
Modified Welch Berlekamp Algorithm to
Decode Reed Solomon Codes

Ali Mahmudi,*, Sentot Achmadi, and Michael
Departement of Software Engineering, National Institute of Technology (ITN Malang).
Jalan Sigura-gura 2, Malang 65145, Indonesia.

Abstract. In this paper, the Reed Solomon Code is decoded using the
Welch-Berlekamp Algorithm. The RS Decoder is implemented using
Hardware Description Language VHDL (VHSIC hardware Description
Language) and simulated on Modelsim software. Some modifications have
been carried out on the Welch Berlekamp algorithm in such a way that it is
easier to implement. A pilot design double error correction RS(63, 59)
decoder has been written in VHDL and simulated. The XILINX FPGA
layout RS(63, 59) is then obtained.

Key words: FPGA, hard decision decoding, Reed Solomon Code, Welch
Berlekamp algorithm

1 Introduction
The introduction of error control codes in data transmission and data communication is due to
the addition of unwanted noise over the noisy channel. These error control codes are used to
minimize the error. These codes are capable of detecting and correcting errors to achieve
minimum error level.

Decoding Reed Solomon codes can be classified into two categories: soft decision
decoding and hard decision decoding. The soft decision decoding is quite complex and
very hardware intensive to implement. Generalized Minimum Distance Decoding is
one example of the soft decision decoding. The hard decision decoder is very popular
because it is very simple to implement [1, 2]. The Berlekamp-Massey Algorithm and the
Euclidean Algorithm are the two well-known algorithms to solve the key equation in hard
decision decoding [3–5]. However, the use of the Welch Berlekamp Algorithm to solve
the key equation is not much presented [1, 6].

RS code is a cyclic linear block code that has been used in many modern applications.
Advanced television [7], DVD applications [8], data hiding [9, 10] and data transmission
with nano satellite [11] are some few applications in our modern life.

This paper presents the hard decision decoding for RS codes RS(63, 59), especially on
the VHDL implementation of the Welch Berlekamp algorithm to solve the key equation for
RS(63, 59) decoder.

This paper is primarily concerned with the VHDL implementation of the Welch

* Corresponding author: amahmudi@hotmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Berlekamp algorithm to decode Reed Solomon Codes over GF(26), especially RS(63, 59).
Some modifications have been carried out on the algorithm so that it is easier to implement.
This paper is organized as follows. In section 2, a brief explanation of RS codes is given.
Section 3 presents the RS encoder and section 4 deals with the RS decoder. Section 5 and
section 6 deal with the implementation and results, respectively. Finally, section 7 is the
conclusions.

2 RS code

The RS code is normally specified as RS(n, k) where n = 2m1 and k = n2t are the number
of symbols in every codeword and the number of information symbols in every codeword
[1, 2, 4], respectively. It works over GF(2m) with m bits per symbol.

RS(n, k) is able to correct up to t symbols. Then,
d = 2t + 1 is the designed distance
n-k is the number of redundancy or parity check symbols. The relation between t and n-

k can be written as
 2t = n-k
The RS code can be shown in Figure 1 below.

Fig. 1. The systematic RS code.

In the case of RS(63, 59), this code works over GF(26) with 6 bits per symbol. It has 63
symbols in every codeword, where it has 59 information symbols and the rest is four parity
check symbols. This code can correct up to two symbols.

3 RS encoder
The RS(n, k) code, is easily explained by using its special polynomial, called generator
polynomial, g(x). The general form of the RS(n, k) generator polynomial is shown in
Equation 1, Equation 2, and Equation 3







1

0

)()(
kn

i

ibxxg  (1)

where b is a non-negative integer selected by the designer. In this paper, it is assumed
that b = 0. In the case of RS(63, 59), the generator polynomial g(x) is

6212393184

3210

...)(

))()()(()(









xxxxxg

xxxxxg (2)

All valid RS(n, k) code words can be regarded as being polynomials of degree (n-1) over
GF(2m) which are divisible by its generator polynomial g(x).

1
110 ...)(
 k

k xixiixI (3)
Let be the information polynomial to be encoded. The systematic encoding works by

multiplying the information polynomial I(x) by xn-k. The result is then divided with g(x) to
obtain the remainder polynomial of degree n-k-1. The encoded signal is then formed by
subtracting r(x) from I(x)xn-k. It can be written as Equation 4

))(mod).(().()(xgxxIxxIxc knkn   (4)
It should be noted that the remainder polynomial is, in fact, the parity check polynomial.

