membuat persentase penurunan COD semakin meningkat pula. Hal ini ditunjukkan pada persentase penurunan COD terbesar terjadi pada debit udara 900 l/jam dengan waktu operasi 6 jam sebesar 58,33 % dan persentase penurunan terendah terjadi pada debit udara 500 l/jam dengan waktu operasi selama 3,5 jam sebesar 36,67 %. Dengan demikian dapat disimpulkan bahwa semakin besar debit udara dan semakin lama waktu aerasi, maka jumlah oksigen yang terlarut juga semakin besar, sehingga mampu mengoksidasi material organik yang terkandung dalam lindi yang akhirnya menyebabkan peningkatan persentase penurunan COD. Reaksi oksidasi yang terjadi adalah $CnH_aO_bN_c$ (zat organik) + (n+a/4-b/2-3c/4) O_2 (oksigen) \rightarrow nCO_2 + (a/2-3c/2) H_2O (Elly D.M., 2005). Tetapi dari hasil analisa ANOVA

menunjukkan bahwa persentase penurunan COD pada setiap variasi debit udara apabila dilihat dari nilai probabilitasnya, maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara terhadap persentase penurunan COD. Hal ini disebabkan karena terjadi kesalahan dalam pelaksanaan penelitian. Untuk variasi waktu apabila dilihat dari nilai probabilitasnya pada analisa ANOVA, maka Ho ditolak. Artinya terdapat perbedaan yang signifikan antara variasi waktu terhadap persentase penurunan COD. Dengan demikian dapat disimpulkan bahwa jika waktu aerasi lama, maka akan meningkatkan persentase removel COD selama oksigen dalam lindi belum mencapai kondisi jenuh, dimana oksigen yang terlarut semakin besar, sehingga mampu mengoksidasi material organik (Elly D.M., 2005).

Pengaruh debit udara dan waktu dalam proses aerasi tanpa pretreatment KFS dapat dilihat dalam pada nilai koefisien korelasi antara debit udara terhadap persentase penurunan COD. Pada tabel 4.20 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,398. Nilai koefisien berada diantara 0,2-0,4, yang artinya hubungan kedua variabel lemah. Selain pengaruh debit udara, waktu untuk proses aerasi yang semakin lama juga mempengaruhi persentase penurunan COD. Pengaruh waktu aerasi terhadap persentase penurunan COD dapat dilihat pada nilai koefisien korelasi antara waktu aerasi dengan persentase penurunan COD. Pada tabel 4.20 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,878. Nilai koefisien berada diantara 0,7-0,9 yang artinya hubungan kedua variabel kuat (Soleh, 2005). Waktu aerasi yang lama akan membuat kandungan oksigen terlarut semakin besar sehingga dapat mengoksidasi material organik. Untuk memprediksi persentase penurunan COD berdasarkan variasi debit udara dan waktu, maka dapat digunakan persamaan regresi sebagai berikut:

$$Y = 14 + 0.0153 X1 + 5.09 X2$$

Dimana:

Y = persentase penurunan COD

X1 = debit udara (l/jam)

X2 = waktu (jam)

Dari analisa regresi dapat disimpulkan bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan COD, yang ditunjukkan dengan F hitung (39,38) lebih besar dari F tabel (5,14). Hasil analisa regresi menunjukkan hubungan yang kuat antara persentase penurunan COD dengan variasi debit udara dan waktu, dimana 92,9 % persentase penurunan COD dipengaruhi oleh debit udara dan waktu. Besarnya nilai debit udara dan waktu akan membuat kandungan oksigen terlarut semakin besar sehingga material organik yang dioksidasi juga semakin besar, yang akhirnya terjadi peningkatan dalam persentase penurunan COD(Ali Masduki dan Agus Slamet, 2002).

4.3.4 Pembahasan Penurunan COD Setelah Aerasi Dengan *Pretreatment*Koagulasi-Flokulasi-Sedimentasi

Pada tabel 4.22 dan gambar 4.8 terlihat bahwa debit udara yang makin meningkat dan waktu operasi yang semakin lama membuat persentase penurunan COD semakin meningkat pula. Hal ini ditunjukkan pada persentase penurunan COD terbesar terjadi pada debit udara 900 1/jam dengan waktu operasi 6 jam sebesar 70 % dan presentase penurunan terendah terjadi pada debit udara 500 l/jam dengan waktu operasi selama 3,5 jam sebesar 43 %. Dengan adanya pretreatment yang menggunakan koagulan PAC, maka akan menyebabkan muatan yang terdapat pada material organik saling berikatan dengan muatan yang terdapat pada flok dari koloid dan koagulan PAC yang kemudian mengendap bersama sama karena gaya beratnya (Yudistira Hasnan, 2000), sehingga kandungan material organik telah berkurang sedikit pada saat pretreatment. Dari hasil analisa ANOVA menunjukkan bahwa persentase penurunan COD pada setiap variasi debit udara apabila dilihat dari nilai probabilitasnya, maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara terhadap persentase penurunan COD. Hal ini disebabkan karena kesalahan peneliti dalam memasukkan data. Untuk variasi waktu apabila dilihat dari nilai probabilitasnya pada analisa ANOVA, maka Ho

ditolak. Artinya terdapat perbedaan yang signifikan antara variasi waktu terhadap persentase penurunan COD. Dengan demikian dapat disimpulkan bahwa jika waktu aerasi lama, maka akan meningkatkan persentase removel COD selama oksigen dalam lindi belum mencapai kondisi jenuh, dimana oksigen yang terlarut semakin besar, sehingga mampu mengoksidasi material organik (Elly D.M., 2005). Pengaruh debit udara dan waktu dalam proses aerasi dengan pretreatment KFS dapat dilihat dalam pada nilai koefisien korelasi antara debit udara terhadap persentase penurunan COD. Pada tabel 4.28 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,290. Nilai koefisien berada diantara 0,2-0,4, yang artinya hubungan kedua variabel lemah. Selain pengaruh debit udara, waktu untuk proses aerasi yang semakin lama juga mempengaruhi persentase penurunan COD. Pengaruh waktu aerasi terhadap persentase penurunan COD dapat dilihat pada nilai koefisien korelasi antara waktu aerasi dengan persentase penurunan COD. Pada tabel 4.28 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,888. Nilai koefisien berada diantara 0,7-0,9 yang artinya hubungan kedua variabel kuat (Soleh, 2005). Waktu aerasi yang lama akan membuat kandungan oksigen terlarut semakin besar sehingga material organik yang dioksidasi juga semakin besar.

Untuk memprediksi persentase penurunan COD berdasarkan variasi debit udara dan waktu dalam penelitian ini, maka dapat digunakan persamaan regresi sebagai berikut :

$$Y = 9.62 + 0.0167 X1 + 7.71 X2$$

Dimana:

Y = persentase penurunan COD

X1 = debit udara (l/jam)

X2 = waktu (jam)

Dari analisa regresi dapat disimpulkan bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan COD, yang ditunjukkan dengan F hitung (20,60) lebih besar dari F tabel (5,14). Hasil analisa regresi

menunjukkan hubungan yang kuat antara persentase penurunan COD dengan variasi debit udara dan waktu, dimana 87,3 % persentase penurunan COD dipengaruhi oleh debit udara dan waktu. Besarnya nilai debit udara dan waktu akan membuat kandungan oksigen terlarut semakin besar sehingga material organik yang dioksidasi juga semakin besar, yang akhirnya terjadi peningkatan dalam persentase penurunan COD (Ali Masduki dan Agus Slamet, 2002).

4.3.5 Pembahasan Penurunan Warna Setelah Aerasi Tanpa *Pretreatment* Koagulasi-Flokulasi-Sedimentasi

Pada tabel 4.29 dan gambar 4.10 terlihat bahwa debit udara yang makin meningkat dan waktu operasi yang semakin lama membuat persentase penurunan warna semakin meningkat pula. Hal ini ditunjukkan pada persentase penurunan warna terbesar terjadi pada debit udara 900 l/jam dengan waktu operasi 6 jam sebesar 60,34 % dan presentase penurunan terendah terjadi pada debit udara 500 l/jam dengan waktu operasi selama 3,5 jam sebesar 33,34 %. Dengan demikian dapat disimpulkan bahwa semakin besar debit udara dan semakin lama waktu aerasi, maka jumlah oksigen yang terlarut juga semakin besar, sehingga mampu mengoksidasi material organik penyebab warna yang akhirnya menyebabkan peningkatan persentase penurunan warna (Yudistira Hasnan, 2000). Dari hasil analisa ANOVA menunjukkan bahwa persentase penurunan warna pada setiap variasi debit udara apabila dilihat dari nilai probabilitasnya, maka Ho diterima. Artinya tidak ada perbedaan yang signifikan antara variasi debit udara terhadap persentase penurunan warna. Hal ini disebabkan karena kesalahan peneliti dalam memasukkan data. Untuk variasi waktu apabila dilihat dari nilai probabilitasnya pada analisa ANOVA, maka Ho ditolak. Artinya terdapat perbedaan yang signifikan antara variasi waktu terhadap persentase penurunan warna. Dengan demikian dapat disimpulkan bahwa warna yang ditimbulkan oleh material organik apabila di aerasi dalam waktu yang lama dapat diturunkan, selama oksigen dalam lindi belum mencapai kondisi jenuh, dimana oksigen yang terlarut semakin besar, sehingga mampu mengoksidasi material organik penyebab warna (Elly D.M., 2005).

