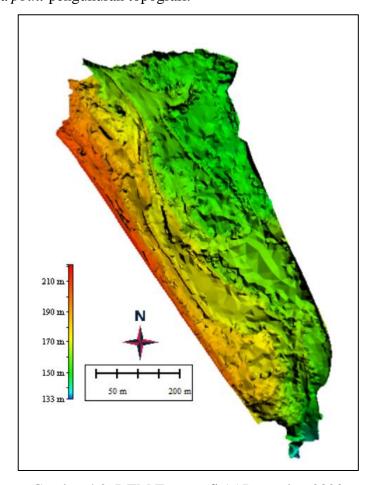

BAB IV HASIL DAN PEMBAHASAN

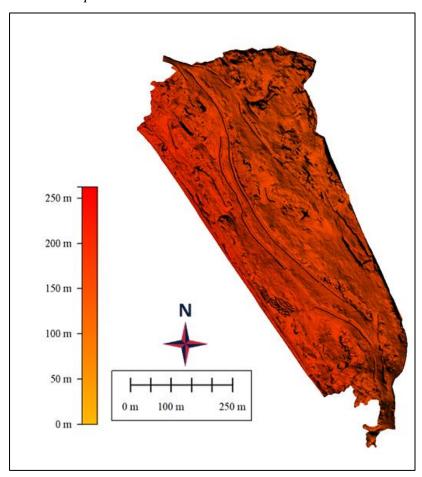
4.1 Hasil DTM Topografi


DTM topografi tanggal 14 September 2023.
 Berikut merupakan hasil dari proses triangulasi dalam pembentukan DTM dari data *point* pengukuran topografi.

Gambar 4.1. DTM Topografi 14 September 2023

Gambar 4.1. Menunjukan DTM hasil dari pengolahan data *point* pengukuran topografi tanggal 14 September 2023 yang selanjutnya DTM tersebut digunakan untuk perhitungan volume galian foto udara sebagai data *existing*.

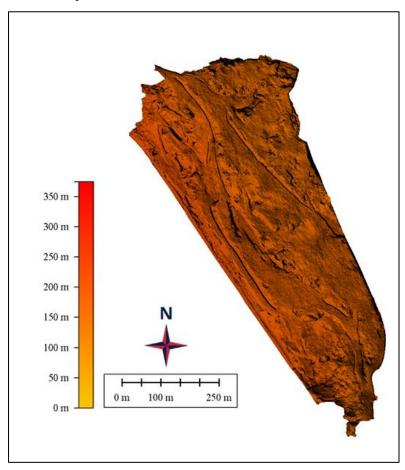
DTM topografi tanggal 15 Desember 2023.
 Berikut merupakan hasil dari proses triangulasi dalam pembentukan DTM dari data *point* pengukuran topografi.


Gambar 4.2. DTM Topografi 15 Desember 2023

Gambar 4.2. Menunjukan DTM hasil dari pengolahan data *point* pengukuran topografi tanggal 15 Desember 2023 yang selanjutnya DTM tersebut digunakan untuk perhitungan volume galian foto udara sebagai data *existing*.

4.2 Hasil Pengolahan Foto Udara

4.2.1 Hasil DTM (Digital Terrain Model)


DTM Foto Udara Tanggal 14 September 2023.
 Berikut merupakan hasil dari proses triangulasi dalam pembentukan
 DTM dari data *point cloud* foto udara.

Gambar 4.3. DTM Foto Udara 14 September 2023

Gambar 4.3. Menunjukan DTM hasil dari pengolahan data DEM foto udara tanggal 14 September 2023 yang selanjutnya DTM tersebut digunakan untuk perhitungan volume galian foto udara sebagai data *existing*.

DTM Foto Udara Tanggal 15 Desember 2023.
 Berikut merupakan hasil dari proses triangulasi dalam pembentukan
 DTM dari data *point cloud* foto udara.

Gambar 4.4. DTM Foto Udara 15 Desember 2023

Gambar 4.4. Menunjukan DTM hasil dari pengolahan data DEM foto udara tanggal 15 Desember 2023yang selanjutnya DTM tersebut digunakan untuk perhitungan volume galian foto udara.

