TUGAS AKHIR

STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING - SAPIH STA 3+000 – STA 6+105 KABUPATEN PROBOLINGGO

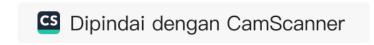
Disusun dan Ditunjukkan Untuk Memenuhi Persyaratan Tugas Akhir Teknik Sipil S-1 Institut Teknologi Malang

Disusun Oleh:

DWITA ADETIYA (20 21 905)

PROGRAM STUDI TEKNIK SIPIL S-1 FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI NASIONAL MALANG 2024

TUGAS AKHIR


STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING - SAPIH STA 3+000 – STA 6+105 KABUPATEN PROBOLINGGO

Disusun dan Ditunjukkan Untuk Memenuhi Persyaratan Tugas Akhir Teknik Sipil S-I Institut Teknologi Malang

NOLOG

PROGRAM STUDI TEKNIK SIPIL S-1 FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI NASIONAL MALANG 2024

LEMBAR PERSETUJUAN

TUGAS AKHIR

STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING - SAPIH STA 3+000 - STA 6+105 **KABUPATEN PROBOLINGGO**

Disusun dan Diajukan Sebagai Salah Satu Persyaratan Untuk Menyusun

Tugas Akhir

Oleh :

DWITA ADETIYA

2021905

Telah disetujui oleh pembimbing untuk diujikan

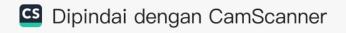
Pada tanggal 6 FEBRUARI 2024

Menyetujui,

Dosen Pembimbing

Dosen Pembimbing 1

Dosen Pembimbing 2


Dr. Ir. Nusa Sebayang MT. NIP. 196702181993031002

Ir. Eding Iskak Imananto, MT. NIP. 196605061993031004

Mengetahui,

Ketua Program Studi Teknik Sipil S-1 stirut Teknologi Nasional Malang NSTIF son P. Manaha, ST., MT. NIPY 1030300383

ii

LEMBAR PENGESAHAN

TUGAS AKHIR

STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING - SAPIH STA 3+000 - STA 6+105 **KABUPATEN PROBOLINGGO**

Disusun dan Diajukan Sebagai Salah Satu Persyaratan Untuk Menyusun

Tugas Akhir

Oleh :

DWITA ADETIYA

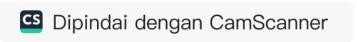

2021905

Dosen Pembahas

Dosen Pembahas 1

Dosen Pembahas 2

Annur Ma'raf, ST., MT. NP.P. 1031700528


Disahkan Oleh,

etua Program Studi & Sipil S 1 ITN Malang

Sekretaris Program Studi Teknik Sipil S-1 ITN Malang

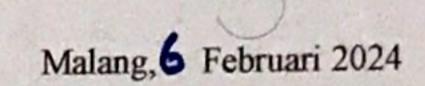
NIP.P. 1030300383

P. Manaha. ST., MT. Nenny Roostrianawaty, ST., MT. NIP.P. 1031700533

PERNYATAAN KEASLIAN TUGAS AKHIR

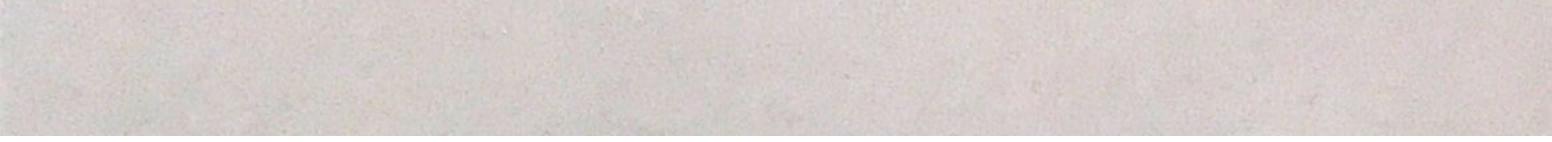
Saya yang bertanda tangan dibawah ini :