Pengaruh debit udara dan waktu dalam proses aerasi tanpa pretreatment KFS dapat dilihat dalam pada nilai koefisien korelasi antara debit udara terhadap persentase penurunan warna. Pada tabel 4.36 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,552. Nilai koefisien berada diantara 0,5-0,7 yang artinya hubungan kedua variabel sedang. Selain pengaruh debit udara, waktu untuk proses aerasi yang semakin lama juga mempengaruhi persentase penurunan warna. Pengaruh waktu aerasi terhadap persentase penurunan warna dapat dilihat pada nilai koefisien korelasi antara waktu aerasi dengan persentase penurunan warna. Pada tabel 4.37 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,851. Nilai koefisien berada diantara 0,7-0,9 yang artinya hubungan kedua variabel kuat (Soleh, 2005). Waktu aerasi yang lama akan membuat kandungan oksigen terlarut semakin besar sehingga material organik penyebab warna yang dioksidasi juga semakin besar.

Untuk memprediksi persentase penurunan COD berdasarkan variasi debit udara dan waktu dalam penelitian ini, maka dapat digunakan persamaan regresi sebagai berikut :

$$Y = 13.7 + 0.0122 X_1 + 6.09 X_2$$

Dimana:

Y = persentase penurunan warna

X1 = debit udara (1/jam)

X2 = waktu (jam)

Dari analisa regresi dapat disimpulkan bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan warna, yang ditunjukkan dengan F hitung (16,39) lebih besar dari F tabel (5,14). Hasil analisa regresi menunjukkan hubungan yang kuat antara persentase penurunan warna dengan variasi debit udara dan waktu, dimana 84,5 % persentase penurunan warna dipengaruhi oleh debit udara dan waktu. Penurunan ini disebabkan karena besarnya nilai debit udara dan waktu yang membuat

kandungan oksigen terlarut semakin besar, sehingga dapat mengoksidasi material organik penyebab warna (Ali Masduki dan Agus Slamet, 2002).

4.3.6 Pembahasan Penurunan warna Setelah Aerasi Dengan *Pretreatment* Koagulasi-Flokulasi-Sedimentasi

Pada tabel 4.36 dan gambar 4.12 terlihat bahwa debit udara yang makin meningkat dan waktu operasi yang semakin lama membuat persentase penurunan warna semakin meningkat pula. Hal ini ditunjukkan pada persentase penurunan warna terbesar terjadi pada debit udara 900 1/jam dengan waktu operasi 6 jam sebesar 71,76 % dan presentase penurunan terendah terjadi pada debit udara 500 l/jam dengan waktu operasi selama 3,5 jam sebesar 54,60 %. Dengan adanya pretreatment yang menggunakan koagulan PAC, maka akan menyebabkan muatan yang terdapat pada material organik saling berikatan dengan muatan yang terdapat pada flok dari koloid dan koagulan PAC yang kemudian mengendap bersama sama karena gaya beratnya (Yudistira Hasnan, 2000), sehingga kandungan material organik telah berkurang sedikit pada saat pretreatment. Dari hasil analisa ANOVA menunjukkan bahwa persentase penurunan warna pada setiap variasi debit udara apabila dilihat dari nilai probabilitasnya, maka Ho diterima. Artinya tidak ada perbedaan vang signifikan antara variasi debit udara terhadap persentase penurunan warna. Hal ini disebabkan karena kesalahan peneliti dalam memasukkan data. Untuk variasi waktu apabila dilihat dari nilai probabilitasnya pada analisa ANOVA, maka Ho ditolak. Artinya terdapat perbedaan yang signifikan antara variasi waktu terhadap persentase penurunan warna. Dengan demikian dapat disimpulkan bahwa warna yang ditimbulkan oleh material organik apabila di aerasi dalam waktu yang lama dapat diturunkan, selama oksigen dalam lindi belum mencapai kondisi jenuh, dimana oksigen yang terlarut semakin besar, sehingga mampu mengoksidasi material organik penyebab warna (Elly D.M., 2005).

Pengaruh debit udara dan waktu dalam proses aerasi tanpa pretreatment PAC dapat dilihat dalam pada nilai koefisien korelasi antara

debit udara terhadap persentase penurunan warna. Pada tabel 4.36 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,302. Nilai koefisien berada diantara 0,2-0,4, yang artinya hubungan kedua variabel lemah.. Selain pengaruh debit udara, waktu untuk proses aerasi yang semakin lama juga mempengaruhi persentase penurunan warna. Pengaruh waktu aerasi terhadap persentase penurunan warna dapat dilihat pada nilai koefisien korelasi antara waktu aerasi dengan persentase penurunan warna. Pada tabel 4.44 terlihat nilai koefisien korelasi yang diperoleh sebesar 0,888. Nilai koefisien berada diantara 0,7-0,9 yang artinya hubungan kedua variabel kuat (Soleh, 2005). Waktu aerasi yang lama akan membuat kandungan oksigen terlarut semakin besar sehingga dapat mengoksidasi material organik penyebab warna.

Untuk memprediksi persentase penurunan COD berdasarkan variasi debit udara dan waktu dalam penelitian ini, maka dapat digunakan persamaan regresi sebagai berikut :

$$Y = 35.6 + 0.0104 X1 + 4.64 X2$$

Dimana:

Y = persentase penurunan warna

X1 = debit udara (1/jam)

X2 = waktu (jam)

Dari analisa regresi dapat disimpulkan bahwa model regresi bisa dipakai untuk memprediksi persentase penurunan warna, yang ditunjukkan dengan F hitung (21,92) lebih besar dari F tabel (5,14). Hasil analisa regresi menunjukkan hubungan yang kuat antara persentase penurunan warna dengan variasi debit udara dan waktu. Penurunan ini disebabkan karena besarnya nilai debit udara dan waktu yang membuat kandungan oksigen terlarut semakin besar, sehingga dapat mengoksidasi material organik penyebab warna (Ali Masduki dan Agus Slamet, 2002).

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari penelitian yang telah dilakukan, maka dapat disimpulkan bahwa:

- 1. Metode Aerasi dengan *pretreatment* koagulasi-flokulasi-sedimentasi (KFS) memiliki kemampuan yang efektif dalam menurunkan konsentrasi COD dan warna pada air lindi.
- 2. Persentase penurunan COD dan warna dengan *pretreatment* KFS yang tertinggi sebesar 70 % (COD) dan 71,76 % (warna), yaitu pada debit udara 900 l/jam dengan waktu aerasi selama 6 jam.
- 3. Untuk persentase penurunan COD dan warna tanpa pretreatment KFS diperoleh penurunan yang tertinggi sebesar 58,33 % (COD) dan 60,34 % (warna), yaitu pada debit udara 900 l/jam dengan waktu aerasi selama 6 jam.

5.2. Saran

Adapun saran yang diberikan oleh penulis adalah sebagai berikut:

- 1. Menggunakan jenis koagulan yang berbeda (pada saat *pretreatment*) serta aplikasi pengolahan pada jenis limbah yang berbeda.
- 2. Menambah variasi waktu aerasi untuk mendapatkan hasil analisa yang signifikan.
- 3. Menggunakan jenis aerator yang berbeda, sehingga menunjang keberhasilan dalam usaha menurunkan berbagai parameter dalam air limbah.

DAFTAR PUSTAKA

- Al-Layla, M. Anis, Shamim Ahmad And E. Joe Middlebrooks, 1977. Water Supply Engineering Design. Ann Arbor Science, Michigan.
- Alaerts G, Santika Sumestri Sri, 1987. *Metode Penelitian Air*. Usaha Nasional, Surabaya.
- Astuti P. Septin, Iriawan Nur, 2006. Mengolah Data Statitistik dengan Mudah Menggunakan Minitab 14. Andi, Yogyakarta.
- Dwi, Elly.M., 2005. Pengaruh Waktu Detensi dan Tekanan Udara Diffused Aerator Dalam Menurunkan Kandungan Besi. Skripsi jurusan Teknik Lingkungan ITN Malang.
- Eckenfelder Wesley W, 2000. *Industrial Water Pollution Control* (3rd ed).