This generalized encoding scheme is shown in Figure 2.

k symbols data n-k parity check symbols

2

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Berlekamp algorithm to decode Reed Solomon Codes over GF(26), especially RS(63, 59).
Some modifications have been carried out on the algorithm so that it is easier to implement.
This paper is organized as follows. In section 2, a brief explanation of RS codes is given.
Section 3 presents the RS encoder and section 4 deals with the RS decoder. Section 5 and
section 6 deal with the implementation and results, respectively. Finally, section 7 is the
conclusions.

2 RS code

The RS code is normally specified as RS(n, k) where n = 2m1 and k = n2t are the number
of symbols in every codeword and the number of information symbols in every codeword
[1, 2, 4], respectively. It works over GF(2m) with m bits per symbol.

RS(n, k) is able to correct up to t symbols. Then,
d = 2t + 1 is the designed distance
n-k is the number of redundancy or parity check symbols. The relation between t and n-

k can be written as
 2t = n-k
The RS code can be shown in Figure 1 below.

Fig. 1. The systematic RS code.

In the case of RS(63, 59), this code works over GF(26) with 6 bits per symbol. It has 63
symbols in every codeword, where it has 59 information symbols and the rest is four parity
check symbols. This code can correct up to two symbols.

3 RS encoder
The RS(n, k) code, is easily explained by using its special polynomial, called generator
polynomial, g(x). The general form of the RS(n, k) generator polynomial is shown in
Equation 1, Equation 2, and Equation 3







1

0

)()(
kn

i

ibxxg  (1)

where b is a non-negative integer selected by the designer. In this paper, it is assumed
that b = 0. In the case of RS(63, 59), the generator polynomial g(x) is

6212393184

3210

...)(

))()()(()(









xxxxxg

xxxxxg (2)

All valid RS(n, k) code words can be regarded as being polynomials of degree (n-1) over
GF(2m) which are divisible by its generator polynomial g(x).

1
110 ...)(
 k

k xixiixI (3)
Let be the information polynomial to be encoded. The systematic encoding works by

multiplying the information polynomial I(x) by xn-k. The result is then divided with g(x) to
obtain the remainder polynomial of degree n-k-1. The encoded signal is then formed by
subtracting r(x) from I(x)xn-k. It can be written as Equation 4

))(mod).(().()(xgxxIxxIxc knkn   (4)
It should be noted that the remainder polynomial is, in fact, the parity check polynomial.

This generalized encoding scheme is shown in Figure 2.

k symbols data n-k parity check symbols

Fig. 2. The structure of RS encoder.

4 RS decoder

The RS decoder has three main stages: Re-Encoder, the Welch-Berlekamp algorithm and
Chien Search and Error Evaluation

4.1 Re-Encoder

The Re-Encoding [2, 4, 12, 13] is similar to the encoding process. This Re-Encoding
process is similar to the syndrome computation process. In the case of RS(63, 59)
codes, this Re-Encoding process takes 59 received symbols. It internally generates four
check symbols. The re-encoder output will be the mod two addition of four internally
generated check symbols and four received check symbol. This is then called the
‘parity check’ symbol.

In the case of RS(63, 59), the parity check location is H= {0, 1, 2, 3} and the
parity check is R = {R0, R1, R2, R3 }.

4.2 Welch-Berlekamp algorithm

The check pair input to the Welch-Berlekamp algorithm will be (Rd, d): (R0, 0), (R1,
1), (R2, 2) and (R3, 3) consecutively. This algorithm is shown in Figure 3.

3

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig. 3. The Welch Berlekamp algorithm.

The Figure 3 above can be written as shown on Listing 1.

4

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig. 3. The Welch Berlekamp algorithm.

The Figure 3 above can be written as shown on Listing 1.

Fig. 4. Pseudocode Welch Berlekamp algorithm.

4.2 Modified Welch-Berlekamp algorithm

Then, if variable J = L(W d,V d) - L(Q d,N d) is defined. The modification process of
Figure 4 above Listing 1 above can be explained as follows:

Line 4

As the polynomial Q0(x)=1 and N0(x)=0 then L(Q0,N0) = 0. The polynomial W0(x) =
x and V0(x) = 1 then L(W0,V0) = 1. Hence

 L(W0,V0) - L(Q0,N0) = 1
 J = 1.

