BAB III METODE PENELITIAN

3.1 Lokasi Penelitian

Subjek penelitian ini berlokasi di Kecamatan Tajinan Kabupaten Malang adalah merupakan salah satu Kecamatan yang berada di sebelah Utara yang berjarak 21,1 km dari Ibu Kota Kabupaten Malang di Kepanjen, Koordinat Kecamatan Tajinan terletak pada 112*37'96"-112*42'34" BT (Bujur Timur) dan 8*02'51"-8*04'77 LS (Lintang Selatan) dengan Topografi Dataran Tinggi pada posisi ketinggian ± 400 m/dpl (di atas permukaan laut) beriklim tropis dengan curah hujan rata–rata 2.500 mm/ tahun, sedangakan temperatur udara berkisar antara 18 derajat C–24 derajat. adapun luas wilayah adalah 40,11 Km2/1,35% dari luas Kabupaten Malang

Gambar 3. 1Kecamatan Tajinan (*Sumber : Goggle Map*)

3.2 Alat dan Bahan Penelitian

Sebelum Sebelum di lakukannya penelitian ada beberapa alat dan bahan yang perlu di persiapkan agar memperlancar proses penelitian. Berikut alat dan bahan yang ini di gunakan, untuk mendapatkan hasil yang lebih optimal.

3.2.1 Alat

Perangkat keras yang akan digunakan :

- 1. Laptop
- 2. Kamera
- 3. Alat Tulis Kantor (ATK)
- 4. Reciver GNSS STONEX S800

Perangkat lunak atau sofware yang akan digunakan :

- 1. Trimble Bussinese Center
- 2. Microsoft word 2013
- 3. Microsoft excel 2013
- 4. Stats
- 5. AutoCAD

3.2.2 Bahan

Adapun data yang digunakan sebagai bahan penelitian kali ini yaitu :

- 1. Data Rinex pengamatan lapangan.
- 2. patok untuk tanda batas bidang pengukuran.
- 3. Data rinex CORS CMLG

3.3 Diagram Alir Pengerjaan

3.4 Penjelasan Diagram Alir

Dibawah ini merupakan penjelasan dari diagram alir pada penelitian, dijelaskan sebagai berikut:

1. Studi literatur

Tahap studi literatur dilakukan dengan mencari literasi atau refenrensi yang berkaitan dengan topik masalah yang diangkat dalam penelitian mengenai pengukuran GNSS dengan lebih fokus kepada aspek efek *blunder* pengukuran tinggi alat atau sejeninya.

2. Pengumpulan data

Pada tahap ini dilakukan teknik pengumpulan data yang meliputi, pengukuran statik pada bidang tanah serta ketentuan-ketentuan standarisasi pelaksanaan pengukuran bidanng

3. Pengolahan data

Pada tahap ini dilakukan prosesing data pengamatan menggunakan *Trimble Businese Center* untuk mendapatkan koordinat titik pada bidang tanah menggunakan metode statik menggunakan blunder dan tidak menggunakan blunder dengan empat mekanisme pengolahan, kemudian diploting pada *software* AutoCAD guna untuk mencari luasan bidang tanah.

4. Analisa perbandingan ketelitian

Pada tahap ini dilakukan analisis perbandingan ketelitian data koordinat dari pengolahan 4 mekanisme *blunder* pada pengukuran metode statik dalam standar deviasi. Kemudian membandingkan antara varians populasi dan varians dari sampel ditetapkan berdasarkan pada jumlah pengulangan dalam sampel dengan distribusi F dengan tetap mengacu pada petunjuk teknis pendaftaran tanah sistematis lengkap.