 McGraw-Hill International Edition, Singapore.
- Haryuna Yetti, 2005. *Uji Efektfitas Proses Aerasi pada Pengolahan Air Lindi Di*TPA Supit Urang. Laporan Tugas akhir, Jurusan Teknik Lingkungan,
 FTSP- ITN Malang.
- Hasnan. Y, 2002. *Optimasi Dosis Tawas Dan Kapur Dalam Pengolahan Lindi Di TPA Benowo*. Laporan Tugas Akhir Jurusan Teknik Lingkungan FTSP- ITS Surabaya.
- Juli, Ni Ketut P., 2005. Pengolahan Limbah Cair Industri Tekstil Untuk Proses

 Penurunan Warna Dan Kandungan Organik Dengan Koagulan

 Khitosan Dari Limbah Perikanan. Skripsi Teknik Lingkungan ITN

 Malang,
- Masduki Ali, Slamet Agus. 2002. Satuan Operasi untuk Pengolahan Air. Jurusan Teknik Lingkungan. ITS. Surabaya.
- Metcalf & Eddy, INC, 1979. Wastewater Engineering: Treatment Disposal Reuse. Penerbit Tata Macgraw-Hill Publishing Company Ltd.
- Reynolds, Richard, 1996. Unit Operations and Processes in Environmental Engineering (2nd ed). Boston, PWS Publishing Company.
- Sugiharto, 1987. Dasar-dasar Pengelolaan Air Limbah. Penerbit Universitas Indonesia.

- Sawyer N. Clair, 1994. *Chemistry For Environmental Engineering (4th ed)*.

 Singapore: McGraw-Hill International Edition.
- Soleh Zanbar Ahmad, 2005. Ilmu Statistika: Pendekatan Teoritis dan Aplikasi Disertai Contoh Penggunaan SPSS. Bandung: Rekayasa Teknik.
- Sudjana, 2002. Metoda Statistika Edisi Keenam. Penerbit Tarsito Bandung
- Singgih. Menguasai Statistik di Era Informasi Dengan SPSS 12. Jakarta : PT Elex Media Komputindo
- Tchobanoglous, 1993. Solid Waste: Engineering Principles And Management Issues. Penerbit Macgraw-Hill Kogakusha. Ltd.
- Taufikkurahman, 2006. Penurunan TSS, Warna, Dan COD Pada Limbah Laundry Menggunakan Membran Mikrofiltrasi (MF) Dengan Pretreatment Koagulasi-Flokulasi-Sedimentasi. Skripsi Jurusan Teknik Lingkungan ITN Malang.
- Yekti W., Triyas, 2005. *Uji Kemampuan Clarifier Thickener Dalam Menurunkan Kadar BOD Dan PO₄ Pada Limbah Tahu.* Skripsi Teknik

 Lingkungan, ITN Malang.

LAMPIRAN 1 DESAIN ALAT

REAKTOR KOAGULASI-FLOKULASI-SEDIMENTASI (PRETREATMENT)

I. Desain Bak Koagulasi

$$Td = 1$$
 menit (60 detik).

$$Q_{in} = 0.5 \text{ l/menit.}$$

$$V = Q \times t = 0.5 \text{ l/menit } \times 1 \text{ menit} = 0.5 \times 10^{-3} \text{ m}^3.$$

$$V = p \times 1 \times t; p = 1 = t.$$

$$p^3 = 0.5 \times 10^{-3} \text{ m}^3 = 0.079 \text{ m} \sim 8 \text{ cm}.$$

$$p = 1 = t = 8 \text{ cm}.$$

Panjang paddle
$$(d_{paddle}) = 80\% \times p = 80\% \times 8 \text{ cm} = \underline{6.4 \text{ cm}}$$
.

Lebar paddle (
$$w_{paddle}$$
) = 1/6 x 6,4 cm = $\underline{1.07 \text{ cm}}$.

Tinggi paddle terhadap dasar
$$(h_{paddle}) = \frac{1}{2} \times 6,4 = \frac{3.2 \text{ cm.}}{2}$$

$$KT = 0.75 \times 1.15 = 0.86$$
; $n = 200 \text{ rpm}$

$$P = 0.86.(200/60)^3.(0.064)^5.995.68 = 0.034 \text{ N.m/dt}$$

$$G^2 = \frac{0,034}{0,8004.10^{-3}.0,5.10^{-3}} = 85089,75$$

$$G = 291,7 / dt$$
.

II. Desain Bak Flokulasi

$$Td = 30 \text{ menit } (1800 \text{ detik}).$$

$$Q_{in} = 0.5 \text{ l/menit.}$$

$$V = Q \times t = 0.5 \text{ l/menit } \times 30 \text{ menit} = 15 \times 10^{-3} \text{ m}^3.$$

$$V = p \times 1 \times t; p = 1 = t.$$

$$p^3 = 15 \times 10^{-3} \text{ m}^3 = 0.25 \text{ m} \sim$$

Modifikasi desain,
$$p = 1 = 0,22 \text{ m} = 22 \text{ cm}$$
, sedangkan $t = 31 \text{ cm}$, sehingga volume =

$$22 \text{ cm x } 22 \text{ cm x } 31 \text{ cm} = 15004 \text{ cm}^3 = 15 \text{ x } 10^{-3} \text{m}$$

Panjang paddle
$$(d_{paddle}) = 80\% \times p = 80\% \times 22 \text{ cm} = 17.6 \sim 18 \text{ cm}$$
.

Lebar paddle
$$(w_{paddle}) = 1/6 \times 18 \text{ cm} = 3 \text{ cm}$$
.

Tinggi paddle terhadap dasar
$$(h_{paddle}) = \frac{1}{2} \times 18 = \frac{9 \text{ cm}}{2}$$
.

$$n = 40 \text{ rpm}.$$

$$KT = 0.75 \times 1.15 = 0.86$$
.

$$P = 0.86.(40/60)^3.(0.18)^5.995,68 = 0.048 \text{ N.m/dt}$$

$$G^2 = \frac{0.048}{0.8004.10^{-3}.10^{-2}} = 5997 / dt^2$$

$$G = 77.44 / dt$$
.

III. Desain Bak Sedimentasi

$$Td = 60 \text{ menit}$$

$$Q = 0.5 \times 10^{-3} \text{ m}^3/\text{menit.}$$

$$V = Q \times t = 0.5 \times 10^{-3} \text{ m}^3/\text{menit } \times 1 \text{ menit} = 30.10^{-3} \text{ m}^3.$$

Zona Settling

Direncanakan dimensi;

$$p:1=3:1$$

Untuk 1 = 22 cm (menyesuaikan dimensi bak flokulasi)

$$P = 22 \text{ cm x } 3 = \underline{66 \text{ cm.}}$$

$$H = \frac{Volume}{(0,22 m \times 0,66 m)} = \frac{30.10^{-3}}{0,1452} = 0,21 m = 21 cm.$$

Zona Inlet

$$P = 25 \% x$$
 panjang zona settling

$$= 25 \% \times 66 \text{ cm} = 16,5 \text{ cm}.$$

Zona Lumpur

Vol. Lumpur diasumsikan 100 ml/1000 ml limbah , jadi volume lumpur = 30 l x 0,1 l= $3 \text{ l} = 3.10^{-3} \text{ m}^3$ untuk td 1 jam.

Direncanakan dimensi:

Vol. trapesium =
$$1/3$$
. H. $(A_1 + A_2 + (A_1.A_2)^{0.5})$

$$A_1 = luas atas; A_2 = luas bawah.$$

$$a = 1/3 \times 1 = 1/3 \times 66 \text{ cm} = 22 \text{ cm}.$$

$$a'= 1/5 \times 1 = 1/5 \times 66 \text{ cm} = 13,2 \text{ cm}.$$

$$b = w = 22 \text{ cm}.$$

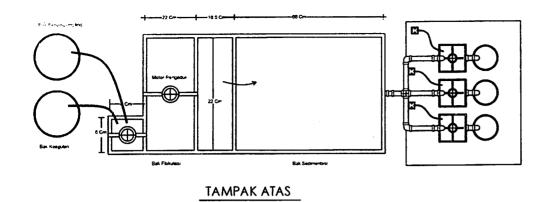
b'= 1/3.w = 1/3 x 22 cm = 7,33 cm.