4. J = 1

5

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Line 12
As in line 10, it means that
 L(W d+1,V d+1) = L(W d,V d) + 1
As in line 11, it means that
 L(Q d+1,N d+1) = L(Q d,N d)
Hence J = J + 1

9. if D1=0 then % Branch A
10. Wd+1=Wd (x-d) & Vd+1=Vd (x-d)
11. Qd+1= Qd & Nd+1=Nd

12. J = J+1

Line 18
As in line 16, it means
 L(W d+1,V d+1) = L(W d,V d)
As in line 17, it means
 L(Qd+1,N d+1) = L(Qd,N d)+1
Hence J = J - 1

15. If L(Q,N)+1 ≤ L(W,V) then % Branch C
16. Wd+1=Wd+Qd .D2/D1 & Vd+1=Vd+Nd .D2/D1
17. Qd+1=Qd(x-d) & Nd+1=Nd(x-d)
18. J = J – 1

Line 22

As seen on line 15, the condition on Branch C is L(Q,N)+1 ≤ L(W,V),
it can be shown that the condition on Branch B is L(W,V) < L(Q,N)+1 which means

L(W,V) = L(Q,N).
Then L(Qd+1,Nd+1) = L(Qd,Nd) because of line 21 and also L(Wd+1,Vd+1) = L(Wd,Vd)

+1 because of line 20.
Hence J = 1.

19. Else % Branch B
20. Wd+1=Qd(x-d) & Vd+1=Nd(x-d)
21. Qd+1=Wd+Qd.D2/D1 & Nd+1=Vd+Nd .D2/D1
22. J = 1

Hence, the modified Welch Berlekamp algorithm can be shown as on Figure 5 and also on
Figure 6.

The Welch Berlekamp algorithm output will be Q(x) and N(x) polynomials, the error
locator polynomial and the error evaluation polynomial consecutively. These polynomials
are able to correct up to t errors at the received signal. It will correct up to two errors, in
the case of Q(x) and N(x) polynomials. Then, the Q(x) polynomial will be solved using a
Chien-Search to find the root of Q(x).

6

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Line 12
As in line 10, it means that
 L(W d+1,V d+1) = L(W d,V d) + 1
As in line 11, it means that
 L(Q d+1,N d+1) = L(Q d,N d)
Hence J = J + 1

9. if D1=0 then % Branch A
10. Wd+1=Wd (x-d) & Vd+1=Vd (x-d)
11. Qd+1= Qd & Nd+1=Nd

12. J = J+1

Line 18
As in line 16, it means
 L(W d+1,V d+1) = L(W d,V d)
As in line 17, it means
 L(Qd+1,N d+1) = L(Qd,N d)+1
Hence J = J - 1

15. If L(Q,N)+1 ≤ L(W,V) then % Branch C
16. Wd+1=Wd+Qd .D2/D1 & Vd+1=Vd+Nd .D2/D1
17. Qd+1=Qd(x-d) & Nd+1=Nd(x-d)
18. J = J – 1

Line 22

As seen on line 15, the condition on Branch C is L(Q,N)+1 ≤ L(W,V),
it can be shown that the condition on Branch B is L(W,V) < L(Q,N)+1 which means

L(W,V) = L(Q,N).
Then L(Qd+1,Nd+1) = L(Qd,Nd) because of line 21 and also L(Wd+1,Vd+1) = L(Wd,Vd)

+1 because of line 20.
Hence J = 1.

19. Else % Branch B
20. Wd+1=Qd(x-d) & Vd+1=Nd(x-d)
21. Qd+1=Wd+Qd.D2/D1 & Nd+1=Vd+Nd .D2/D1
22. J = 1

Hence, the modified Welch Berlekamp algorithm can be shown as on Figure 5 and also on
Figure 6.

The Welch Berlekamp algorithm output will be Q(x) and N(x) polynomials, the error
locator polynomial and the error evaluation polynomial consecutively. These polynomials
are able to correct up to t errors at the received signal. It will correct up to two errors, in
the case of Q(x) and N(x) polynomials. Then, the Q(x) polynomial will be solved using a
Chien-Search to find the root of Q(x).

Fig. 5. Pseudocode modified Welch Berlekamp algorithm

7

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig.6. Modified Welch Berlekamp algorithm.