4.2.2 Analisa Ketelitian Vertikal

Ketelitian vertikal DTM diperoleh berdasarkan perhitungan RMSE sesuai dengan rumus 2.5 dan 2.6 perhitungan dilakukan menggunakan nilai elevasi dari titik ICP yang berjumlah 13 titik.

a. Analisa Ketelitian Vertikal DTM 14 September 2023

Tabel 4.1 Analisa Ketelitian Vertikal DTM 14 September 2023

	14 SEPTEMBER 2023					
No	Nama Titik	X (m)	Y (m)	Z RTK (m)	Z Ortho (m)	ΔZ^{2} (m)
1	ICP 1	774138.8647	9076247.439	38.528	38.321	0.043
2	ICP 2	774001.5602	9076854.774	38.774	38.709	0.004
3	ICP 3	773973.503	9076792.977	38.805	38.721	0.007
4	ICP 4	773933.7475	9076757.922	39.652	39.534	0.014
5	ICP 5	773650.8271	9076850.808	45.361	45.158	0.041
6	ICP 6	773104.101	9076855.855	87.421	87.312	0.012
7	ICP 7	773302.6061	9076737.418	105.846	105.837	0.000
8	ICP 8	773049.6829	9076784.199	133.347	133.391	0.002
9	ICP 9	773029.9691	9076650.235	191.674	191.813	0.019
10	ICP 10	773159.6488	9076487.84	214.236	214.094	0.020
11	ICP 11	773217.43	9076429.359	215.603	215.824	0.049
12	ICP 12	773744.8545	9075865.626	158.311	158.132	0.032
13	ICP 13	773588.9833	9076537.396	148.673	148.441	0.054
Jumlah Titik					13	
					Total (m)	0.297
Mean (m)					0.023	
	RMSEz (m)				0.151	
					LE 90 (m)	0.249

Ketelitian vertikal untuk DTM foto udara terhadap pengukuran topografi 14 September 2023 berdasarkan hasil perhitungan RMSEz, memiliki nilai sebesar 0,151 m perhitungan ini dihitung dengan menggunakan rumus 2.6. Untuk ketelitian vertikal pada tingkat kepercayaan 90% diperoleh nilai toleransi 0,249 m perhitungan ini dihitung dengan menggunakan rumus 2.2. Hal ini menunjukan bahwa ketelitian vertikal dengan tingakat kepercayaan 90% menunjukan kesesuaian dengan standar ketentuan Peraturan Kepala BIG No. 15 Tahun 2014 yang tertera pada tabel 2.2, yaitu dengan akurasi vertikal kelas 2 pada skala 1:1.000.

b. Analisa Ketelitian Vertikal DTM 15 Desember 2023

Tabel 4.2 Analisa Ketelitian Vertikal DTM 15 Desember 2023

	15 DESEMBER 2023					
No	Nama Titik	X (m)	Y (m)	ZRTK (m)	Z Ortho (m)	ΔZ^{2} (m)
1	ICP 1	774138.8647	9076247.439	40.328	40.337	0.000
2	ICP 2	774001.5602	9076854.774	38.974	38.937	0.001
3	ICP 3	773973.503	9076792.977	38.805	38.947	0.020
4	ICP 4	773933.7475	9076757.922	39.852	39.924	0.005
5	ICP 5	773650.8271	9076850.808	44.361	44.574	0.045
6	ICP 6	773104.101	9076855.855	85.821	85.891	0.005
7	ICP 7	773302.6061	9076737.418	105.246	105.479	0.054
8	ICP 8	773049.6829	9076784.199	131.647	131.616	0.001
9	ICP 9	773029.9691	9076650.235	190.674	190.460	0.046
10	ICP 10	773159.6488	9076487.84	211.236	210.997	0.057
11	ICP 11	773217.43	9076429.359	215.603	215.520	0.007
12	ICP 12	773744.8545	9075865.626	158.611	158.803	0.037
13	ICP 13	773588.9833	9076537.396	148.473	148.371	0.010
					Jumlah Titik	13
					Total (m)	0.289
					Mean (m)	0.022
					RMSEz (m)	0.149
					LE 90 (m)	0.246

Ketelitian vertikal untuk DTM foto udara terhadap pengukuran topografi berdasarkan hasil perhitungan RMSEz, memiliki nilai sebesar 0,149 m perhitungan ini dihitung dengan menggunakan rumus 2.6. Untuk ketelitian vertikal pada tingkat kepercayaan 90% diperoleh nilai toleransi 0,246 m perhitungan ini dihitung dengan menggunakan rumus 2.2. Hal ini menunjukan bahwa ketelitian vertikal dengan tingakat kepercayaan 90% menunjukan kesesuaian dengan standar ketentuan Peraturan Kepala BIG No. 15 Tahun 2014 yang tertera pada tabel 2.2, yaitu dengan akurasi vertikal kelas 2 pada skala 1:1.000.

