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Abstract. In this paper, the Reed Solomon Code is decoded using the 
Welch-Berlekamp Algorithm. The RS Decoder is implemented using 
Hardware Description Language VHDL (VHSIC hardware Description 
Language) and simulated on Modelsim software. Some modifications have 
been carried out on the Welch Berlekamp algorithm in such a way that it is 
easier to implement. A pilot design double error correction RS(63, 59) 
decoder has been written in VHDL and simulated. The XILINX FPGA 
layout RS(63, 59) is then obtained. 
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1 Introduction 
The introduction of error control codes in data transmission and data communication is due to 
the addition of unwanted noise over the noisy channel. These error control codes are used to 
minimize the error. These codes are capable of detecting and correcting errors to achieve 
minimum error level.  

Decoding Reed Solomon codes can be classified into two categories: soft decision 
decoding and hard decision decoding. The soft decision decoding is quite complex and 
very hardware intensive to implement. Generalized Minimum Distance Decoding is 
one example of the soft decision decoding. The hard decision decoder is very popular 
because it is very simple to implement [1, 2]. The Berlekamp-Massey Algorithm and the 
Euclidean Algorithm are the two well-known algorithms to solve the key equation in hard 
decision decoding [3–5]. However, the use of the Welch Berlekamp Algorithm to solve 
the key equation is not much presented [1, 6].  

RS code is a cyclic linear block code that has been used in many modern applications. 
Advanced television [7], DVD applications [8], data hiding [9, 10] and data transmission 
with nano satellite [11] are some few applications in our modern life.  

This paper presents the hard decision decoding for RS codes RS(63, 59), especially on 
the VHDL implementation of the Welch Berlekamp algorithm to solve the key equation for 
RS(63, 59) decoder.  

This paper is primarily concerned with the VHDL implementation of the Welch 
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Berlekamp algorithm to decode Reed Solomon Codes over GF(26), especially RS(63, 59). 
Some modifications have been carried out on the algorithm so that it is easier to implement. 
This paper is organized as follows. In section 2, a brief explanation of RS codes is given. 
Section 3 presents the RS encoder and section 4 deals with the RS decoder. Section 5 and  
section 6 deal with the implementation and results, respectively. Finally, section 7 is the 
conclusions. 

2 RS code 

The RS code is normally specified as RS(n, k) where n = 2m1 and k = n2t are the number 
of symbols in every codeword and the number of information symbols in every codeword 
[1, 2, 4], respectively. It works over GF(2m) with m bits per symbol.  

RS(n, k) is able to correct up to t symbols. Then,  
d = 2t + 1 is the designed distance 
n-k is the number of redundancy or parity check symbols. The relation between t and n-

k can be written as  
 2t = n-k 
The RS code can be shown in Figure 1 below.  

 
 
 

Fig. 1. The systematic RS code. 
 

In the case of RS(63, 59), this code works over GF(26) with 6 bits per symbol. It has 63 
symbols in every codeword, where it has 59 information symbols and the rest is four parity 
check symbols. This code can correct up to two symbols.  

3 RS encoder 
The RS(n, k) code, is easily explained by using its special polynomial, called generator 
polynomial, g(x). The general form of the RS(n, k) generator polynomial is shown in 
Equation 1, Equation 2, and Equation 3 
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where b is a non-negative integer selected by the designer. In this paper, it is assumed 
that b = 0. In the case of RS(63, 59), the generator polynomial g(x) is 
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All valid RS(n, k) code words can be regarded as being polynomials of degree (n-1) over 
GF(2m) which are divisible by its generator polynomial g(x).  

1
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Let be the information polynomial to be encoded. The systematic encoding works by 

multiplying the information polynomial I(x) by xn-k. The result is then divided with g(x) to 
obtain the remainder polynomial of degree n-k-1. The encoded signal is then formed by 
subtracting r(x) from I(x)xn-k. It can be written as Equation 4  

))(mod).(().()( xgxxIxxIxc knkn      (4) 
It should be noted that the remainder polynomial is, in fact, the parity check polynomial. 

This generalized encoding scheme is shown in Figure 2.  

k symbols data n-k parity check symbols 

2

MATEC Web of Conferences 164, 01003 (2018)	 https://doi.org/10.1051/matecconf/201816401003
ICESTI 2017



Berlekamp algorithm to decode Reed Solomon Codes over GF(26), especially RS(63, 59). 
Some modifications have been carried out on the algorithm so that it is easier to implement. 
This paper is organized as follows. In section 2, a brief explanation of RS codes is given. 
Section 3 presents the RS encoder and section 4 deals with the RS decoder. Section 5 and  
section 6 deal with the implementation and results, respectively. Finally, section 7 is the 
conclusions. 