NAMA : DWITA ADETIYA NIM : 2021905

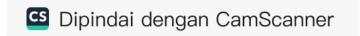

PROGRAM STUDI : S1 TEKNIK SIPIL

Menyatakan dengan sesungguhnya bahwa Tugas Akhir dengan Judul :

"STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING – SAPIH STA 3+000 – STA 6+105 KABUPATEN PROBOLINGGO"


Merupakan karya asli saya dan bukan merupakan duplikat atau hasil karya orang lain, kecuali yang secara tertulis dikutip dalam naskah ini dan disebutkan dalam sumber kutipan dan daftar pustaka. Apabila ternyata dalam naskah Tugas Akhir ini dapat dibuktikan terdapat unsur – unsur PLAGIASI, saya bersedia menerima konsekuensi apapun yang diberikan Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Nasional Malang

Demikian surat pernyataan ini saya buat dengan sebenar-benarnya.



NIM : 2021905

iv

KATA PENGANTAR

Puji Syukur kehadirat Allah SWT yang maha pengasih lagi maha penyayang berkat limpahan ilmu pengetahuan dari-Nya, sehingga dapat menyelesaikan penyusunan Tugas Akhir ini dengan baik dan tepat waktu.

Tugas Akhir ini berjudul "STUDI PERENCANAAN PERKERASAN LENTUR DAN DRAINASE PADA RUAS JALAN LAMBANGKUNING - SAPIH STA 3+000 – STA 6+105 KABUPATEN PROBOLINGGO". Ucapan syukur dan rasa terimakasih saya haturkan kepada semua pihak yang telah membantu dalam penyusunan laporan ini, yaitu:

- 1. Bapak Dr. Yosimson P. Manaha, ST., MT., selaku Ketua Jurusan Teknik Sipil Institut Teknologi Nasional Malang.
- 2. Bapak Dr. Ir. Nusa Sebayang, MT. selaku Dosen Pembimbing I Tugas Akhir.
- Bapak Ir. Eding Iskak Imananto, MT. selaku Dosen Pembimbing II Tugas Akhir.
- 4. Bapak dan Ibu Dosen Institut Teknologi Nasional Malang yang telah memberikan bimbingan dan ilmu pengetahuan guna menunjang penyusunan Tugas Akhir ini.
- 5. Kedua Orang Tua yang selalu memberikan doa dan dukungan baik moril maupun materil.

Penyusun menyadari bahwa dalam penyusunan laporan Tugas Akhir ini masih terdapat kekurangan baik dalam penyajian maupun informasi. Oleh karena itu kritik dan saran yang membangun demi perbaikan penyusunan Tugas Akhir selanjutnya. Semoga Tugas Akhir ini dapat bermanfaat bagi orang banyak.

Malang, 2024

Penulis

ABSTRAK

Dwita Adetiya, 2020, Studi Perencanaan Perkerasan Lentur Pada Ruas Jalan Lambangkuning – Sapih Sta 3+000 – Sta 6+105 Kabupaten Probolinggo Program Studi S-1 Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Nasional Malang, Dosen Pembimbing I : Dr. Ir. Nusa Sebayang, MT. Dosen Pembimbing II : Ir. Eding Iskak Imananto, MT.

Jalan Lambangkuning -Sapih merupakan jalan dengan tipe 1 lajur 2 arah tak terbagi dengan lebar jalan 4 meter dengan status Jalan Kabupaten. Dengan kondisi jalan existing berupa batuan menyebabkan pengendara yang melintas kurang nyaman dan berbahaya, terutama pada kondisi hujan dan tidak adanya drainase jalan pada ruas jalan tersebut. Untuk menunjang studi ini diperlukan data CBR, Lalu Lintas Harian, Data curah hujan dan Harga Satuan Pekerjaan Kabupaten Probolinggo. Metode yang digunakan pada perencanaan perkerasan lentur ini adalah Metode Manual Desain Perkerasan Jalan Tahun 2017 dan untuk perencanaan drainase menggunakan acuan Pedoman drainase jalan 2006. Berdasarkan hasil perencanaan didapatkan 2 Alternatif tebal perkerasan, yaitu : Alternatif 1 HRS WC = 3 cm, HRS Base 3.5 cm, LPA = 25 cm, dan LPB = 12.5 cm dan Alternatif 2 AC WC = 4 cm, AC BC = 6 cm, LPA = 33 cm dengan dimensi saluran kiri lebar = 100 cm dan Tinggi = 100 cm dan saluran kanan lebar = 50 cm dan Tinggi = 50 cm . dari Analisa tersebut didapatkan hasil rencana anggaran biaya Alternatif 1 sebesar Rp.13.318.582.156,00., dan Alternatif 2 sebesar Rp.13.803.853.365,00.