4.2.3 Analisis Ketelitian Horizontal

Ketelitian horizontal dari pengolahan masing-masing orotofoto diperoleh dari menghitung nilai *Root Mean Square Error* (RMSE). Nilai ketelitian horizontal peta dasar diukur sebagai nilai *Circular Error* (CE90), yang menunjukkan bahwa kesalahan horizontal peta dasar tidak melebihi nilai yang

sudah ditentukan dengan tingkat kepercayaan 90%. CE90 dihitung menggunakan rumus 2.1 dengan mematuhi ketentuan PERKA BIG No. 15 Tahun 2014 dapat disimpulkan bahwa presisi tersebut memenuhi standar untuk skala peta tertentu.

a. Analisa Ketelitian Horizontal Orthophoto 14 September 2023
 Tabel 4.3 Analisa Ketelitian Horizontal Orthophoto 14 September 2023

	14 SEPTEMBER 2023					
POIN	ORTHO	РНОТО	PENGUKURAN LAPANGAN		ΔX (X1-X2)^2	ΔΥ (Υ1-Υ2)^2
T	X1	Y1	X2	Y2	(m)	(M)
ICP 1	774138.662	9076248.025	774138.8647	9076247.439	0.041	0.343
ICP 2	774001.721	9076854.727	774001.5602	9076854.774	0.026	0.002
ICP 3	773973.645	9076793.027	773973.503	9076792.977	0.020	0.003
ICP 4	773934.181	9076757.775	773933.7475	9076757.922	0.188	0.022
ICP 5	773651.111	9076851.184	773650.8271	9076850.808	0.081	0.141
ICP 6	773103.729	9076856.596	773104.101	9076855.855	0.138	0.549
ICP 7	773302.594	9076737.345	773302.6061	9076737.418	0.000	0.005
ICP 8	773049.688	9076784.147	773049.6829	9076784.199	0.000	0.003
ICP 9	773030.02	9076650.427	773029.9691	9076650.235	0.003	0.037
ICP 10	773159.667	9076487.639	773159.6488	9076487.84	0.000	0.040
ICP 11	773217.444	9076429.359	773217.43	9076429.359	0.000	0.000
ICP 12	773744.523	9075865.952	773744.8545	9075865.626	0.110	0.106
ICP 13	773589.144	9076537.222	773588.9833	9076537.396	0.026	0.030
	$\Delta \mathbf{X} + \Delta \mathbf{Y} (\mathbf{m})$			0.633	1.282	
	$\sum \Delta \mathbf{X} + \Delta \mathbf{Y}$ (m)			1.915		
				RMSEr (m)	0.119	
			CE 90 (m)	0.181		

Ketelitian horizontal untuk data foto udara terhadap pengukuran topografi 14 September 2023 berdasarkan hasil perhitungan RMSEr, memiliki nilai sebesar 0,119 m perhitungan ini dihitung dengan menggunakan rumus 2.3. Untuk ketelitian horizontal pada tingkat kepercayaan 90% diperoleh nilai toleransi 0,181 m perhitungan ini dihitung dengan menggunakan rumus 2.1. Hal ini menunjukan bahwa ketelitian horizontal dengan tingakat kepercayaan 90% menunjukan kesesuaian dengan standar ketentuan Peraturan Kepala BIG No. 15 Tahun 2014 yang tertera pada tabel 2.2, yaitu dengan akurasi vertikal kelas 1 pada skala 1:1.000.

b. Analisa Ketelitian Horizontal Orthophoto 15 Desember 2023
 Tabel 4.4 Analisa Ketelitian Horizontal Orthophoto 15 Desember 2023