2 RS code 

The RS code is normally specified as RS(n, k) where n = 2m1 and k = n2t are the number 
of symbols in every codeword and the number of information symbols in every codeword 
[1, 2, 4], respectively. It works over GF(2m) with m bits per symbol.  

RS(n, k) is able to correct up to t symbols. Then,  
d = 2t + 1 is the designed distance 
n-k is the number of redundancy or parity check symbols. The relation between t and n-

k can be written as  
 2t = n-k 
The RS code can be shown in Figure 1 below.  

 
 
 

Fig. 1. The systematic RS code. 
 

In the case of RS(63, 59), this code works over GF(26) with 6 bits per symbol. It has 63 
symbols in every codeword, where it has 59 information symbols and the rest is four parity 
check symbols. This code can correct up to two symbols.  

3 RS encoder 
The RS(n, k) code, is easily explained by using its special polynomial, called generator 
polynomial, g(x). The general form of the RS(n, k) generator polynomial is shown in 
Equation 1, Equation 2, and Equation 3 







1

0

)()(
kn

i

ibxxg        (1) 

where b is a non-negative integer selected by the designer. In this paper, it is assumed 
that b = 0. In the case of RS(63, 59), the generator polynomial g(x) is 

6212393184

3210

...)(

))()()(()(









xxxxxg

xxxxxg     (2) 

All valid RS(n, k) code words can be regarded as being polynomials of degree (n-1) over 
GF(2m) which are divisible by its generator polynomial g(x).  

1
110 ...)( 
 k

k xixiixI      (3) 
Let be the information polynomial to be encoded. The systematic encoding works by 

multiplying the information polynomial I(x) by xn-k. The result is then divided with g(x) to 
obtain the remainder polynomial of degree n-k-1. The encoded signal is then formed by 
subtracting r(x) from I(x)xn-k. It can be written as Equation 4  

))(mod).(().()( xgxxIxxIxc knkn      (4) 
It should be noted that the remainder polynomial is, in fact, the parity check polynomial. 

This generalized encoding scheme is shown in Figure 2.  

k symbols data n-k parity check symbols 

 

Fig. 2. The structure of RS encoder. 

4 RS decoder 
 
The RS decoder has three main stages: Re-Encoder, the Welch-Berlekamp algorithm and 
Chien Search and Error Evaluation  

4.1 Re-Encoder 

The Re-Encoding [2, 4, 12, 13] is similar to the encoding process. This Re-Encoding 
process is similar to the syndrome computation process. In the case of RS(63, 59) 
codes, this Re-Encoding process takes 59 received symbols. It internally generates four 
check symbols. The re-encoder output will be the mod two addition of four internally 
generated check symbols and four  received check symbol. This is then called the 
‘parity check’ symbol. 

In the case of RS(63, 59), the parity check location is H= {0, 1, 2, 3} and the 
parity check is R = {R0, R1, R2, R3 }. 

4.2 Welch-Berlekamp algorithm 

The check pair input to the Welch-Berlekamp algorithm will be (Rd, d): (R0, 0), (R1, 
1), (R2, 2) and (R3, 3) consecutively. This algorithm is shown in Figure 3.  
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Fig. 3. The Welch Berlekamp algorithm. 

 
The Figure 3 above can be written as shown on Listing 1. 
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Fig. 3. The Welch Berlekamp algorithm. 

 
The Figure 3 above can be written as shown on Listing 1. 

 

 
 
Fig. 4. Pseudocode Welch Berlekamp algorithm. 

4.2 Modified Welch-Berlekamp algorithm 

 
Then, if variable J = L(W d,V d) - L(Q d,N d) is defined. The modification process of 
Figure 4 above Listing 1 above can be explained as follows:   

 
Line 4 

As the polynomial Q0(x)=1 and N0(x)=0 then L(Q0,N0) = 0. The polynomial W0(x) = 
x and V0(x) = 1 then L(W0,V0) = 1. Hence  

 L(W0,V0) - L(Q0,N0) = 1 
 J = 1. 

