PENJADWALAN PROYEK JALAN NASIONAL MENGGUNAKAN METODE PDM: STUDI KASUS RUAS AIR NANANG – KOTA BARU MALUKU

Shafira Aisyahra Umagapy¹, Lila Ayu Ratna Winanda², Vega Aditama³

123) Jurusan Teknik Sipil S-1 Institut Teknologi Nasional Malang Email: 1821166shafiraaisyahra@gmail.com¹

ABSTRACT

Road construction plays an important role in improving interregional relations, promoting economic growth, and equitable development, especially in remote areas. One such effort is the National Road Construction Project for the Air Nanang–Kota Baru section in East Seram Regency, Maluku Province, covering the segment from STA 06+400 to STA 10+800. This study aims to develop a project implementation schedule using the Precedence Diagram Method (PDM) with Microsoft Project 2019 software. The planning results indicate a total project duration of 794 working days (2 years, 7 months, 17 days), with a difference of 316 days from the initial total duration, and 11 activities classified as critical. The results of this planning are expected to serve as a reference for initial simulations in scheduling the road construction project or similar projects.

Keywords: Project planning, PDM, National Road, Microsoft Project.

ABSTRAK

Pembangunan jalan memiliki peran penting untuk meningkatkan hubungan antarwilayah, mendorong pertumbuhan ekonomi, serta pemerataan pembangunan, khususnya di daerah yang masih terpencil. Salah satu upaya tersebut adalah proyek pembangunan Jalan Nasional Ruas Air Nanang–Kota Baru di Kabupaten Seram Bagian Timur, Provinsi Maluku, pada segmen STA 06+400 sampai STA 10+800. Penelitian ini bertujuan untuk menyusun jadwal pelaksanaan proyek dengan metode *Precedence Diagram Method* (PDM) menggunakan aplikasi Microsoft Project 2019. Dari hasil perencanaan diperoleh total durasi pekerjaan selama 794 hari kerja (2 tahun, 7 bulan, 17 hari), dengan selisih 316 hari dari total durasi awal dan terdapat 11 kegiatan yang termasuk dalam kegiatan kritis. Hasil dari perencanaan ini diharapkan dapat menjadi acuan simulasi awal dalam penyusunan jadwal pada proyek pembangunan jalan tersebut atau proyek sejenis.

Kata kunci: Perencanaan proyek, PDM, Jalan Nasional, Microsoft Project.

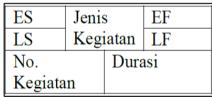
1. PENDAHULUAN

Pembangunan infrastruktur jalan memegang peranan penting dalam mendorong pertumbuhan ekonomi, pembangunan, pemerataan serta peningkatan konektivitas antarwilayah, khususnya di daerah terpencil. Salah satu proyek strategis di Provinsi Maluku adalah pembangunan Jalan Nasional ruas Air Nanang-Kota Baru di Kabupaten Seram Bagian Timur, yang direncanakan untuk mempermudah mobilitas barang dan orang serta mendukung pengembangan wilayah sekitar. Proyek direncanakan akan dilaksanakan pada periode 2025-2028 dengan total panjang ruas ±65 Km. Untuk memastikan pelaksanaan pembangunan berjalan optimal, diperlukan perencanaan yang matang. Oleh karena itu, penelitian ini dilakukan sebagai simulasi awal penjadwalan dan dengan menggunakan metode *Precedence Diagram Method* (PDM) pada Microsoft Project proyek pembangunan jalan tersebut.

2. DASAR TEORI

Penjadwalan proyek

Penjadwalan proyek merupakan bagian penting dari proses perencanaan karena untuk menyediakan gambaran visual yang komprehensif terkait jadwal pelaksanaan dan kemajuan proyek. Hal ini mencakup pemantauan kinerja dalam penggunaan berbagai sumber daya seperti biaya, tenaga kerja, peralatan, dan material, serta memfasilitasi estimasi waktu penyelesaian proyek (Sumarno et al., 2023). Penjadwalan memiliki beberapa manfaat, di antaranya sebagai berikut.


- Memberikan pedoman terhadap unit pekerjaan kegiatan mengenai batas waktu untuk mulai dan akhir dari masing-masing tugas.
- Memberikan sarana bagi manajemen untuk koordinasi secara sistematis dan realistis dalam penentuan alokasi prioritas terhadap sumber daya dan waktu.
- c. Memberikan sarana untuk menilai kemajuan proyek.
- d. Menghindari pemakaian sumber daya yang berlebihan, dengan harapan proyek dapat selesai sebelum waktu ditetapkan.
- e. Memberikan kepastian waktu pelaksanaan proyek.