	15 DESEMBER 2023					
POINT	ОКТНОРНОТО		ORTHOPHOTO PENGUKURAN LAPANGAN		ΔX (X1-X2)^2	ΔY (Y1-Y2)^2
	X1	Y 1	X2	Y2	(m)	(m)
ICP 1	774138.717	9076247.601	774138.8647	9076247.439	0.022	0.026
ICP 2	774001.804	9076854.587	774001.5602	9076854.774	0.059	0.035
ICP 3	773973.624	9076793.071	773973.503	9076792.977	0.015	0.009
ICP 4	773934.083	9076757.597	773933.7475	9076757.922	0.113	0.106
ICP 5	773650.862	9076850.749	773650.8271	9076850.808	0.001	0.003
ICP 6	773103.846	9076856.121	773104.101	9076855.855	0.065	0.071
ICP 7	773302.641	9076737.408	773302.6061	9076737.418	0.001	0.000
ICP 8	773049.725	9076784.279	773049.6829	9076784.199	0.002	0.006
ICP 9	773029.966	9076650.463	773029.9691	9076650.235	0.000	0.052
ICP 10	773159.596	9076487.764	773159.6488	9076487.84	0.003	0.006
ICP 11	773217.417	9076429.485	773217.43	9076429.359	0.000	0.016
ICP 12	773744.741	9075865.648	773744.8545	9075865.626	0.013	0.000
ICP 13	773589.118	9076537.282	773588.9833	9076537.396	0.018	0.013
				$\Delta X + \Delta Y (m)$	0.312	0.344
			Σ	$\Delta X + \Delta Y (m)$	0.655	
				RMSEr (m)	0.070	
_				CE 90 (m)	0.106	

Ketelitian horizontal untuk data foto udara terhadap pengukuran topografi 15 Desember 2023 berdasarkan hasil perhitungan RMSEr, memiliki nilai sebesar 0,070 m perhitungan ini dihitung dengan menggunakan rumus 2.3. Untuk ketelitian horizontal pada tingkat kepercayaan 90% diperoleh nilai toleransi 0,106 m perhitungan ini dihitung dengan menggunakan rumus 2.1. Hal ini menunjukan bahwa ketelitian horizontal dengan tingakat kepercayaan 90% menunjukan kesesuaian dengan standar ketentuan Peraturan Kepala BIG No. 15 Tahun 2014 yang tertera pada tabel 2.2, yaitu dengan akurasi vertikal kelas 1 pada skala 1:1.000.

4.2.4 Uji Statistik

Uji statistik yang dilakukan menggunakan sampel nilai elevasi yang diperoleh dari titik sampel 13 titik ICP dari pengukuran topografi dan DTM foto udara. Berikut ialah hasil uji statistik :

A. Uji Normalitas

Uji normalitas dilakukan untuk menguji apakah hasil data terdistribusi secara normal dan sesuai dengan toleransi. Dalam uji normalitas ini digunakan interval kepercayaan 90%. Uji normalitas dilakukan pada sampel titik ICP yang diperoleh dari nilai elevasi kedua data yaitu topografi dan foto udara. Data dikatakan terdistribusi normal jika nilai rata-rata dan varian pada kedua nilai elevasi topografi dan foto udara termasuk dalam rentang nilai ambang bawah dan atas sesuai perhitungan.

Tabel 4.5 Analisa Uji Normalitas Rata-rata 14 September 2023

	14 SEPTEMBER 2023				
	Uji	Normalitas Nila	ai Rata-rata		
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	Keterangan	
1	ICP 1	38.528	38.321		
2	ICP 2	38.774	38.709		
3	ICP 3	38.805	38.721		
4	ICP 4	39.652	39.534		
5	ICP 5	45.361	45.158		
6	ICP 6	87.421	87.312		
7	ICP 7	105.846	105.837		
8	ICP 8	133.347	133.391	NORMAL	
9	ICP 9	191.674	191.813	NORWIAL	
10	ICP 10	214.236	214.094		
11	ICP 11	215.603	215.824		
12	ICP 12	158.311	158.132		
13	ICP 13	148.673	148.441		
	Rata-rata (m)	112.018	111.945		
Nilai	i Batas Bawah (m)	111.943	111.870		
Ni	lai Batas Atas (m)	112.093	112.020		

Tabel 4.5 menunjukan hasil dari uji normalitas nilai rata-rata menggunakan *software stats* dengan jumlah sampel sebanyak 13 titik,

untuk nilai ICP topografi diperoleh nilai elevasi rata-rata sebesar 112.018 dan foto udara diperoleh nilai elevasi rata-rata sebesar 111.945, dari hasil perhitungan uji normalitas diperoleh nilai batas bawah dan nilai batas atas untuk masing-masing data. Nilai rata-rata pada kedua data yaitu topografi dan foto udara berada pada rentang nilai batas bawah dan batas atas, dapat disimpulkan bahwa hasil pengukuran menghasilkan titik elevasi sampel pada kedua data 14 September 2023 terdistribusi secara normal.