5. Repot hasil ketelitian

Pada tahap ini adalah pelaporan hasil uji statistik pada pengukuran metode RTK pada dua variasi blunder pengukuran. Hasil ketelitian dengan ketentuan luas bidang tanah toleransi luas adalah $\frac{1}{2}\sqrt{L}$ (L adalah luas bidang tanah) menurut standar teknis pengukuran dan pemetaan kadastral yang berlaku pada Badan Pertanahan Nasional (BPN), yaitu PP No. 24 Tahun 1997 tentang Pendaftaran Tanah, PMNA / KBPN No. 3 Tahun 1997 yaitu tentang Ketentuan Pelaksanaan PMNA / KBPN No.3 Tahun 1997 Materi Pengukuran dan Pemetaan Pendaftaran Tanah. Dan untuk standar pengumpulan data geospasial dasar menurut BIG (Badan Informasi Geospasial) Dan untuk standar pengumpulan data geospasial dasar menurut BIG (Badan Informasi Geospasial) pada Bab I yang mengatur tentang spesifikasi teknis data geospasial dasar pada aspek ketelitian posisi adalah standar deviasi harus lebih kecil dari 5 cm.

3.5 Pengambilan dan Pengolahan Data

Dalam penelitian ini data yang diperlukan berupa data pengamatan gnss, koordinat titik control dari CORS CMLG guna untuk menjadi acuan untuk memproses data pengamatan gnss secara manual menggunakan sofware

3.5.1 Global Navigation Satellite System

Data koordinat titik *control* dihasilkan oleh pengamatan GNSS mode statik. Pada umumnya pengamatan GNSS *Static* dilakukan dengan menggunakan 2 titik atau lebih yang kemudian diikatkan pada CORS BIG yang berada dikota Malang. Pengamatan dilakukan dengan durasi Empat puluh menit pada tiap titiknya

Gambar 3.2 Pengambilan data *static*

Pada tahapan ini pengolahan data dilakukan menggunakan *software Trimble Bussinese Center* yaitu salah satu *sofware* pengolahan data gnss yang compatible terhadap beberapa merek *reciver* GNSS. Langkah langkah yang digunakan dalam pengolahan data gnss menggunakan perangkat lunak *Trimble Bussinese Center*, dengan menggunakan contoh 1 bidang dengan 4 titik dan 1 titik CORS untuk proses data pengamatan menjadi *report baseline*.

3.5.2 Import dan Prosesing Data

Tahap ini merupakan tahapan paling awal dalam memulai pemrosesan dimana disini data gnss berupa data RINEX dibuka di *software* TBC

Gambar 3.3 Hasil Import point pengamatan

Pada tahapan ini sudah bisa diinput data RINEX yang merupakan format stadar yang digunakan secara umum utuk pertukaran informasi hasil pengamatan reciver GPS, rinex file terdiri dari *Observation data file*, *Navigation file*, *Meteorological data file* (opsional). *Observation data file* berisi nilai *Pseudorange* dan *Phaserange* dari satelit ke *receiver* GPS,

			_
el Import ⊽IMI L.e. D			×
Import Folder			
F:\SKRIPSI HARUS LULUS\SKRIPSI 20)22\data pengamatan\bidang 1'	∖_1.10252 ✓ .	
Select File(s)			
File Name	File Type	File Date	
1.10252.23C	Ephemeris	1/25/2023 6:20 AM	N
	Ephemeris	1/25/2023 6:43 AM	N
1.10252.23L	Ephemeris	1/25/2023 6:50 AM	N
₺ _1.10252.23N	Ephemeris	1/25/2023 6:45 AM	И
1.10252.230	RINEX	1/25/2023 6:57 AM	N
_1.10252.dat	Starnet dat	1/25/2023 6:57 AM	N
_1.10252.23N			
Ephemeris			
1/25/2023 6:45:54 AM 22 KL -1.102	52.23N		
_			
 Close command after import 			
Settings			×
			_
			_
		Import Close	

Gambar 3.4 Contoh data rinex dan ephemeris

Navigation file berisi informasi orbit satelit, Meteorological data file berisi informasi cuaca. Dan juga ephemeris yang merupakan data informasi prediksi posisi satelit yang dikirim kan secara real time dari satelit ke receiver GPS, data Broadcast ephemeris masih memiliki nilai kesalahan orbit dari actual orbit, data *Broadcast Epehemeris* dikenal juga dengan *Navigasi data file*. Data yang sudah di *import* kemudian diolah dengan beberapa mekanisme