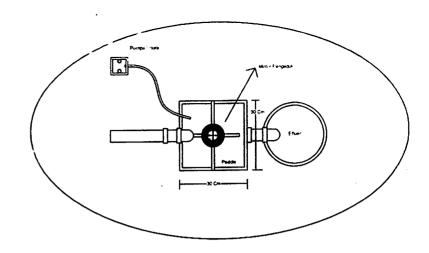
$$A_1 = a x b = 22 x 22 = 484 cm^2 = 0,0484 m^2$$

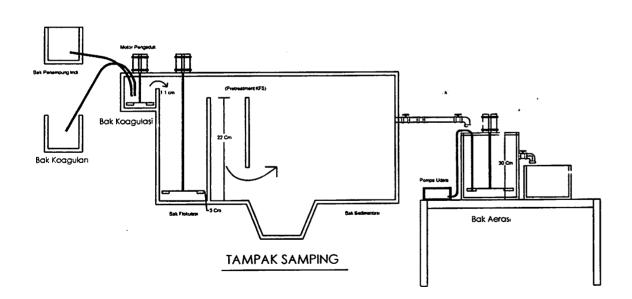
 $A_2 = a' x b' = 13,2 x 7,33 = 96,756 cm^2 = 9,6756.10^{-3} m^2$
 $H = \frac{3 \times Vol.}{(A_1 + A_2(A_1.A_2)^{0.5})}$
 $= \frac{3 \times (3.10^{-3} m^3)}{(484.10^{-4} + 9,6756.10^{-3})^{0.5}}$
 $= 0,11 m = 11 cm.$

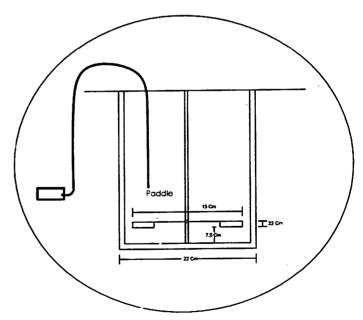
REAKTOR AERASI

- 1. Dimensi bak aerasi P = 1 = t = 30 cm
- 2. Pipa dengan ukuran 0,5 dim
- 3. Aerator menggunakan air pump dengan debit udara: 500 l/jam; 700 l/jam; 900 l/jam
- 4. Botol penampung lindi
- 5. Dimensi paddle:


$$-D = 50 \% \times 30 \text{ cm} = 15 \text{ cm}$$


- Tebal =
$$1/6x 15cm$$
 = 2,5 cm


- Penempatan paddle = 7,5 cm


Dimana:

- Kecepatan putaran paddle berkisar antara 20 150 rpm
- diameter = 50-80 % lebar bak
- lebar = 1/6 1/10 diameter paddle

LAMPIRAN 2

CARA KERJA ANALISA PARAMETER UJI

A. Pemeriksaan COD (Chemical Oxygen Demand)

1. Metode

Closed Reflux Titrimetric

2. Prinsip

Senyawa organic dalam air dioksidasi oleh larutan kalium dikromat dalam suasana asam sulfat pada temperature 150°C selama 2 jam. Kelebihan kalium dikromat (yang tidak tereduksi) dititrasi dengan larutan fero ammonium sulfat (FAS) memakai indicator feroin. Materi organic yang teroksidasi akan dikalkulasi dengan bentuk ekivalensi oksigen.

3. Pereaksi

3.1. Larutan standar kalium dikromat 0,0167 M

Tambahkan 4,193 gram K₂Cr₂O₇, yang sebelumnya telah dikeringkan pada suhu 103⁰C selama 2 jam, pada 500 ml air destilasi. Lalu tambahkan 167 ml H₂SO₄ pekat dan 3,33 gram H_gSO₄. Larutkan dan dinginkan sampai temperature kamar kemudian encerkan volumenya menjadi 1000 ml.

3.2. Pereaksi asam sulfat

Tambahkan Ag₂SO₄ (bentuk kristal atau bubuk) pada H₂SO₄ pekat dengan perbandingan 5,5 gram Ag₂SO₄ per kg H₂SO₄. Biarkan selama 1 atau 2 hari hingga seluruh Ag₂SO₄ larut.

- 3.3. Larutan indikator feroin
- 3.4. Larutkan 1,485 gram 1,10-Phenantrolin monohidrat dan 695 mg FeSO₄.7H₂O dalam air destilasi dan encerkan hingga volumenya 100 ml, lalu larutan indikator feroin diencerkan dengan perbandingan 1 : 4 (1 ml Larutan indikator feroin dan 4 ml air destilasi) sebelum digunakan.
- 3.5. Larutan feroin amonium sulfat (FAS)

Larutkan 39,2 gram Fe(NH₄)₂SO₄.6H₂O dalam air destilasi. Lalu tambahkan 20 ml H₂SO₄ pekat dan encerkan hingga volume 1000 ml. Larutkan ini harus distamdarisasi dengan cara sebagai berikut :

Masukkan 2,5 ml air destilasi, 1,5 ml kalium dikromat dan 3,5 ml pereaksi asam sulfat ke dalam tabung COD. Dinginkan pada temperatur kamar, kemudian

tambahkan 1 sampai 2 tetes indikator feroin. Titrasi dengan FAS sampai berwarna awal merah kecoklattan. Molaritas FAS yang dipakai dengan rumus : Molaritas FAS = $(ml K_2Cr_2O_7 \times 0,1)/ml FAS$

4. Cara kerja

- a. Cici tabung COD dan rendam dalam 20 % H₂SO₄ untuk penggunaan pertama kali.
- b. Masukkan 2,5 ml sampel, 1,5 ml kalium dikromat dan 3,5 ml pereaksi asam sulfat ke dalam tabung COD. Tutup tabung rapat-rapat dan kocok agar tercampur sempurna.
- Masukkan pada pemanas COD mikro lalu panaskan pada suhu 150°C selama 2
 jam.
- d. Dinginkan pada suhu kamar. Kemudian tuangkan isinya ke dalam wadah yang lebih besar. Tambahkan 1 sampai 2 tetes indikator feroin. Titrasi dengan FAS Titik akhir titrasi adalah terjadi perubahan earna dari biru kehijauan sampai berwarna merah kecoklattan. Catat ml FAS yang dipakai untuk titrasi.
- e. Buat blangko dengan air destilasi sebagai pengganti sampel, lalu langkahlangkah pengerjaan diatas diulangai kembali. Catat ml FAS yang dipakai untuk titrasi blangko tersebut.

5. Perhitungan

COD (mg O^2/I) = (A-B) x M x 8000/ml sampel

Dengan:

A = ml FAS yang dipakai untuk titrasi blangko

B = ml FAS yang dipakai untuk titrasi sampel

M = molaritas FAS

D. Analisa Warna

1. Metode

Spektrofotometri

2. Prinsip

Pemeriksaan warna ditentukan dengan membandingkan pembacaan skala warna pada warna sampel dengan larutan standard warna yang diketahui konsentrasinya dengan spektrofotometer. Sinar cahaya dengan panjang gelombang tertentu, akan diserap (diabsorpsi) larutan secara proposional dengan jarak perjalanan di dalam larutan dan dengan kadar kompleks yang berwarna oranye-merah ini Absorpsi tersebut dapat diukur melalui alat spektrofotometer.

3. Pereaksi

Larutan Standard

- a. Gunakan labu takar 1000 ml, untuk melarutkan 1,246 g kalium kloro platina (K₂PtCl₆) yang ekivalen dengan 500 mg logam platina dan 1,00 g kobalt klorida (CoCl₂. 6H₂O) yang ekivalen dengan 250 mg kobalt dalam air suling dan 100 ml HCL pekat dan kemudian diencerkan menjadi 1000 ml dengan air suling. Larutan standard tersebut mempunyai skala warna 500.
- b. Apabila tidak ada kalium kloro platina (K₂PtCl₆), larutkan 500 mg logam platina murni di dalam aqua regia dengan pemanasan, kemudian hilangkan asam nitrat yang ada dengan penambahan HCl pekat beberapa kali. Larutkan residu yang dihasilkan bersama dengan 1,0 gr kobalt klorida seperti pada cara tersebut diatas.

4. Cara Kerja

a. Siapkan standard – standard dengan skala warna 5;10;15;20;25;30;35;40;45;50;60 dan 70, yang didapat dari larutan baku dengan skala warna 500 sebanyak masing—masing 0,5;1,0;1,5;2,0;2,5;3,0;3,5;4,0;4,5;5,0;6,0 dan 7,0 dan diencerkan menjadi 50 ml di dalam tabung Nessler dan larutan standard ini dimasukan pada spektofotometer untuk diketahui nilai absorbansinya.

- b. Siapkan larutan sampel, kemudian disaring dengan kertas saring untuk mendapatkan warna sebenarnya. Larutan sampel ini dimasukan pada spektofotometer untuk diketahui nilai absorbansinya.
- Hasil yang didapat dibandingkan dengan nilai absorbansi pada larutan standard, untuk mengetahui konsentrasi warna yang didapat.