Kata Kunci : Perkerasan, Lentur, Drainase, LPA, LPB

DAFTAR ISI

HALAMAN JUDULi
LEMBAR PERSETUJUANii
LEMBAR PENGESAHAN iii
PERNYATAAN KEASLIAN iv
KATA PENGANTARv
ABSTRAK vi
DAFTAR ISI vii
DAFTAR TABEL x
DAFTAR GAMBAR xiv
DAFTAR NOTASI xv
BABI: PENDAHULUAN
1.1 Latar Belakang1
1.2 Identifkasi Masalah2
1.3 Rumusan Masalah
1.4 Batasan Masalah
1.5 Tujuan Penelitian
1.6 Manfaat Penulisan4
BAB II : TINJAUAN PUSTAKA
2.1 Studi Terdahulu
2.2 Fungsi Jalan6
2.3 Metode IRI (International Roughness Index)
2.4 Jenis Perkerasan10
2.5 Perkerasan Lentur
2.5.1 Tanah Dasar
2.5.2 Lapis Pondasi Bawah (Subbase Course)13
2.5.3 Lapis Pondasi (Base Course)14
2.5.4 Lapis Permukaan (Surface Course) 15
2.5.5 Umur Rencana17
2.5.6 Lalu Lintas

2.5.6.1 Analisa Volume Lalu Lintas
2.5.6.2 Faktor Pertumbuhan Lalu Lintas
2.5.6.3 Lalu Lintas Pada Lajur Rencana
2.5.6.4 Faktor Ekivalen Beban (Vehicle Damage Factor)
2.5.7 Traffic Multiplier (TM)
2.5.8 Pemilihan Struktur Perkerasan
2.5.9 Pengukuran Daya Dukung DCP
2.5.10 Desain Pondasi Perkerasan Lentur
2.6 Drainase
2.7 Rencana Anggaran Biaya (RAB)45
2.7.1 Analisa Harga Satuan Dasar (HSD)
2.7.2 Langkah HSD Tenaga Kerja45
2.7.3 Langkah HSD Bahan 45
2.7.4 Langkah HSD Peralatan
BAB III : METODOLOGI STUDI
3.1 Lokasi Studi47
3.2 Metode Pengambilan Data
3.3 Tahapan Studi48
3.3.1 Perencanaan Tebal Perkerasan Lentur
3.3.2 Perencanaan Drainase Jalan
3.3.3 Rencana Anggaran Biaya49
3.4 Bagan Alir Studi50
BAB IV : PERENCANAAN PERKERASAN LENTUR DAN DRAINASE
4.1 Umum
4.2 Data Teknis
4.3 Analisa kerusakan Jalan dengan Metode IRI
4.3.1 Mencari nilai RCI (Road Condition Index)53
4.3.2 Mencari Nilai IRI (International Roughness Index)54
4.3.3 Hubungan Nilai IRI dengan Kondisi Jalan55
4.4 Analisa Perkerasan56
4.4.1 Analisa Lalu Lintas56