- Properties		×
0 _ Ix 🖂		
Baseline	10)	
Baseline (1)		~
End Time:	Invalid leap seconds	
Duration:	00:32:00.0	
Status:	Enabled	
Point 1		
Point ID:	base	
Height	1.381	
Method:	Antenna Phase Center	
Manufacturer:	Unknown	
Туре:	General Internal	1
File 1:	base0281.23O	
Point 2		
Point ID:	_bd6	
Height	1.475	
Method:	Antenna Phase Center	
Manufacturer:	Unknown	
Type:	General Internal	
File 1:	_bd50282.23O	
- Satellites Observe	d	
	11ao.	1

Gambar 3.5 *Prosesing* mekanisme kedua tanpa informasi jenis alat. Pada mekanisme yang pertama yaitu mengolah dengan memasukan refrensi informasi tinggi antena dan juga tipe anten dengan benar sesuai dengan pengamatan dilapangan, hasil pengolahan data GNSS pada mekanisme pertama akan dijadikan acuan untuk menghitung kesalahan posisi yang diakibatkan oleh blunder pengolahan data. Merek *reciver* yang digunakan yaitu STONEX dengan tipe S800, mekanisme pertama dapat dijadikan acuan terhadap mekanisme dua, tiga dan empat dikaranakan menghilangkan efek blunder yang bisa disebabkan dalam pengolahannya. Kemudian pada mekanisme kedua dilakukan dengan tidak memasukan informasi terkait jenis dan tipe reciver, user hanya memasukan tinggi antena

Properties		×
9 _ IN 🖾		
Baseline	181	
Baseline (1)		~
End Time:	Invalid leap seconds	-
Duration:	00:32:00.0	
Status:	Enabled	
Point 1		
Point ID:	base	
Height	1.381	
Method:	Antenna Phase Center	
Manufacturer:	STONEX	
Type:	G5Ant_72AT1	-
File 1:	base0281.23O	
Point 2		
Point ID:	_bd6	
Height:	1.475	
Method:	Antenna Phase Center	
Manufacturer:	STONEX	
Туре:	G5Ant_72AT1 V	
File 1:	_bd50282.23O	
Satellites Observe	d	
	144	

Gambar 3.6 *Prosesing* mekanisme ketiga tanpa informasi jenis alat.

Mekanisme ketiga pengolahannya dilakukan dengan memasukan informasi data tipe antena yang semula STONEX S800 kemudian diganti dengan STONEX G5Ant_72AT1 yang memiliki nilai *Antene Phase Center* (APC) nya lebih tinggi. Mekanisme keempat pada pengolahannya dilakukan dengan memasukan informasi tipe antena yang benar sesuai dilapangan yaitu STONEX S800 kemudian memasukan tinggi antena yang beri kesalahan 5 cm lebih tinggi dari nilai sebenarnya.

* _ I D		
Baseline		
Baseline (1)	3411	4
File 6:	cmlg0290.23o	
File 7:	cmlg0300.23o	
File 8:	cmlg0310.23o	
File 9:	cmlg0320.23o	
File 10:	cmlg0330.23o	
File 11:	cmlg0340.23o	
File 12:	cmlg0350.230	
- Point 2		
Point ID:	_7.2	
Height	2.050	
Method:	Antenna Phase Center	
Manufacturer:	STONEX	
Type:	S800 GNSS Internal	
File 1:	_7.20341.230	
Satellites Observ	ed	
GPS:	8	
GLONASS:	6	
Galileo:	4	

Gambar 3.7 *Prosesing* mekanisme keempat dengan informasi tinggi alat berbeda

Satellites	Invalid leap seconds Invalid leap seconds			Invalid lea	ap secon ap secon	ds ds				Invalio Invalio	d leap s d leap s	second second
								11	11			11
G 20												
G 21				1 11	11	11		1		11		l .
G 23												
G 24												
G 25												
G 25 G 26												
G 25 G 26 G 27			1									
G 25 G 26 G 27		200	J.	8		1.1.1					-	1
G 25 G 26 G 27 Selected Tr	me Slot	11	1.	8		1. 1.1						1
G 25 G 26 G 27 Selected Ti Satellite:	me Slot Start time:		Lind time	8			View	sessio	n extent	ts		

Gambar 3.8 Proses session editor

Pada pengolahan selanjutnya dilakukan *session editor* pada setiap titik pengamatan yang ada untuk 4 mekanisme pengolahan data pengamatan yang berfungsi untuk memangkas perekaman singal yang diterima guna memperbaiki hasil proses data pengamatan.