4.3 Chien search and error evaluation

Chien search [1, 3] is then used to find the root of Q(x) polynomial. A Horner’s rule is
normally used to perform Chien Search (where Q(x) is a polynomial of degree d, d  t)

0
))

1
((

0
)(qxx

d
qx

d
q

d

i
ixiqxQ 





 

(5)

This process requires at most t multipliers and it takes at most tm clock cycles. In the
case of RS(63, 59), this Chien search process requires two multipliers (since, t = 2) and it
takes 12 clock cycles to complete the process. However, the Chien search can be modified
as follows

0
1

1)(qdxdqdxdqxQ 
  (6)

Define Ql(x) = qlxl for 0 < l  d. Then

0
...)(

1
)()(qx

d
QxdQxQ 


 (7)

and it can be shown that

0...1)1(1)1()(qdp
dQdp

dQpQ 
  (8)

8

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig.6. Modified Welch Berlekamp algorithm.

4.3 Chien search and error evaluation

Chien search [1, 3] is then used to find the root of Q(x) polynomial. A Horner’s rule is
normally used to perform Chien Search (where Q(x) is a polynomial of degree d, d  t)

0
))

1
((

0
)(qxx

d
qx

d
q

d

i
ixiqxQ 





 

(5)

This process requires at most t multipliers and it takes at most tm clock cycles. In the
case of RS(63, 59), this Chien search process requires two multipliers (since, t = 2) and it
takes 12 clock cycles to complete the process. However, the Chien search can be modified
as follows

0
1

1)(qdxdqdxdqxQ 
  (6)

Define Ql(x) = qlxl for 0 < l  d. Then

0
...)(

1
)()(qx

d
QxdQxQ 


 (7)

and it can be shown that

0...1)1(1)1()(qdp
dQdp

dQpQ 
  (8)

 This modified Chien search requires d multipliers; however, whatever degree of the
polynomial, it only takes m clock cycles. In the case of RS(63, 59), this modified Chien
search needs two multipliers, but it only takes six clock cycles, whatever degree of the
polynomial. Similar process is applied to the N(x) polynomial.

If Q(g) = 0 then g is the root of the error locator polynomial Q(x). Then the error
value Eg to the symbol sg is given by [1, 3].

1631249328410)(

2
 if:

)(')('

)('

2

 if:
)(')(

)(































xxxxxP

Hg
gQgP

gN
gn

Hg
gQgP

gN

gE
 (9)

Once the error value Eg is found using the Equation (9) at location g, the corrected

symbol in that particular position can be found by

gsgEgc  (10)

5 Implementation

A VHDL design of RS(63, 59) decoder has been designed and it is then synthesized onto a
Xilinx XCV600 device.

How the RS decoder works is explained in the following steps.
Step 1: First of all, the received word is first re-encoded to obtain the remainder (parity

check). This step needs nm clock cycles. It takes 63x6 clock cycles for RS(63, 59).
Step 2: The Welch-Berlekamp algorithm to solve the key equation. The output of the

Welch-Berlekamp algorithm is Q(x) and N(x) polynomials, the error locator
polynomial and the error evaluation polynomial consecutively.

Step 3: Find the roots of Q(x) polynomial using Chien search is the next step. If Q(x) = 0 at
a certain location, the N(x) polynomial is then evaluated to find the error value. It
is then added to the received symbol using modulo twoaddition to doing the
correction.

6 Results
The resulting RS(63, 59) decoder circuit can do up to two errors corrections. The
corresponding FPGA layout is shown below in Figure 5. This design requires 16 % (1 161
out of 6 912) of the total slices inside a Xilinx XCV600 package fg680 running at clock
speed up to 27.343 MHz.

9

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig. 5. FPGA layout RS(63, 59) Decoder.

7 Conclusions

The VHDL implementation of the Welch Berlekamp algorithm to decode RS code has been
presented. A VHDL design RS(63, 59) has been successfully synthesized on a XILINX
FPGA. The RS(63, 59) decoder has been simulated using Modelsim Altera software, and
also tested for a number of error patterns. The simulation results show that the decoder
works as an error only decoder and can correct up to two errors.

8 References

1. A. Mahmudi. The investigation into generic VHDL implementation of generalised
minimum distance decoding for Reed Solomon codes. [Thesis]. University of
Huddersfield, UK (2005). pp. 48–53.
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417302

2. A. Singh, M. Kaur. International Journal of Innovative Research in Computer and
Communication Engineering, 1,2:190–192 (2013). http://www.rroij.com/open-
access/study-of-reed-solomon-encoder-.php?aid=42686

3. S. Czynszak. Decoding algorithms of Reed Solomon code. [Thesis]. Blekinge Institute of
Technology, Sweden (2011). pp. 40-47. https://www.diva-
portal.org/smash/get/diva2:833161/FULLTEXT01.pdf.