	4.4.2	Umur Rencana dan Kapasitas Jalan	58
	4.4.3	Distribusi Arah (DD) dan Distribusi Lajur (DL)	64
	4.5 Beban	Standar Kumulatif (CESA4)	65
	4.6 Trrafi	c Multiplier (TM)	66
	4.7 Cumu	lative Equivalent Single Axle (CESA5)	66
	4.8 Meng	hitung Nilai CBR	66
	4.9 Mener	ntukan Struktur Perkerasan	71
	4.10 Perer	ncanaan Dimensi Saluran Drainase jalan	74
	4.10.1	Analisa Hidrologi	74
	4.10.2	Perhitungan Dimensi Saluran	90
	4.11 Renc	ana Anggaran Biaya	95
	4.11.1	Volume Pekerjaan	95
	4.11.2	Harga Satuan Dasar	99
	4.11.3	Analisa Harga Satuan Pekerjaan	100
	4.11.4	Rekapitulasi rencanan Anggaran Biaya	111
	4.12 Peml	bahasan	111
BAB V :	KESIMP	ULAN	
	5.1 Kesim	ipulan	112
	5.2 Saran		112
DAFTA	R PUSTAF	КА	113
LAMPII	RAN		114

DAFTAR TABEL

Tabel 2.1 Studi Terdahulu
Tabel 2.2 Penentuan Nilai RCI9
Tabel 2.3 Parameter IRI (International Roughness Index)
Tabel 2.4 Penentuan Jenis Penanganan Jalan
Tabel 2.5 Gradasi Lapis Pondasi Agregat14
Tabel 2.6 Umur Rencana Perkerasan Jalan Baru (UR)17
Tabel 2.7 Ekivalen Mobil Penumpang (EMP) untuk jalan 2/2 TT18
Tabel 2.8 Kapasitas Dasar untuk jalan luar kota dengan 2 lajur 2 arah19
Tabel 2.9 Faktor penyesuaian Kapasitas Akibat lebar jalur lalu linta (FCw)19
Tabel 2.10 Faktor penyesuaian Kapasitas karena pemisah arah (FCPA)19
Tabel 2.11 Faktor penyesuaian Kapasitas karena Hambatan samping (FC _{HS})20
Tabel 2.12 Nilai Faktor K
Tabel 2.13 Kecepatan arus bebas dasar (V_{BD}) per jenis kendaraan21
Tabel 2.14 Koreksi kecepatan arus bebas MP akibat lajur efektif, $V_{BL,MP}$ 21
Tabel 2.15 Faktor koreksi kecepatan arus bebas MP akibat hambatan samping dan
lebar bahu, F _{VB.HS}
Tabel 2.16 Faktor koreksi kecepatan arus bebas MP akibat kelas fungsi jalan dan
guna lahan, F _{VB.KFJ}
Tabel 2.17 Faktor Distribusi Lajur
Tabel 2.18 Pengumpulan Data Beban Gandar
Tabel 2.19 Nilai VDF Masing – masing jenis kendaraan niaga26
Tabel 2.20 Nilai VDF Masing – masing jenis kendaraan niaga27
Tabel 2.21 Pemilihan Jenis Perkerasan
Tabel 2.22 Faktor Penyesuaian Modulus Tanah Dasar Terhadap Kondisi
Musim
Tabel 2.23 Nilai R untuk perhitungan CBR segmen
Tabel 2.24 Desain Pondasi Jalan Minimum
Tabel 2.25 Bagan Desain – 3 Desain Pererasan Lentur Opsi Biaya Minimum
dengan CTB