Tabel 4.6 Analisa Uji Normalitas Rata-rata 15 Desember 2023

	15 DESEMBER 2023			
	Uji N	Normalitas Nila	ai Rata-rata	
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	Keterangan
1	ICP 1	40.328	40.337	
2	ICP 2	38.974	38.937	
3	ICP 3	38.805	38.947	
4	ICP 4	39.852	39.924	
5	ICP 5	44.361	44.574	
6	ICP 6	85.821	85.890	
7	ICP 7	105.246	105.479	
8	ICP 8	131.647	131.616	NORMAL
9	ICP 9	190.674	190.460	NORWIAL
10	ICP 10	211.236	210.997	
11	ICP 11	215.603	215.520	
12	ICP 12	158.611	158.803	
13	ICP 13	148.473	148.371	
	Rata-rata (m)	111.510	111.527	
Nilai	i Batas Bawah (m)	111.436	111.453	
Ni	lai Batas Atas (m)	111.584	111.601	

Tabel 4.6 juga menunjukan hasil dari uji normalitas nilai rata-rata menggunakan *software stats* dengan jumlah sampel sebanyak 13 titik, untuk nilai ICP topografi diperoleh nilai elevasi rata-rata sebesar 111.510 dan foto udara diperoleh nilai elevasi rata-rata sebesar 111.527, dari hasil perhitungan uji normalitas diperoleh nilai batas bawah dan nilai batas atas untuk masing-masing data. Nilai rata-rata pada kedua data yaitu topografi dan foto udara berada pada rentang nilai batas

bawah dan batas atas, dapat disimpulkan bahwa hasil pengukuran menghasilkan titik elevasi sampel pada kedua data 15 Desember 2023 terdistribusi secara normal.

Tabel 4.7 Analisa Uji Normalitas Varian 14 September 2023

	14 SEPTEMBER 2023			
	Uji	Normalitas Nila	i Varian	
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	Keterangan
1	ICP 1	38.528	38.321	
2	ICP 2	38.774	38.709	
3	ICP 3	38.805	38.721	
4	ICP 4	39.652	39.534	
5	ICP 5	45.361	45.158	
6	ICP 6	87.421	87.312	
7	ICP 7	105.846	105.837	
8	ICP 8	133.347	133.391	NORMAL
9	ICP 9	191.674	191.813	
10	ICP 10	214.236	214.094	
11	ICP 11	215.603	215.824	
12	ICP 12	158.311	158.132	
13	ICP 13	148.673	148.441	
	Varian (m)	4826.143	4835.246	
Nilai	Batas Bawah (m)	2754.377	2759.572	
Ni	lai Batas Atas (m)	11081.781	11102.684	

Tabel 4.7 menunjukan hasil dari uji normalitas nilai varian menggunakan *software stats* dengan jumlah sampel sebanyak 13 titik, untuk nilai ICP topografi diperoleh nilai varian sebesar 4826.143 dan foto udara diperoleh nilai varian sebesar 4835.246, dari hasil perhitungan uji normalitas varian diperoleh nilai batas bawah dan nilai batas atas untuk masing-masing data. Nilai rata-rata pada kedua data yaitu topografi dan foto udara berada pada rentang nilai batas bawah dan batas atas, dapat disimpulkan bahwa hasil pengukuran menghasilkan titik elevasi sampel pada kedua data 14 September 2023 terdistribusi secara normal.