3.5.3 AutoCAD

Pada tahapan ini AutoCAD bertugas untuk menghitung luasan area dari *point list* pengamatan bidang yang koordinatnya sebelumnya sudah diproses dari sorfware *Trimble Businese Center*, dengan cara mengimport data koordinat prosesing *baseline*.

ID	Easting (Meter)	Northing (Meter)	Elevation (Meter)
4.1	682947.968	9109879.295	421.626
9.1	682882.008	9109897.303	420.500
10.2	682917.342	9109922.870	421.467
10.3	682917.005	9109922.648	421.468
11.1	682869.079	9109905.106	420.326
11.2	682865.619	9109902.034	419.845
11.3	682859.896	9109914.973	420.438
11.4	682856.710	9109912.053	420.025
12.1	682861.288	9109899.273	420.983
12.2	682853.872	9109909.118	420.518
13.1	682859.428	9109896.001	420.017
13.2	682850.609	9109906.029	419.922
14	682856.294	9109893.314	419.371
14.2	682847.367	9109903.017	419.801
_1.1	682840.525	9110032.809	421.742
_1.2	682818.174	9110013.770	421.005
_1.3	682786.488	9110091.864	421.274
_1.4	682794.038	9110089.910	421.959
_2.1	682958.438	9109865.010	421.909
_2.2	682954.251	9109872.269	421.566
_2.3	682923.807	9109848.180	421.191
_2.4	682928.202	9109841.850	420.011
_3.1	682914.599	9109858.061	420.517
_3.2	682943.654	9109885.326	421.664
_4.2	682918.029	9109853.550	420.772

Gambar 3.9 Koordinat hasil pengolahan

Setelah proses *import point* koordinat yang ada kedalam *sofware AutoCAD*, kemudian perlu dihubungkannya titik titk tersebut agar mendapatkan bentuk yang sesuai dilapangan yaitu bidangan dengan menggunakan *polyline*, hal ini bertujuan agar dapat memproses luasan bidang, hal ini tentu saja dilakukan pengulan sebanyak Empat kali sesusai jumlah mekanisme pengolahan data pengamatan sebelumnya

3.5.4 Uji Normalitas

Uji normalitas dilakujan untuk mengetahui data hasil pengukuran apakah benar sudah sesuai dengan toleransi ketelitian alat dan apakah data pengukuran terdistribusi dengan normal. Pada uji normalitas dilakukan dengan *software stat*, dengan pengujian yang digunakan adalah nilai dari rata rata, varian dan hubungan antara kedua varian.

• i	\times	fx	=AVERAG	E(F3:F193)	
В	С	D	E	F	G
No	id	Easting	Northing	хi	x
1	4.1	682948	9109879.3	421.557	
2	9.1	682882	9109897.3	420.427	
3	10.2	682917.3	9109922.9	421.342	
4	10.3	682917	9109922.6	421.393	
5	11.1	682869.1	9109905.1	420.379	
6	11.2	682865.6	9109902	419.679	
7	11.3	682859.9	9109915	420.317	
8	11.4	682856.7	9109912.1	419.894	
9	12.1	682861.3	9109899.3	420.931	
10	12.2	682853.9	9109909.1	420.388	
11	13.1	682859.4	9109896	419.928	
12	13.2	682850.6	9109906	419.938	
13	14	682856.3	9109893.3	419.368	
14	14.2	682847.4	9109903	419.714	
15	1.1	682840.5	9110032.8	422.018	
16	1.2	682818.2	9110013.8	420.923	
17	1.3	682786.5	9110091.9	421.205	
18	1.4	682794	9110089.9	421.870	
19	2.1	682958.4	9109865	421.793	
20	2.2	682954.3	9109872.3	421.291	
21	2.3	682923.8	9109848.2	421.106	
22	2.4	682928.2	9109841.9	419.902	
23	3.1	682914.6	9109858.1	420.391	120 914
24	3.2	682943.7	9109885.3	421.593	420.314
25	4.2	682918	9109853.6	420.677	