Tabel 2.26 Bagan Desain – 3A. Desain Perkerasan Lentur dengan HRS35
Tabel 2.27 Bagan Desain – 3B. Desain Perkerasan Lentur – Aspal dengan Lapis
Berbutir
Tabel 2.28 Bagan Desain 3C - Penyesuaian Tebal Lapis Fondasi Agregat A untuk
Tanah Dasar CBR \geq 7%
Tabel 2.29 Harga Koefisien (C) dan factor limpasan (fk)
Tabel 2.30 Koefisien Hambatan (nd) Berdasarkan Kondisi Permukaan40
Tabel 2.31 Kecepatan aliran air yang diijinkan berdasarkan jenis material40
Tabel 2.32 Syarat Jennis Distribusi
Tabel 2.33 Nilai Yn dan σn fungsi jumlah data43
Tabel 2.34 Angka kekasaran manning (n)44
Tabel 4.1 Penentuan Nilai RCI (Road Condition Index) secara visual53
Tabel 4.2 Nilai RCI (Road Condition Index) Tiap Segmen
Tabel 4.3 Rekapitulasi Hasil Perhitungan Nilai IRI
Tabel 4.4 Hubungan Nilai IRI dengan Kondisi Jalan55
Tabel 4.5 Pedoman Nilai IRI dengan Jenis Penanganan
Tabel 4.6 Hubungan Nilai IRI dengan Kondisi Jalan dan jenis penanganan56
Tabel 4.7 Jumlah kendaraan Ruas Jalan Lambangkuning – Sapih tahun 2021 -
2022
Tabel 4.8 Pertumbuhan Laju Kendaraan tiap Tahun i (%)57
Tabel 4.9 Faktor Pertumbuhan rata – rata Lalu Lintas rencana 20 tahun
Tabel 4.10 Perhitungan LHRT pada umur rencana 5 Tahun, 10 Tahun, 20
Tahun
Tabel 4.11 Perhitungan kapasitas jalan terhadap umur umur rencana 5 Tahun, 10
Tahun, 20 Tahun
Tabel 4.12 Standar Tingkat Pelayanan jalan
Tabel 4.13 Karakteristik Tingkat Pelayanan64
Tabel 4.14 Faktor Distribusi Lajur64
Tabel 4.15 Perkiraan lalu lintas untuk jalan lalu lintas rendah
Tabel 4.16 Perhitungan Nilai CBR 68
Tabel 4.17 Hasil Pengujian DCP 69

Tabel 4.18 Hasil Pengujian CBR	69
Tabel 4.19 Desain Fondasi Jalan Minimum	71
Tabel 4.20 Bagan Pemilihan Struktur Perkerasan	71
Tabel 4.21 Bagan Desain – 3A. Desain Perkerasan Lentur dengan HRS	72
Tabel 4.22 Rekapitulasi Hujan Harian Maximum Rata-rata	74
Tabel 4.23 Perhitungan Metode Gumbel	75
Tabel 4.24 Metode Log person III	76
Tabel 4.25 Penentuan jenis Distribusi	77
Tabel 4.26 Nilai D _{Kritis} Untuk Uji Smirnov-Kolmogorov	78
Tabel 4.27 Tabel Sebaran probabilitas Kumulatif normal	80
Tabel 4.28 Perhitungan D _{maks} Metode Log Person Tipe III	82
Tabel 4.29 Nilai (k) untuk distribusi Log Person Tipe III	84
Tabel 4.30 Perhitungan hujan tahunan rencana (RTr)	85
Tabel 4.31 Harga Koefisien pengaliran (C) dan Faktor limpasan (fk)	86
Tabel 4.32 Intensitas Hujan	88
Tabel 4.33 Debit Banjir Rancangan (Periode Ulang 25 tahun)	89
Tabel 4.34 Periode Ulang debit rencana	89
Tabel 4.35 Kecepatan aliran air yang diijinkan berdasarkan jenis material	90
Tabel 4.36 Komponen Penampang Saluran	91
Tabel 4.37 Angka kekasaran Manning	92
Tabel 4.38 Perhitungan Dimensi Saluran (STA 3+000 s/d STA 6+105)	94
Tabel 4.39 Takaran Aspal	98
Tabel 4.40 Berat Isi Bahan	98
Tabel 4.41 Harga Satuan Dasar	89
Tabel 4.42 Analisa Harga Satuan Pekerjaan Galian Drainase	100
Tabel 4.43 Analisa Harga Satuan Pekerjaan Pasangan Batu dengan Mortar	101
Tabel 4.44 Analisa Harga Satuan Pekerjaan Galian Biasa	102
Tabel 4.45 Analisa Harga Satuan Pekerjaan Penyiapan Badan jalan	103
Tabel 4.46 Analisa Harga Satuan Pekerjaan Pekerjaan LPA Kelas A	104
Tabel 4.47 Analisa Harga Satuan Pekerjaan Pekerjaan LPB	105
Tabel 4.48 Analisa Harga Satuan Pekerjaan Lapis Resap Pengikat	106