5. Perhitungan

$$A = 2 - \log (\%T)$$

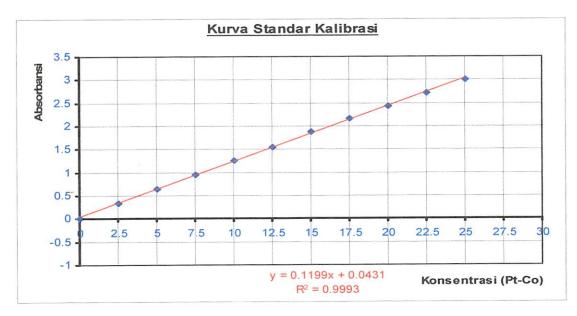
Dimana:

A = absorbansi

T = Transmitansi (nilai yang dibaca pada spektrofotometer)

$$X = (A - 0.0431)/0.119$$

Dimana


X = konsentrasi warna (Pt-Co)

0,0431 dan 0,119 = didapatkan dari kurva standard kalibrasi

6. Nilai Larutan Standard Pada Spektrofotometer (panjang gelombang 220)

Tabel. E.1. Nilai Larutan Standard Pada Spektrofotometer

Lari	utan Standar	
Kons.	Absorbansi	
0	0.003	Batas Bawah
2.5	0.330	
5	0.651	
7.5	0.947	
10	1.265	
12.5	1.557	
15	1.880	
17.5	2.173	
20	2.436	
22.5	2.709	
25	3.010	Batas Atas

Gambar. E.1. Kurva Standar Kalibrasi

LAMPIRAN 3

DATA HASIL PARAMETER UJI

Perhitungan oksigen terlarut (DO mg/l) setelah aerasi tanpa *pretreatment* PAC

No	Debit Udara	Waktu (jam)	Dissolved
	(l/jam)		Oxygen (mg/l)
1	500		5,20
2	700	3.5	5,27
3	900		5,44
4	500		5,55
5	700	4	5,65
6	900		5,75
7	500		5,90
8	700	6	6,10
9	900		6,20

Perhitungan oksigen terlarut (DO mg/l) setelah aerasi dengan *pretreatment* PAC

No	Debit Udara	Waktu (jam)	Dissolved
	(l/jam)		Oxygen (mg/l)
1	500		6,25
2	700	3.5	6,28
3	900		6,32
4	500		6,35
5	700	4	6,37
6	900		6,40

7	500		6,42
8	700	6	6,45
9	900		6,50

Penurunan COD tanpa Pretreatment PAC

Smpl		TITE	RASI FAS	(ml)			Molaritas	Pengenceran	COD	COD	COD	COD
	Standarisasi	Larutan		Samp	əi		FAS		1	2	3	r
	FAS	Blangko	1	2	3	r						
AWL	1,1	0,85	0,25	0,25	0,25	0,25	0,136363636	300	78545,45	78545,45	78545,45	78545,45
Q 500 T 3.5	1,1	0,85	0,469	0,470	0,471	0,47	0,136363636	300	49876,36	49745,45	49614,55	49745,45
Q 700 T 3.5	1,1	0,85	0,499	0,500	0,501	0,5	0,136363636	300	45949,09	45818,18	45687,27	45818,18
Q 900 T 3,5	1,1	0,85	0,519	0,520	0,521	0,52	0,136363636	300	43330,91	43200,00	43069,09	43200,00
Q 500 T 4	1,1	0,85	0,522	0,523	0,524	0,523	0,136363636	300	42938,18	42807,27	42676,36	42807,27
Q 700 T 4	1,1	0,85	0,530	0,531	1 '	0,531	0,136363636	300	41890,91	41760,00	41629,09	41760,00
Q 900 T 4	1,1	0,85	0,540	0,541	0,542		0,136363636	300	40581,82	40450,91	40320,00	40450,91
Q 500 T 6	1,1	0,85	0,557	0,558	0,559		0,136363636	300	38356,36	38225,45	38094,55	38225,45
Q 700 T 6	1,1	0,85	0,580	0,581	0,582	0,581	0,136363636	300	35345,45	35214,55	35083,64	35214,55
Q 900 T 6	1,1	0,85	0,599	0,600	0,601	0,6	0,136363636	300	32858,18	32727,27	32596,36	32727,27

Keterangan:

Q = Debit Udara (1/jam)

T = Waktu (jam)

Penurunan COD Dengan treatment

Smpl	T	TIT	RASI FAS	(ml)			Molaritas	Pengenceran	COD	COD	COD	COD
	Standarisasi	Larutan		Sam	pel		FAS		1	2	3	r
	FAS	Blangko	1	2	3	r						
AWL	1,1	0,85	0,250	0,250	0,250	0,25	0,136363636	300	78545,45	78545,45	78545,45	78545,45
2 500 T 3.5	1,1	0,85	0,507	0,508	0,509	0,508	0,136363636	300	44901,82	44770,91	44640,00	44770,91
⊋ 700 T 3.5	1,1	0,85	0,517	0,518	0,519	0,518	0,136363636	300	43592,73	43461,82	43330,91	43461,82
2 900 T 3,5	1,1	0,85	0,530	0,531	0,532	0,531	0,136363636	300	41890,91	41760,00	41629,09	41760,00
2 500 T 4	1,1	0,85	0,560	0,561	0,562	0,561	0,136363636	300	37963,64	37832,73	37701,82	37832,73
2 700 T 4	1,1	0,85	0,585	0,586	0,587	0,586	0,136363636	300	34690,91	34560,00	34429,09	34560,00
2 900 T 4	1,1	0,85	0,617	0,618	0,619	0,618	0,136363636	300	30501,82	30370,91	30240,00	30370,91
Q 500 T 6	1,1	0,85	0,629	0,630	0,631	0,63	0,136363636	300	28930,91	28800,00	28669,09	28800,00
Q 700 T 6	1,1	0,85	0,649	0,650	0,651	0,65	0,136363636	300	26312,73	26181,82	26050,91	26181,82
2 900 T 6	1,1	0,85	0,669	0,670	0,671	0,67	0,136363636	300	23694,55	23563,64	23432,73	23563,64

Keterangan:

Q = Debit Udara (l/jam)

T = Waktu (jam)

Dosis Optimum PAC Terhadap Penurunan COD

		TI	TRASI FAS	6 (ml)			Molaritas	Pengenceran	COD	COD	COD	COD
Konsentrasi PAC	Standarisasi	Larutan		Samp	oel		FAS		1	2	3	r
	FAS	Blangko	1	2	3	r						
3000	1,1	0,85	0,779	0,780	0,781	0,78	0,136363636	300	9294,55	9163,64	9032,73	9163,64
3250	1,1	0,85	0,829	0,830	0,831	0,83	0,136363636	300	2749,09	2618,18	2487,27	2618,18
3500	1,1	0,85	0,769	0,770	0,771	0,77	0,136363636	300	10603,64	10472,73	10341,82	10472,73
3750	1,1	0,85	0,739	0,740	0,741	0,74	0,136363636	300	14530,91	14400,00	14269,09	14400,00
4000	1.1	0,85	0,709	0,710	0,711	0,71	0,136363636	300	18458,18	18327,27	18196,36	18327,27
4250	1,1	0,85	0,679	0,680	0,681	0,68	0,136363636	300	22385,45	22254,55	22123,64	22254,55
4500	1,1	0,85	0,660	0,661	0,662	0,661	0.136363636	300	24872,73	24741,82	24610,91	24741,82
4750	1,1	0,85	0,639	0,640	0,641	0,64	0,136363636	300	27621,82	27490,91	27360,00	27490,91

Dosis optimum PAC Terhadap Penurunan Warna

		%T			Absorbansi		Kons	entrasi (P	t-Co)	Rata-rata
Konsentrasi PAC	1 1	11	111	1	C)	III	l .	11	lii lii	
Awai	8,56	8,4	8,1	1,07	1,08	1,09	8,54	8,61	8,74	8,63
3000	48,8	48,7	48,5	0,31	0,31	0,31	2,24	2,25	2,26	2,25
3250	54,6	54,5	54,4	0,26	0,26	0,26	1,83	1,84	1,85	1,84
3500	53,6	53,5	53,3	0,27	0,27	0,27	1,90	1,91	1,92	1,91
3750	52,8	52,7	52,6	0,28	0,28	0,28	1,95	1,96	1,97	1,96
4000	51,8	51,7	51,6	0,29	0,29	0,29	2,02	2,03	2,04	2,03
4250	50,7	50,6	50	0,29	0,30	0,30	2,10	2,11	2,12	2,11
4500	49,6	49,5	49,3	0,30	0,31	0,31	2,18	2,19	2,20	2,19
4750	48,5	48,4	48,3	0,31	0,32	0,32	2,26	2,27	2,28	2,27

Penurunan Warna Tanpa Treatment

V-1-0-1	%	%Т			Absorbansi		Kons	Konsentrasi (Pt-Co)	<u>င်</u> စ)	Rata-rata	8
Kode Sampel	-	=	=	-	=	=	-	=			Penurunan
Blangko	100	8		0.00	0.80	0,00	0,00	0,00	0,00	0,00	
Awal	20 75	8.40	8 10	1.07	1.08	1.09	8.54	8.61	8.74	8.63	8,63
O 500 T 3.5	18.6	18.5	18 18	0.73	0.73	0.74	5.73	5,75	5,77	5,75	33,34
O 700 T 2 S	20.7	30 B	20 S	0 68	0.69	0.69	5.35	5.36	5.38	5.36	37,86
0 000 T 3 F	3 1	22.7	226	0.83	0.63	0.63	4 84	4 86	4 87	4 86	43.74
	20,0		ה ה	O EO	O EO	0.60	4 56	4 52	4 50	4 58	46 98
Q 500 4	25,7	25,0	20,0	0,08	0,00	0,00	7,00	1,00	7,00	7,00	
Q 700 T 4	27,5	27,4	27,3	0,56	0,56	0,56	4,32	4,33	4,34	4,33	49,83
Q 900 T 4	29.6	29.5	29,4	0,53	0,53	0,53	4,05	4,06	4,07	4,06	52,93
Q 500 T 6	31.7	31.6	31.5	0.50	0.50	0,50	3,80	3,81	3,82	3,81	55,81
O 700 T 6	33.5	33.4	33.3	0.47	0.48	0.48	3,60	3,61	3,62	3,61	58,14
Q 900 T 6	35.3	35.2	35.1	0,45	0,45	0,45	3,41	3,42	3,43	3,42	60,34