Tabel 4.8 Analisa Uji Normalitas Varian 15 Desember 2023

	15 DESEMBER 2023			
	Uji	Normalitas Ni	lai Varian	
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	Keterangan
1	ICP 1	40.328	40.337	
2	ICP 2	38.974	38.937	
3	ICP 3	38.805	38.947	
4	ICP 4	39.852	39.924	
5	ICP 5	44.361	44.574	
6	ICP 6	85.821	85.891	
7	ICP 7	105.246	105.479	
8	ICP 8	131.647	131.616	NORMAL
9	ICP 9	190.674	190.460	NORWAL
10	ICP 10	211.236	219.977	
11	ICP 11	215.603	215.520	
12	ICP 12	158.611	158.803	
13	ICP 13	148.473	148.371	
	Varian (m)	4749.601	4737.003	
Nilai	Batas Bawah (m)	2710.963	2703.503	
Ni	lai Batas Atas (m)	10906.026	10877.098	

Tabel 4.8 menunjukan hasil dari uji normalitas nilai varian menggunakan *software stats* dengan jumlah sampel sebanyak 13 titik, untuk nilai ICP topografi diperoleh nilai varian sebesar 4749.601 dan foto udara diperoleh nilai varian sebesar 4737.003, dari hasil perhitungan uji normalitas varian diperoleh nilai batas bawah dan nilai batas atas untuk masing-masing data. Nilai rata-rata pada kedua data yaitu topografi dan foto udara berada pada rentang nilai batas bawah dan batas atas, dapat disimpulkan bahwa hasil pengukuran menghasilkan titik elevasi sampel pada kedua data 15 Desember 2023 terdistribusi secara normal.

B. Uji Distribusi F

Uji statistik distribusi F dilakukan menggunakan *software stats*. Uji statistik pada penelitian kali ini dilakukan dengan tujuan untuk mengetahui apakah nilai elevasi pada pada pengukuran topografi dan foto udara berbeda secara signifikan atau tidak. Berikut adalah syarat

hipotesa dan tahapan untuk mengambil keputusan dalam uji statistik distribusi F:

1. Hipotesa.

- H_o = Nilai varian sampel dari elevasi topografi dan foto udara tidak memiliki perbedaan signifikan.
- H₁ = Nilai varian sampel dari elevasi topografi dan foto udara memiliki perbedaan signifikan.

2. Pengambilan Keputusan.

- Jika nilai F hitung > F *table*, maka H₀ ditolak.
- Jika nilai F hitung < F *table*, maka H₀ diterima.
- H₁ = Nilai elevasi pada topografi dan foto udara memiliki perbedaan signifikan dan tidak diterima.

Tabel 4.9 Uji Distribusi F 14 September 2023

	14 SEPTEMBER 2023			
	Uj	i Distribusi F		
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	
1	ICP 1	38.528	38.321	
2	ICP 2	38.774	38.709	
3	ICP 3	38.805	38.721	
4	ICP 4	39.652	39.534	
5	ICP 5	45.361	45.158	
6	ICP 6	87.421	87.312	
7	ICP 7	105.846	105.837	
8	ICP 8	133.347	133.391	
9	ICP 9	191.674	191.813	
10	ICP 10	214.236	214.094	
11	ICP 11	215.603	215.824	
12	ICP 12	158.311	158.132	
13	ICP 13	148.673	148.441	
	Varian	4826.143 4835.246		
Nila	i Batas Bawah	0.016		
N	ilai Batas Atas	3.177		
	F hitung	1.0	002	
	F tabel	4.	747	

Dari hasil uji distribusi F 14 September 2023, didapatkan hasil perhitungan F hitung berada di dalam rentang penerimaan nilai F hitung < F

table maka H0 diterima, sehingga bisa disimpulkan bahwa nilai elevasi pada ICP topografi dan foto udara tidak terjadi perbedaan secara signifikan.

Tabel 4.10 Uji Distribusi F 15 Desember 2023

	15 DESEMBER 2023			
	Uj	i Distribusi F		
No.	Nama Titik	Z RTK (m)	Z Ortho (m)	
1	ICP 1	40.328	40.337	
2	ICP 2	38.974	38.937	
3	ICP 3	38.805	38.947	
4	ICP 4	39.852	39.924	
5	ICP 5	44.361	44.574	
6	ICP 6	85.821	85.891	
7	ICP 7	105.246	105.479	
8	ICP 8	131.647	131.616	
9	ICP 9	190.674	190.460	
10	ICP 10	211.236	210.997	
11	ICP 11	215.603	215.520	
12	ICP 12	158.611	158.803	
13	ICP 13	148.473	148.371	
	Varian	4749.601 4737.003		
Nila	i Batas Bawah	0.466		
Nilai Batas Atas		2.147		
	F hitung	1.003		
	F tabel	2.0	687	

Dari hasil uji distribusi F 15 Desember 2023, didapatkan hasil perhitungan F hitung berada di dalam rentang penerimaan nilai F hitung < F table maka H0 diterima, sehingga bisa disimpulkan bahwa nilai elevasi pada ICP topografi dan foto udara tidak terjadi perbedaan secara signifikan.