Gambar 3.10 Perintah Mencari Nilai Rata Rata (average)

Kemudian setelah menemukan nilai rata-rata dari titik yang dipakai hitung nilai standar deviasi setiap titik. Untuk menghitung nilai standar deviasi dapat dilakukan sesuai dengan rumus 2.2 isikan nilai rata-rata pada kolom sample mean dan isikan nilai standar deviasi alat pada kolom ±. Pada kolom *number of element* masukkan jumlah titik yang diuji sedangkan pada kolom *number of redudance* masukkan nilai degree o freedom. Selanjutnya adalah pada kolom *confidance level* dapat memasukkan nilai signifikan *level*, pada penelitian ini digunakan selang kepercayaan 95%.

${}^{\mathbb{A}}$ Confidence interval for the population mean $ \Box$ $ imes$
Sample mean: 420.914 ± .454791 V OK
Number of elements in sample: 46 X Cancel
Number of redundancies: 45 2 Help
Confidence level: 95 %

Gambar 3.11 Tampilan population mean

Berikut ini pada gambar dibawah merupakan hasik dari perhitungan uji normalitas data *population mean*.

A	Confidence interval for p	population mean	-		×
(i) CRetry	Clipboard	Print	<u>i C</u> lose	
	v	95.0% confide	ence interva	1	
		420.779 < µ <	421.049		

Gambar 3.12 Hasil nilai upper dan lower population mean mekanisme 2

Hal yang sama dilakukan terhadap uji normalitas *population variance* Pada kolom redudance masukkan nilai degree o freedom. Selanjutnya pada kolom confidance level masukkan nilai signifikan level, pada penelitian ini digunakan selang kepercayaan 95%.

Sample variance 0.2068683	√ ок
Confidence level: 95 %	X Cancel ? Help
	_

Pada gambar dibawah ini menunjukan hasil dari perhitungan uji normalitas data untuk nilai varian. Langkah ini juga berlaku untuk mekanisme pengolahan selanjutnya untuk uji normalitas *population mean* dan juga uji normalitas *population variance*

Gambar 3. 14 *Hasil* nilai *uppe*r dan *lower population variance* mekanisme 3.5.5 **Uji Distribusi F**

Uji statistik ini dilakukan untuk menguji suatu hipotesa yang bertujuan untuk mengetahui nilai hubungan dari dua buah parameter melalui nilai varian yang telah diketahui. Pada penelitian ini uji statistic dlakukan dengan metode distribusi F dengan bantuan *software stat* data yang digunakan adalah nilai varian populasi pertama dan nilai varian populasi kedua dengan menggunakan *level of significance* 0.05 (*significance level* 95%)

A F test				-		×
			Redund	dancies		
First	sample variance:	0.20683	45			
Second	l sample variance:	1.46459	45	_		
Lev	vel of significance:	0.05			-	ок
	-Test Type-				X Ca	ancel
	C Lower-tail	O Upper-tail	Two-tail		21	lelp
	- Lower-Idii	< opper-idir	14 140-tali		? 1	lelp

Gambar 3. 15 Input Data Mekanisme 2

Berikut ini merupakan hasil dari perhitungan uji distribusi F varian sampel elevasi pengolahan GNSS

A Stats				_		×
File Statisti	ics Window	w Help				
	I X ² t	F ?				
	🛕 F test			-		\times
	¢	2 Retry	<u> </u> Clip <u>b</u> oard <u>P</u> rint	Close		
			F test at 0.050 level of si	gnifica	nce.	
			$H_0: S1^2 = S2^2$ $H_a: S1^2 = / S2^2$			
			Test statistic: F = 1.055 Rejection criterion: F = 1.	055 > 1	.807	= F
			Fail to Reject H_0			

Gambar 3.16 Tampilan Hasil Nilai F Test Mekanisme 2