Keterangan:
Q = Debit Udara (l/jam)
T = Waktu (jam)

Penurunan Warna Dengan Treatment

	%Т				Absorbansi		Kons	onsentrasi (Pt-Co)	t-Co)	Rata-rata	%
Kode Sampel	_		=	-	=	=	-	=	111	Tuber Tuber	Penurunan
Blangko	100	100		0,00	0,00	0,00	0,00	0,00	0,00	0,00	
Awai	8.56	8.2	<u>,</u>	1,07	1,08	1,09	8,54	8,61	8,74	8,63	8,63
Q 500 T								,	· · · · · · · · · · · · · · · · · · ·	}	54.60
3.5	30,8	30,7	30,6	0,51	0,51	0,51	3,91	3,92	3,93	3,92	0.10
Q 700 T							,	}	}	}	57.38
3. 5	32,9	32,8	32,7	0,48	0,48	0,49	3,67	3,68	3,69	3,68	
Q 900 T) 	}	}	}	59.25
<u>မ</u> မ	34,4	34,3	34,2	0,46	0,46	0,47	3,51	3,52	3,53	3,52	
Q 500 T 4	36,5	36,4	36,3	0,44	0,44	0,44	3,29	3,30	3,31	3,30	61,75
Q 700 T 4	38,6	38,5	38,4	0,41	0,41	0,42	3,09	3,10	3,11	3,10	64,10
Q 900 T 4	40.7	40,6	40,4	0.39	0,39	0,39	2,90	2,91	2,92	2,91	66,30
O 500 T 6	42.8	42.7	42.6	0.37	0,37	0,37	2,71	2,72	2,73	2,72	68,45
Q 700 T 6	44.9	44.8	44,7	0,35	0,35	0,35	2,54	2,55	2,56	2,55	70,46
Q 900 T 6	46.3	46,2	46,1	0,33	0,34	0,34	2,43	2,44	2,45	2,44	71,76

Keterangan:

Q = Debit Udara (1/jam) T = Waktu (jam)

One-way ANOVA: % Removel COD; Konsentrasi PAC

Source	DF	SS	MS	F	. P
Factor	1	57626393	57626393	307,24	0,000
Error	14	2625829	187559		
Total	15	60252223			

$$S = 433,1$$
 R-Sq = 95,64% R-Sq(adj) = 95,33%

				Pooled	StDev		Mean Based on
Level	N		StDev		+	+	
		79,4		(*-)			
Konsentrasi PAC	8	3875,0	612,4			_	(-*)
				+	+	+	
				0	1200	2400	3600

Pooled StDev = 433,1

Correlations: % Removel COD; Konsentrasi PAC

Pearson correlation of % Removel COD and Konsentrasi PAC = -0.949 P-Value = 0.000

Regression Analysis: % Removel COD versus Konsentrasi PAC

The regression equation is % Removel COD = 145 - 0,0169 Konsentrasi PAC

Predictor	Coef	SE Coef	T	P
Constant	144,748	8,980	16,12	0,000
Konsentrasi PAC	-0,016865	0,002293	-7,36	0,000

$$S = 3,71430$$
 R-Sq = 90,0% R-Sq(adj) = 88,4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	746,60	746,60	54,12	0,000
Residual Error	6	82,78	13,80		
Total	7	829.38			

One-way ANOVA: % Removel; Konsentrasi PAC

Source	DF	SS	MS	F	P
Factor	1	57728996	57728996	307,89	0,000
Error	14	2625024	187502		
Total	15	60354020			

Total 15 60354020

S = 433,0 R-Sq = 95,65% R-Sq(adj) = 95,34%

			Pooled	StDev		n Based on
Level % Removel Konsentrasi PAC	Mean 76,0 3875,0	1,9	•	+		(-*)
			0	1200	2400	3600

Pooled StDev = 433,0

Correlations: % Removel; Konsentrasi PAC

Pearson correlation of % Removel and Konsentrasi PAC = -0.466 P-Value = 0.244

Regression Analysis: % Removel versus Konsentrasi PAC

The regression equation is % Removel = 81,5 - 0,00142 Konsentrasi PAC

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 81,515
 4,301
 18,95
 0,000

 Konsentrasi
 PAC
 -0,001418
 0,001098
 -1,29
 0,244

S = 1,77902 R-Sq = 21,8% R-Sq(adj) = 8,7%

Analysis of Variance

Source DF SS MS F P
Regression 1 5,279 5,279 1,67 0,244
Residual Error 6 18,990 3,165
Total 7 24,268

Results for: MINITAB PENURUNAN COD TANPA TREATMENT.MTW

One-way ANOVA: % Removel versus Debit Udara

Source DF SS MS F P
Debit Udara 2 56,2 28,1 0,57 0,595
Error 6 297,3 49,5
Total 8 353,5

S = 7,039 R-Sq = 15,90% R-Sq(adj) = 0,00%

Pooled StDev = 7,039

One-way ANOVA: % Removel versus Waktu

Source DF SS MS F P
Waktu 2 289,3 144,6 13,51 0,006
Error 6 64,3 10,7
Total 8 353,5

S = 3,273 R-Sq = 81,82% R-Sq(adj) = 75,76%

Pooled StDev = 3,273

Correlations: % Removel; Debit Udara; Waktu

% Removel Debit Udara
0,398
0,289

Waktu
0,878
0,000
1,000

Cell Contents: Pearson correlation P-Value

Regression Analysis: % Removel versus Debit Udara; Waktu

The regression equation is % Removel = 14,0 + 0,0153 Debit Udara + 5,09 Waktu

 Predictor
 Coef
 SE Coef
 T
 P

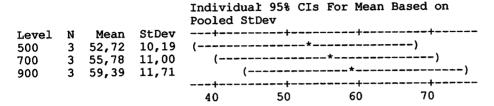
 Constant
 14,050
 4,126
 3,41
 0,014

 Debit Udara
 0,015275
 0,004168
 3,66
 0,011

 Waktu
 5,0943
 0,6302
 8,08
 0,000

S = 2,04214 R-Sq = 92,9% R-Sq(adj) = 90,6%

Analysis of Variance

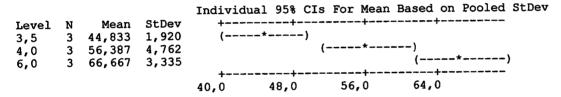

Source DF SS MS F P
Regression 2 328,49 164,25 39,38 0,000
Residual Error 6 25,02 4,17
Total 8 353,51

Source DF Seq SS Debit Udara 1 56,00 Waktu 1 272,49

One-way ANOVA: % Removel versus Debit Udara (l/jam)

Source Debit Udara (1/j Error Total		SS 67 724 791		o,28	0,767
--	--	------------------------	--	------	-------

$$S = 10,98$$
 R-Sq = 8,45% R-Sq(adj) = 0,00%



Pooled StDev = 10,98

One-way ANOVA: % Removel versus Waktu (jam)

Source	DF	SS	MS	F	P
Waktu (jam)	2	715,9	357,9	28,65	0,001
Error Total	6	75,0 790,8	12,5		

$$S = 3,535$$
 R-Sq = 90,52% R-Sq(adj) = 87,36%

Pooled StDev = 3,535

Correlations: % Removel; Debit Udara (l/jam); Waktu (jam)

Debit Udara	% Removel 0,290 0,449	Debit Udara
Waktu (jam)	0,888 0.001	0,000 1,000

Cell Contents: Pearson correlation P-Value

Regression Analysis: % Removel versus Debit Udara (l/jam); Waktu (jam)

```
The regression equation is % Removel = 9,62 + 0,0167 Debit Udara (1/jam) + 7,71 Waktu (jam)
```

$$S = 4,09330$$
 R-Sq = 87,3% R-Sq(adj) = 83,1%

Analysis of Variance

Source DF SS MS F P
Regression 2 690,29 345,15 20,60 0,002
Residual Error 6 100,53 16,76
Total 8 790,82

DF Seq SS 1 66,67 1 623,62 Source Debit Udara (1/jam) Waktu (jam)

One-way ANOVA: % Removel versus Debit Udara (I/jam)

Source DF SS MS F P
Debit Udara (1/j 2 73 36 0,36 0,710
Error 6 602 100
Total 8 675

S = 10,02 R-Sq = 10,78% R-Sq(adj) = 0,00%

Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev (-----) 500 3 45,38 11,32 (-----) 3 48,61 10,19 700 900 3 52,34 8,32 _____ 40 50 70 60