4.2.5 Hasil Perhitungan Volume Galian Foto Udara

Hasil dari perhitungan volume galian foto udara ini yang nantinya juga akan digunakan dalam perbandingan volume galian dengan data topografi. Volume dari data pengukuran foto udara ini menunjukan hasil sebesar :

Table 4.11 Tabel Perbandingan Hasil Perhitungan Volume Galian Foto Udara Menggunakan Dua Metode Perhitungan

Metode Perhitungan Volume	Volume Galian (m³)
Global Mapper	296178.59 m³
Civil 3D	265739.95 m³

Hasil perhitungan volume galian ini dipreroleh dari pengolahan data foto udara, dimana proses perhitungan volume galian menggunakan *software Civil* 3D dan Global Mapper untuk mengetahui perbandingan hasil perhitungan volume galian dari data foto udara.

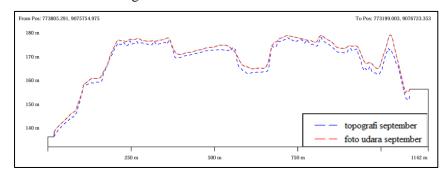
4.3 Hasil Perhitungan Volume Galian Pengukuran Topografi

Berikut hasil dari proses perhitungan volume pengukuran topografi menggunakan software Civil 3D dan Global Mapper dengan metode surface to surface.

Tabel 4.12 Tabel Perbandingan Hasil Perhitungan Volume Galian Topografi Menggunakan Dua Metode Perhitungan

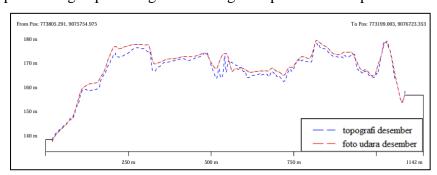
Metode Perhitungan Volume	Volume Galian (m³)
Global Mapper	299521.41 m³
Civil 3D	299521.41 m³

Hasil perhitungan volume galian ini dipreroleh dari pengolahan data topografi menggunakan *software Civil 3D* dan *Global Mapper* untuk mengetahui volume galian dari data pengukuran topografi. Hasil yang ditampilkan pada tabel 4.12 memiliki nilai perhitungan volume galian yang sama, dengan nilai hasil perhitungan volume 299521.41 m³.


4.4 Hasil Perbandingan Volume Galian

Dari hasil perhitungan volume galian data kedua, dapat dilakukan analisis perbandingan hasil perhitungan volume galian dari foto udara dan data pengukuran topografi. Berikut ini merupakan tabel hasil perbandingan volume galian:

Tabel 4.13 Hasil Perhitungan Perbandingan Volume Galian *Surface to Surface* Topografi dan Foto Udara.


Perbandingan Volume Galian Metode <i>Surface to</i> Surface Topografi dan Foto udara				
Tanggal	Penyimpangan (m³)			
14 September 2023	4911.14			
15 Desember 2023	15218.37			

Pada tabel 4.13 menunjukkan hasil dari perbandingan perhitungan volume galian dengan metode topografi dan foto udara yang dibandingngkan pada bulan yang sama. Pada metoode *surface to surface* topografi dan foto udara tanggal 14 September 2023 menghasilkan selisih sebesar 4911.14 m³, sedangkan pada bulan Desember menghasilkan selisih sebesar 15218.37 m³.

Gambar 4.5 Perbandingan Potongan Antara *Surface* Topografi dan Foto Udara 14 September 2023

Pada gambar 4.5 dapat dilihat perbedaan hasil perhitungan volume galian dari data topografi dan foto udara. Dimana pada *surface* foto udara terdapat perbedaan elevasi dengan *serface* topografi. Hal tersebut sangat mempengaruhi hasil perbandingan perhitungan volume galian pada bulan September.