4. P. Shrivastava, U.P. Singh. International Journal of Advanced Research in Computer
Science and Software Engineering, 3,8:965-969 (2013).
https://pdfs.semanticscholar.org/7e94/64b704a9f4b59f9d7df9b437e1b8366b8912.pdf.

5. A.J. Han Vinck. Coding concepts and Reed Solomon codes. [Online] from
www.martinvinck.com/page3/assets/bookHan.pdf (2013) [Accessed on 10 July 2017].

6. L.R. Welch, E.R. Berlekamp. Error correction for algebraic block codes. [Online]
from https://www.google.com/patents/US4633470 (1986) [Accessed on 10 July 2017].

7. I.E. Richardson, The H.264 Advanced Video Compression Standard. 2nd Edition. UK :

10

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

Fig. 5. FPGA layout RS(63, 59) Decoder.

7 Conclusions

The VHDL implementation of the Welch Berlekamp algorithm to decode RS code has been
presented. A VHDL design RS(63, 59) has been successfully synthesized on a XILINX
FPGA. The RS(63, 59) decoder has been simulated using Modelsim Altera software, and
also tested for a number of error patterns. The simulation results show that the decoder
works as an error only decoder and can correct up to two errors.

8 References

1. A. Mahmudi. The investigation into generic VHDL implementation of generalised
minimum distance decoding for Reed Solomon codes. [Thesis]. University of
Huddersfield, UK (2005). pp. 48–53.
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417302

2. A. Singh, M. Kaur. International Journal of Innovative Research in Computer and
Communication Engineering, 1,2:190–192 (2013). http://www.rroij.com/open-
access/study-of-reed-solomon-encoder-.php?aid=42686

3. S. Czynszak. Decoding algorithms of Reed Solomon code. [Thesis]. Blekinge Institute of
Technology, Sweden (2011). pp. 40-47. https://www.diva-
portal.org/smash/get/diva2:833161/FULLTEXT01.pdf.

4. P. Shrivastava, U.P. Singh. International Journal of Advanced Research in Computer
Science and Software Engineering, 3,8:965-969 (2013).
https://pdfs.semanticscholar.org/7e94/64b704a9f4b59f9d7df9b437e1b8366b8912.pdf.

5. A.J. Han Vinck. Coding concepts and Reed Solomon codes. [Online] from
www.martinvinck.com/page3/assets/bookHan.pdf (2013) [Accessed on 10 July 2017].

6. L.R. Welch, E.R. Berlekamp. Error correction for algebraic block codes. [Online]
from https://www.google.com/patents/US4633470 (1986) [Accessed on 10 July 2017].

7. I.E. Richardson, The H.264 Advanced Video Compression Standard. 2nd Edition. UK :

Wiley Publication (2010). pp. 279.
https://books.google.co.id/books?id=k7nOAiIUo9IC&printsec=frontcover&dq=The+
H.264+Advanced+Video+Compression+Standard&hl=en&sa=X&ved=0ahUKEwjix_
nbz5jYAhWKYo8KHajEB54Q6AEIKDAA#v=onepage&q=The%20H.264%20Advance
d%20Video%20Compression%20Standard&f=false

8. J.P. Nguyen. Applications of Reed Solomon codes on optical media storage. [Thesis].
San Diego State University, California (2011). pp. 13–20. http://sdsu-
dspace.calstate.edu/bitstream/handle/10211.10/1743/Nguyen_Johnny.pdf;sequence=1.

9. I. Diop, S.M. Farssi, O. Khouma, H.B. Diouf, K. Sylla. International Journal of
Distributed and Parallel Systems, 3 (2012).
https://pdfs.semanticscholar.org/b41c/9cbb3b3c13bee0d0f21c71a841271689f6da.pdf.

10. F.R. Ishengoma. International Journal of Computer Applications, 106:28–31 (2014).
https://arxiv.org/abs/1411.4790

11. A.N.U. Husain, Suwadi, G. Hendrantoro. Jurnal Teknik POMITS, 2: A33–A38 (2013).
http://ejurnal.its.ac.id/index.php/teknik/article/view/2319 [in Bahasa Indonesia]

12. J. Bhaumik, A.S. Das, J. Samanta. International Journal of Soft Computing and
Engineering, 2:395–399 (2013).
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=119E40402BD90D53B1B3E
F68C680DC28?doi=10.1.1.301.6529&rep=rep1&type=pdf.

13. P. Sunitha, G.V. Ujwala. International Research Journal of Engineering and
Technology, 2:476–480 (2015). https://www.irjet.net/archives/V2/i6/IRJET-
V2I676.pdf.

11

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017