Pooled StDev = 10,02

One-way ANOVA: % Removel versus Waktu

Source DF SS MS F P
Waktu 2 592,9 296,5 21,60 0,002
Error 6 82,4 13,7
Total 8 675,3

S = 3,705 R-Sq = 87,80% R-Sq(adj) = 83,74%

Individual 95% CIs For Mean Based on Pooled StDev -----+ Mean StDev Level N 3 38,313 5,215 3,5 (----) 3 49,913 2,976 4,0 (----) 3 58,097 2,265 6,0 _____+ 56,0 40,0 48,0

Pooled StDev = 3,705

Correlations: % Removel; Debit Udara (I/jam); Waktu

% Removel Debit Udara
0,552
0,123

Waktu
0,851
0,004
0,512

Cell Contents: Pearson correlation P-Value

Regression Analysis: % Removel versus Debit Udara (I/jam); Waktu

The regression equation is $\Re = 13,7 + 0,0122$ Debit Udara (1/jam) + 6,09 Waktu

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 13,697
 6,292
 2,18
 0,072

 Debit Udara (1/jam)
 0,012170
 0,005601
 2,17
 0,073

 Waktu
 6,091
 1,331
 4,58
 0,004

S = 4,17291 R-Sq = 84,5% R-Sq(adj) = 79,4%

Analysis of Variance

Source DF SS MS F P
Regression 2 570,79 285,40 16,39 0,004
Residual Error 6 104,48 17,41
Total 8 675,27

Source DF Seq SS Debit Udara (1/jam) 1 206,05 Waktu 1 364,74

One-way ANOVA: % Removel versus Debit Udara (l/jam)

Source Debit Udara Error	(1/j		SS 26,3 260,2		o,30	P 0,749
Total		_	286,4	10,1		

$$S = 6,585$$
 $R-Sq = 9,17%$ $R-Sq(adj) = 0,00%$

				Individ	ual 95% CI: StDev	s For Mean	Based on
Level	N	Mean	StDev	•			
500	3	61,600	6,926	,	*		•
700	3	63,980	6,541	(*)
900	3	65,770	6,272		()
				+			
				54,0	60,0	66,0	72,0

Pooled StDev = 6,585

One-way ANOVA: % Removel versus Waktu (jam)

Source Waktu (jam) Error Total	6	SS 259,57 26,87 286,44	MS 129,79 4,48	F 28,98	0,001

$$S = 2,116$$
 $R-Sq = 90,62%$ $R-Sq(adj) = 87,49%$

				Individu Pooled	StDev				
Level	N	Mean	StDev	•	-		-+		
3,5		57 , 077		(
4,0		64,050				(*		,	
6,0	3	70,223	1,668					`	*)
				+	+-		-+		+
				55,0	60,0	65	, 0	70,0	D

Pooled StDev = 2,116

Correlations: % Removel; Debit Udara (Vjam); Waktu (jam)

Debit	Udara	% Removel 0,302 0,430	Debit	Udara
Waktu	(jam)	0,888 0,001		0,000

Cell Contents: Pearson correlation P-Value

Regression Analysis: % Removel versus Debit Udara (l/jam); Waktu (jam)

```
The regression equation is % Removel = 35,6 + 0,0104 Debit Udara (1/jam) + 4,64 Waktu (jam)
```

Predictor	Coef	SE Coef	T	_
Constant	35,614	4,843	7,35	0,000
Debit Udara (1/jam)	0,010425	0,004893	2,13	0,077
Waktu (jam)	4,6381	0,7398	6,27	0,001

S = 2,39722 R-Sq = 88,0% R-Sq(adj) = 84,0%

Analysis of Variance

Source DF SS MS F P
Regression 2 251,96 125,98 21,92 0,002
Residual Error 6 34,48 5,75
Total 8 286,44

Source DF Seq SS Debit Udara (1/jam) 1 26,08 Waktu (jam) 1 225,88

LAMPIRAN 4

DOKUMENTASI PENELITIAN

CLOSED REFLUX TITRIMETRIC

SPEKTROFOTOMETRI

AERASI DENGAN PRETREATMENT PAC

LAMPIRAN 5

TABEL T DAN TABEL F

TABEL T

df	a = 0.05	α = 0,025	df	a = 0.05	$\alpha = 0.025$
1	6.314	12.706	101	1.660	1.984
2	2.920	4.303	102	1.660	1.983
3	2.353	3.182	103	1.660	1.983
4	2.132	2.776	104	1.660	1.983
5	2.015	2.571	105	1.659	1.983
6	1.943	2.447	106	1.659	1.983
7	1.895	2.365	107	1.659	1.982
8	1.860	2.306	108	1.659	1.982
9	1.833	2.262	109	1.659	1.982
10	1.812	2.228	110	1.659	1.982
11	1.796	2.201	111	1.659	1.982
12	1.782	2.179	112	1.659	1.981
13	1.771	2.160	113	1.658	1.981
14	1.761	2.145	114	1.658	1.981
15	1.753	2.131	115	1.658	1.981
16	1.746	2.120	116	1.658	1.981
17	1.740	2.110	117.	1.658	1.980
18	1.734	2.101	118	1.658	1.980
19	1.729	2.093	119	1.658	1.980
20	1.725	2.086	120	1.658	1.980
21	1.721	2.080	121	1.658	1.980
22	1.717	2.074	122	1.657	1.980
23	1.714	2.069	123	1.657	1.979
24	1.711	2.064	124	1.657	1.979
25	1.708	2.060	125	1.657	1.979
26	1.706	2.056	126	1.657	1.979
27	1.703	2.052	127	1.657	1.979
28	1.701	2.048	128	1.657	1.979
29	1.699	2.045	129	1.657	1.979
30	1.697	2.042	130	1.657	1.978
31	1.696	2.040	131	1.657	1.978
32	1.694	2.037	132	1.656	1.978
33	1.692	2.035	133	1.656	1.978
34	1.691	2.032	134	1.656	1.978
35	1.690	2.030	135	1.656	1.978
36	1.688	2.028	136	1.656	1.978
37	1.687	2.026	137	1.656	1.977
38	1.686	2.024	138	1.656	1.977
39	1.685	2.023	139	1.656	1.977
40	1.684	2.021	140	1.656	1.977
41	1.683	2.020	141	1.656	1.977
42	1.682	2.018	142	1.656	1.977
43	1.681	2.017	143	1.656	1.977
44	1.680	2.015	144	1.656	1.977
45	1.679	2.014	145	1.655	1.976
46	1.679	2.013	146	1.655	1.976
47	1.678	2.012	147	1.655	1.976
48	1.677	2.011	148	1.655	1.976
49	1.677	2.010	149	1.655	1.976
50	1.676	2.009	150	1.655	1.976

64	1.675	2.009	151	1.655	1.976
51	1.675	2.008	151 152	1.655	1.976
52	1.675	2.007	153	1.655	1.976
53	1.674	2.005	154	1.655	1.975
54	1.674	2.003	155	1.655	1.975
55		2.003	156	1.655	1.975
56	1.673	2.002	157	1.655	1.975
57	1.672 1.672	2.002	158	1.655	1.975
58	1.671	2.002	159	1.654	1.975
59	1.671	2.000	160	1.654	1.975
60	1.670	2.000	161	1.654	1.975
61	1.670	1.999	162	1.654	1.975
62	1.669	1.998	163	1.654	1.975
63	1.669	1.998	164	1.654	1.975
	1.669	1.997	165	1.654	1.974
65	1.668	1.997	166	1.654	1.974
67	1.668	1.996	167	1.654	1.974
68	1.668	1.995	168	1.654	1.974
69	1.667	1.995	169	1.654	1.974
70	1.667	1.994	170	1.654	1.974
71	1.667	1.994	171	1.654	1.974
72	1.666	1.993	172	1.654	1.974
73	1.666	1.993	173	1.654	1.974
74	1.666	1.993	174	1.654	1.974
75	1,665	1.992	175	1.654	1.974
76	1.665	1.992	176	1.654	1.974
77	1.665	1.991	177	1.654	1.973
78	1.665	1.991	178	1.653	1.973
79	1.664	1.990	179	1.653	1.973
80	1.664	1.990	180	1.653	1.973
81	1.664	1.990	181	1.653	1.973
82	1.664	1.989	182	1.653	1.973
83	1.663	1.989	183	1.653	1.973
84	1.663	1.989	184	1.653	1.973
85	1.663	1.988	185	1.653	1.973
86	1.663	1.988	186	1.653	1.973
87	1.663	1.988	187	1.653	1.973
88	1.662	1.987	188	1.653	1.973
89	1.662	1.987	189	1.653	1.973
90	1.662	1.987	190	1.653	1.973
91	1.662	1.986	191	1.653	1.972
92	1.662	1.986	192	1.653	1.972
93	1.661	1.986	193	1.653	1.972
94	1.661	1.986	194	1.653	1.972
95	1.661	1.985	195	1.653	1.972
96	1.661	1.985	196	1.653	1.972 1.972
97	1.661	1.985	197	1.653 1.653	1.972
98	1.661	1.984	198	1.653	1.972
99	1.660	1.984	199	1.653	1.972
100	1.660	1.984	200	kan Program SP	