Gambar 4.6 Perbandingan Potongan Antara *Surface* Topografi dan Foto Udara 15 Desember 2023

Pada gambar 4.6 dapat dilihat perbedaan hasil perhitungan volume galian yang signifikan dari data topografi dan foto udara. Dimana pada *surface* foto udara terdapat perbedaan elevasi dengan *serface* topografi sama halnya dengan gambar 4.5. Hal tersebut sangat mempengaruhi hasil perbandingan perhitungan volume galian pada bulan Desember.

Dari hasil perbandingan perhitungan volume galian dengan menggunakan metode *surface to surface* pada tabel 4.13, selanjutnya akan dilakukan komparasi perbandingan perhitungan volume galian topografi dan foto udara, dimana hasil dari komparasi tersebut akan digunakan untuk uji ketelitian volume. Berikut ini merupakan tabel hasil perbandingan volume galian:

Tabel 4.14 Hasil Perhitungan Volume Galian Pengukuran Topografi dan Foto Udara.

No.	Software	Vol	Danvimnangan (m3)	
140.		Topografi (m³)	Foto Udara (m³)	Penyimpangan (m³)
1	Global Mapper	299521.41	296178.59	3342.82
2	Civil 3D	299521.41	265739.95	33781.46

Pada metode pengolahan data volume galian foto udara terhadap topografi menggunakan *software Global Mapper* dan *Civil 3D* memperoleh hasil dengan penyimpangan yang berbeda, dengan selisih 3342.82 m³ untuk pengolahan menggunakan *Global Mapper* dan 33781.46 m³ untuk pengolahan menggunakan *Civil 3D*.

4.5 Ketelitian Volume Galian Terhadap Toleransi ASTM

Dari hasil kedua metode perhitungan volume galian DTM menggunakan software Civil 3D dan Global Mapper, kemudian akan dibandingkan terhadap hasil perhitungan volume galian topografi sebagai data acuan atau data yang dianggap benar. Dikarenakan pada pengukuran topografi, proses pengukuran bersentuhan langsung dengan obyek permukaan tanah sehingga data pengukuran topografi dianggap sebagai data acuan atau data yang dianggap benar, dengan toleransi sebesar ±2.78% berdasarkan ASTM (American Standard Testing and Material).

Perbandingan hasil ketelitian volume galian pada kedua metode yang digunakan (*Civil 3D* dan *Global Mapper*) dihitung dengan mengurangkan hasil dari perhitungan volume galian DTM foto udara terhadap hasil perhitungan

volume galian pengukuran topografi sebagai data acuan, lalu hasilnya dibagi dengan hasil perhitungan volume galian pengukuran topografi sebagai data acuan dan dinyatakan dalam bentuk persen.

Berikut adalah hasil ketelitian perhitungan volume galian yang dapat dilihat pada tabel 4.15 :

Table 4.15 Presentase Ketelitian Volume Galian Dari Metode Perhitungan Volume Galian Menggunakan Software Civil 3D dan Global Mapper

		Volume		Danvimnangan	
No.	Software	Topografi (m³)	Foto Udara (m³)	Penyimpangan (m³)	persentase (%)
1	Global Mapper	299521.41	296178.59	3342.82	1.12
2	Civil 3D	299521.41	265739.95	33781.46	11.28

Pada metode pengolahan data volume galian menggunakan *software Global Mapper* memperoleh hasil ketelitian dengan selisih perhitungan 3342.82 m³ atau sebesar 1.12% bila ditampilkan dalam bentuk persen, sedangkan untuk ketelitian menggunakan metode pengolahan menggunakan *software Civil 3D* memperoleh hasil ketelitian dengan selisih sebesar 33781.46 m³ atau sebesar 11.28% bila ditampilkan dalam bentuk persen.

Berdasarkan toleransi ASTM (*American Standard Testing and Material*) ±2.78% mengenai ketelitian perhitungan volume, hasil perhitungan volume galian dengan menggunakan *software Global Mapper* memperoleh hasil yang masih dalam batas toleransi ASTM, sedangkan hasil perhitungan volume galian dengan menggunakan *software Civil 3D* memperoleh hasil diluar batas toleransi ASTM.