4. J = 1
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Line 12 
As in line 10, it means that 
 L(W d+1,V d+1) = L(W d,V d) + 1 
As in line 11, it means that 
 L(Q d+1,N d+1) = L(Q d,N d) 
Hence J = J + 1 

9. if D1=0 then % Branch A
10. Wd+1=Wd (x-d) & Vd+1=Vd (x-d)
11. Qd+1= Qd & Nd+1=Nd

12. J = J+1
 

Line 18 
As in line 16, it means  
 L(W d+1,V d+1) = L(W d,V d) 
As in line 17, it means 
 L(Qd+1,N d+1) = L(Qd,N d)+1 
Hence J = J - 1 

15. If L(Q,N)+1 ≤ L(W,V) then % Branch C
16. Wd+1=Wd+Qd .D2/D1 & Vd+1=Vd+Nd .D2/D1
17. Qd+1=Qd(x-d) & Nd+1=Nd(x-d)
18. J = J – 1

 
Line 22 

As seen on line 15, the condition on Branch C is L(Q,N)+1 ≤ L(W,V),  
it can be shown that the condition on Branch B is L(W,V) < L(Q,N)+1 which means 

L(W,V) = L(Q,N). 
Then L(Qd+1,Nd+1) = L(Qd,Nd) because of line 21 and also L(Wd+1,Vd+1) = L(Wd,Vd) 

+1 because of line 20. 
Hence J = 1.  

19. Else % Branch B
20. Wd+1=Qd(x-d) & Vd+1=Nd(x-d)
21. Qd+1=Wd+Qd.D2/D1 & Nd+1=Vd+Nd .D2/D1
22. J = 1

 
 

Hence, the modified Welch Berlekamp algorithm can be shown as on Figure 5 and also on 
Figure 6. 

The Welch Berlekamp algorithm output will be Q(x) and N(x) polynomials, the error 
locator polynomial and the error evaluation polynomial consecutively. These polynomials 
are able to correct up to t errors at the received signal. It will correct up to two errors, in 
the case of Q(x) and N(x) polynomials. Then, the Q(x) polynomial will be solved using a 
Chien-Search to find the root of Q(x). 
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Fig. 5. Pseudocode modified Welch Berlekamp algorithm 
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Fig.6. Modified Welch Berlekamp algorithm. 

4.3 Chien search and error evaluation 

Chien search [1, 3] is then used to find the root of Q(x) polynomial. A Horner’s rule is 
normally used to perform Chien Search (where Q(x) is a polynomial of degree d, d  t) 

0
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This process requires at most t multipliers and it takes at most tm clock cycles. In the 
case of RS(63, 59), this Chien search process requires two multipliers (since, t = 2) and it 
takes 12 clock cycles to complete the process. However, the Chien search can be modified 
as follows  

0
1
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     This modified Chien search requires d multipliers; however, whatever degree of the 
polynomial, it only takes m clock cycles. In the case of RS(63, 59), this modified Chien 
search needs two multipliers, but it only takes six clock cycles, whatever degree of the 
polynomial. Similar process is applied to the N(x) polynomial. 

If Q(g) = 0 then g is the root of the error locator polynomial Q(x). Then the error 
value Eg to the symbol sg is given by [1, 3].  
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Once the error value Eg is found using the Equation (9) at location g, the corrected 

symbol in that particular position can be found by  

gsgEgc         (10) 

5 Implementation 

A VHDL design of RS(63, 59) decoder has been designed and it is then synthesized onto a 
Xilinx XCV600 device.  

How the RS decoder works is explained in the following steps.  
Step 1: First of all, the received word is first re-encoded to obtain the remainder (parity 

check). This step needs nm clock cycles. It takes 63x6 clock cycles for RS(63, 59).  
Step 2: The Welch-Berlekamp algorithm to solve the key equation. The output of the 

Welch-Berlekamp algorithm is Q(x) and N(x) polynomials, the error locator 
polynomial and the error evaluation polynomial consecutively.  

Step 3: Find the roots of Q(x) polynomial using Chien search is the next step. If Q(x) = 0 at 
a certain location, the N(x) polynomial is then evaluated to find the error value. It 
is then added to the received symbol using modulo twoaddition to doing the 
correction.  

6 Results 
The resulting RS(63, 59) decoder circuit can do up to two errors corrections. The 
corresponding FPGA layout is shown below in Figure 5. This design requires 16 % (1 161 
out of 6 912) of the total slices inside a Xilinx XCV600 package fg680 running at clock 
speed up to 27.343 MHz.  
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Fig. 5. FPGA layout RS(63, 59) Decoder. 

7 Conclusions 

The VHDL implementation of the Welch Berlekamp algorithm to decode RS code has been 
presented. A VHDL design RS(63, 59) has been successfully synthesized on a XILINX 
FPGA. The RS(63, 59) decoder has been simulated using Modelsim Altera software, and 
also tested for a number of error patterns. The simulation results show that the decoder 
works as an error only decoder and can correct up to two errors.  
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