Tabel 4.49 Analisa Harga Satuan Pekerjaan Lapis Perekat	107
Tabel 4.50 Analisa Harga Satuan Pekerjaan HRS WC	108
Tabel 4.51 Analisa Harga Satuan Pekerjaan HRS Base	109
Tabel 4.52 Rencana Anggaran Biaya Perencanaan Perkerasan lentur dan	Drainase
Ruas jalan lambangkuning – Sapih Kabupaten probolinggo	110

DAFTAR GAMBAR

Gambar 1.1 Kondisi Eksisting jalan Lambangkuning – Sapih	2
Gambar 2.1 Susunan lapisan konstruksi perkerasan Lentur	.10
Gambar 2.2 Susunan lapisan konstruksi perkerasan kaku	.11
Gambar 2.3 Susunan lapisan konstruksi perkerasan komposit	.11
Gambar 2.4 Bagian Jalan	12
Gambar 2.5 Struktur Perkerasan Lentur	12
Gambar 3.1 Peta Lokasi	47
Gambar 3.2 Lokasi Studi	47
Gambar 3.3 Diagram Alir Studi	50
Gambar 4.1 Lokasi Studi	51
Gambar 4.2 Kondisi Existing Jalan	52
Gambar 4.3 Hubungan Kapasitas jalan dengan Volume lalu lintas	62
Gambar 4.4 Grafik CBR grafis	70
Gambar 4.5 Tebal Lapis perkerasan Lentur	73
Gambar 4.6 Kondisi existing jalan	73
Gambar 4.7 Grafik Curah Hujan Harian Maksimum Tahunan	74
Gambar 4.8 Galian Drainase	95
Gambar 4.9 Galian Biasa	96
Gambar 4.10 Tebal LPA Kelas A	96
Gambar 4.11 Tebal LPB	97
Gambar 4.12 Tebal HRS WC	97
Gambar 4.13 Tebal HRS Base	98

DAFTAR NOTASI

RCI	Road Condition Index
IRI	International Roughness Index
smp	SATUAN MOBIL PENUMPANG
CBR	California Bearing Ratio
VDF	Vehicle Damage Factor
HRS	Hot Rolled Sheet
HRS WC	Hot Rolled Sheet Wearing Course
HRS BASE	Hot Rolled Sheet Base Course
AC WC	Asphaltic Concrete Wearing Course
AC BC	Asphaltic Concrete Binder Course
CESA	Cumulative Equivalent Standar Axle
ESA4	Equivalent Standard Axle pangkat 4
ESA5	Equivalent Standard Axle for Asphalt pangkat 5
TM	Traffic Multiplier
emp	Ekuivalen Mobil Penumpang
DS	DERAJAT KEJENUHAN
PKJI	Pedoman Kapasitas jalan Indonesia
С	Kapasitas
Co	Kapasitas Dasar
Fcw	Faktor Penyesuaian Akibat Lebar Lajur atau jalur lalu Lintas
FC _{PA}	Faktor Penyesuaian Kapasitas Karena Pemisah Arah
FC _{HS}	Faktor Penyesuaian Kapasitas Karena Hambatan Samping

V_{BD}	Kecepatan Arus bebas dasar
q	Arus lalu Lintas
$V_{BL.MP}$	Koreksi kecepatan arus bebas MP akibat lajur efektif
F _{VB.HS}	Faktor koreksi kecepatan arus bebas MP akibat hambatan samping dan lebar bahu
$F_{\rm VB,KFJ}$	Faktor koreksi kecepatan arus bebas MP akibat kelas fungsi jalan dan guna lahan
R	Faktor Pengali Pertumbuhan arus lalu lintas
i	Laju Pertumbuhan lalu lintas tahunan
LHR	Lintas Harian Rata rata
DD	Distribusi Arah
DL	Distribusi Lajur
DCP	Dynamic Cone Penetration
CTB	Cement Treated Base
С	Koefisien Pengaliran
fk	Faktor Limpasan
nd	Koefisien Hambatan
SD	Standar Deviasi
CS	Koefisien Skewness
Ck	Koefisien kurtosis
Тс	Waktu Konsentrasi
Ι	Intensitas Curah Hujan
n	Angka kekasaran Manning
S	Kemiringan saluran