(Sumber: Hasil Perhitungan Menggunakan Program SPSS)

TABEL F (α 5%)

50	49	48	47	46	45	44	43	42	41	40	39	300	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	10	30	17	16	5	14	13	12	=	10	9	90	7	6	cn	4	w	2	-	df
4.03	4.04	4.04	4.05	4.05	4.06	4.06	4.07	4.07	4.08	4.08	4.09	4.10	4.11	4.11	4.12	4.13	4.14	4.15	4.16	4.17	4.18	4.20	4.21	4.23	4.24	4.26	4.28	4.30	4.32	4.35	4.38	4.41	4.45	4.49	4.54	4.60	4.67	4.75	4.84	4.96	5.12	5.32	5.59	5.99	6.61	7.71	10.13	18.51	161.45	Df 1
3.18	3.19	3.19	3.20	3.20	3.20	3.21	3.21	3.22	3.23	3.23	3.24	3.24	3.25	3.26	3.27	3.28	3.28	3.29	3.30	3.32	3.33	3.34	3.35	3.37	3.39	3.40	3.42	3.44	3.47	3.49	3.52	3.55	3.59	3.63	3.68	3.74	3.81	3.89	3.98	4.10	4.26	4.46	4.74	5.14	5.79	6.94	9.55	19.00	199.50	Df 2
2.79	2.79	2.80	2.80	2.81	2.81	2.82	2.82	2.83	2.83	2.84	2.85	2.85	2.86	2.87	2.87	2.88	2.89	2.90	2.91	2.92	2.93	2.95	2.96	2.98	2.99	3.01	3.03	3.05	3.07	3.10	3.13	3.16	3.20	3.24	3.29	3.34	3.41	3.49	3.59	3.71	3.86	4.07	4.35	4.76	5.41	6.59	9.28	19.16	215.71	Df 3
2.56	2.56	2.57	2.57	2.57	2.58	2.58	2.59	2.59	2.60	2.61	2.61	2.62	2.63	2.63	2.64	2.65	2.66	2.67	2.68	2.69	2.70	2.71	2.73	2.74	2.76	2.78	2.80	2.82	2.84	2.87	2.90	2.93	2.96	3.01	3.06	3.11	3.18	3.26	3.36	3.48	3.63	3.84	4.12	4.53	5.19	6.39	9.12	19.25	224.58	Df 4
2.40	2.40	2.41	2.41	2.42	2.42	2.43	2.43	2.44	2.44	2.45	2.46	2.46	2.47	2.48	2.49	2.49	2.50	2.51	2.52	2.53	2.55	2.56	2.57	2.59	2.60	2.62	2.64	2.66	2.68	2.71	2.74	2.77	2.81	2.85	2.90	2.96	3.03	3.11	3.20	3.33	3.48	3.69	3.97	4.39	5.05	6.26	9.01	19.30	230.16	Dr 5

			0.50	2.55	2.40
51	4.03	3.18	2.79	2.55	2.40
52	4.03	3.18	2.78	2.55	2.39
53	4.02	3.17	2.78	2.55	
54	4.02	3.17	2.78	2.54	2.39
55	4.02	3.16	2.77	2.54	2.38
56	4.01	3.16	2.77	2.54	
57	4.01	3.16	2.77	2.53	2.38
58	4.01	3.16	2.76	2.53	2.37
59	4.00	3.15	2.76	2.53	2.37
60	4.00	3.15	2.76	2,53	2.37
61	4.00	3.15	2.76	2.52	2.37
62	4.00	3.15	2.75	2.52	2.36
63	3.99	3.14	2.75	2.52	2.36
64	3.99	3.14	2.75	2.52	2.36
65	3.99	3.14	2.75	2.51	2.36
66	3.99	3.14	2.74	2.51	2.35
67	3.98	3.13	2.74	2.51	2.35
68	3.98	3.13	2.74	2.51	2.35
69	3.98	3.13	2.74	2.50	2.35
70	3.98	3.13	2.74	2.50	2.35
71	3.98	3.13	2.73	2.50	2.34
72	3.97	3.12	2.73	2.50	2.34
73	3.97	3.12	2.73	2.50	2.34
74	3.97	3.12	2.73	2.50	2.34
75	3.97	3.12	2.73	2.49	2.34
76	3.97	3.12	2.72	2.49	2.33
77	3.97	3.12	2.72	2.49	2.33
78	3.96	3.11	2.72	2.49	2.33
79	3.96	3.11	2.72	2.49	2.33
80	3.96	3.11	2.72	2.49	2.33
81	3.96	3.11	2.72	2.48	2.33
82	3.96	3.11	2.72	2.48	2.33
83	3.96	3.11	2.71	2.48	2.32
84	3.95	3.11	2.71	2.48	2.32
85	3.95	3.10	2.71	2.48	2.32
86	3.95	3.10	2.71	2.48	2.32
87	3.95	3.10	2.71	2.48	2.32
88	3.95	3.10	2.71	2.48	2.32
89	3.95	3.10	2.71	2.47	2.32
90	3.95	3.10	2.71	2.47	2.32
	3.95	3.10	2.70	2.47	2.31
91	3.94	3.10	2.70	2.47	2.31
92	3.94	3.09	2.70	2.47	2.31
93	3.94	3.09	2.70	2.47	2.31
94	3.94	3.09	2.70	2.47	2.31
95	3.94	3.09	2.70	2.47	2.31
96	3.94	3.09	2.70	2.47	2.31
97	3.94	3.09	2.70	2.46	2.31
98		3.09	2.70	2.46	2.31
99	3.94	3.09	2.70	2.46	2.31
100	3.94	3.09	2.69	2.46	2.30
101 102	3.94	3.09	2.69	2.46	2.30

156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	=	110	109	108	107	3	105	2
3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.92	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93
3.05	3.05	3.05	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.00	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.07	3.08	3.08	3.08	3.08	3.08	3.08	3.08	3.08	3.08	3.08	3.08	3.08
2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.67	2.6/	2.67	2.0)	7.07	2.07	2.67	2.67	2.07	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
2.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	2.43	2 / 2	2 43	2 43	2 43	2.43	244	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.44	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.46	2.46	2.46	2.46	2.46
2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.27	2.20	97.2	2.78	2 28	2 28	2 7 28	2 28	2 28	2.20	30.00	2.20	97.7	2.26	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30	2.30

1	24.2	2.05	3.04	3.89	199
22	747	286	304	2.00	170
2.2	2.42	2.65	3.04	3 80	100
2.2	2.42	2.65	3.04	3.89	197
2.2	2.42	2.65	3.04	3.89	196
2.2	2.42	2.65	3.04	3.89	195
2.2	2.42	2.65	3.04	3.89	194
2.2	2.42	2.65	3.04	3.89	193
2.2	2.42	2.65	3.04	3.89	192
2.2	2.42	2.65	3.04	3.89	191
2.2	2.42	2.65	3.04	3.89	190
2.2	2.42	2.65	3.04	3.89	189
2.2	2.42	2.65	3.04	3.89	188
2.2	2.42	2.65	3.04	3.89	187
2.2	2.42	2.65	3.04	3.89	186
2.2	2.42	2.65	3.04	3.89	185
2.2	2.42	2.65	3.05	3.89	184
2.2	2.42	2.65	3.05	3.89	183
2.20	2.42	2.65	3.05	3.89	182
2.20	2.42	2.65	3.05	3.89	181
2.26	2.42	2.65	3.05	3.89	180
2.20	2.42	2.66	3.05	3.89	179
2.20	2.42	2.66	3.05	3.89	178
2.2	2.42	2.66	3.05	3.89	177
2.2	2.42	2.66	3.05	3.89	176
2.2	2.42	2.66	3.05	3.90	175
2.2	2.42	2.66	3.05	3.90	174
2.2	2.42	2.66	3.05	3.90	173
2.2	2.42	2.66	3.05	3.90	172
2.27	2.42	2.66	3.05	3.90	171
2.27	2.42	2.66	3.05	3.90	170
2.27	2.43	2.66	3.05	3.90	169
2.27	2.43	2.66	3.05	3.90	168
2.27	2.43	2.66	3.05	3.90	167
2.27	2.43	2.66	3.05	3.90	<u>s</u>
2.27	2.43	2.66	3.05	3.90	165
2.27	2.43	2.66	3.05	3.90	2
2.27	2.43	2.66	3.05	3.90	163
2.27	2.43	2.66	3.05	3.90	162
2.27	2.43	2.66	3.05	3.90	161
2.27	2.43	2.66	3.05	3.90	160
2.27	2.43	2.66	3.05	3.90	159
2.27	2.43	2.66	3.05	3.90	158

(Sumber: Hasil Perhitungan Menggunakan Program SPSS)