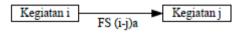
Menurut Syammaun et al. (2024) perencanaan jadwal proyek, terdapat beberapa aspek utama yang perlu diperhatikan, yaitu:

- 1. Daftar kegiatan (activity list)
- 2. Durasi setiap kegiatan
- 3. Ketergantungan antar kegiatan (dependency)
- 4. Jalur kritis (critical path)
- 5. Estimasi waktu mulai dan selesai (*start and finish time*)

Precedence diagram method

Precedence Diagram Method (PDM) adalah teknik penjadwalan proyek di mana aktivitas digambarkan dalam node yang umumnya berbentuk segi empat. Hubungan antaraktivitas ditunjukkan oleh panah, sedangkan hubungan antarkegiatan (constrain) direpresentasikan oleh satu garis yang menghubungkan dua node, dari node pendahulu ke node selanjutnya (Hutagaol et al., 2014).

Gambar 1. Node pada kegiatan PDM (Sumber: Ervianto dan Wulfram, 2007)


Keterangan:

- a. ES (Earliest Start Time), yaitu waktu mulai paling awal suatu kegiatan.
- b. EF (Earliest Finish Time), yaitu waktu selesai paling awal suatu kegiatan.
- c. LS (Latest Allowable Start Time), yaitu waktu paling akhir kegiatan boleh dimulai tanpa memperlambat proyek secara keseluruhan.
- d. LF (Latest Finish Time), yaitu waktu paling akhir kegiatan boleh selesai tanpa memperlambat proyek secara keseluruhan.
- e. D (Duration), yaitu kurun waktu suatu kegiatan. Umumnya dalam satuan waktu hari, minggu, bulan.

Hubungan antarkegiatan (konstrain) pada metode PDM lebih fleksibel karena menggunakan empat hubungan logis di antara aktivitas-aktivitasnya (Widiasanti & Lenggogeni, 2013). Konstrain tersebut yaitu:

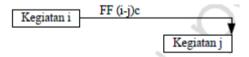
1. Finish to Start (FS)

Konstrain Finish to Start merupakan hubungan yang terjadi dimana suatu kegiatan tidak dapat dimulai sebelum kegiatan pendahulunya selesai dilaksanakan.

Gambar 2. Diagram Konstrain FS (Sumber: Rani, 2016)

2. Start to Start (SS)

Konstrain Start to Start merupakan hubungan yang terjadi dimana suatu kegiatan dapat dimulai bersamaan kegiatan pendahulunya dilaksanakan dan dapat menambahkan konsep lag (jarak waktu pelaksanaan).



Gambar 3. Diagram Konstrain SS

(Sumber: Rani, 2016)

3. Finish to Finish (FF)

Konstrain Finish to Finish merupakan hubungan yang menunjukan hubungan selesai antara dua kegiatan.

Gambar 4. Diagram Konstrain FF

(Sumber: Rani, 2016)

4. Stast to Finish (SF)

Konstrain Start to Finish menjelaskan hubungan antara selesainya suatu kegiatan dengan mulainya kegiatan terdahulu. Dalam hal ini sebagian dari porsi kegiatan terdahulu harus selesai sebelum bagian akhir kegiatan yang dimaksud boleh diselesaikan.

Gambar 5. Diagram Konstrain SF

(Sumber: Rani, 2016)

Perhitungan maju dan mundur pada PDM

1. Perhitungan Maju

Perhitungan maju dalam PDM (Precedence Diagram Method) adalah cara untuk menentukan waktu mulai paling awal sebuah aktivitas. Untuk menentukan waktu mulai paling awal (Early Start) dalam perhitungan maju PDM, kita memerlukan data durasi aktivitas (Widiasanti & Lenggogeni, 2013). Adapun aturan dasarnya adalah:

- a. Aktivitas awal selalu dimulai pada waktu nol (ES = 0).
- b. Waktu selesai paling awal (EF) adalah hasil penjumlahan waktu mulai paling awal (ES) dengan durasi aktivitas (D).
 EF=ES+D.
- C. Nilai ES untuk aktivitas yang mengikuti ditentukan dari nilai EF aktivitas sebelumnya, ditambah dengan nilai lag yang ada pada hubungan logis di antara keduanya.

2. Perhitungan Mundur

Perhitungan mundur adalah proses untuk menentukan batas waktu paling lambat sebuah aktivitas dapat dimulai dan diselesaikan tanpa menunda tanggal penyelesaian proyek secara keseluruhan, yang sebelumnya telah ditetapkan melalui perhitungan maju (Sumarno et al., 2023). Aturan utama untuk melakukan perhitungan mundur:

- a. Proses ini selalu dimulai dari aktivitas terakhir dalam diagram jaringan kerja.
- b. Waktu mulai paling lambat (LS) dihitung dengan mengurangkan durasi aktivitas dari waktu selesai paling lambatnya (LF). Rumusnya adalah: LS = LF Durasi Kegiatan.
- C. Jika sebuah aktivitas memiliki lebih dari satu aktivitas yang mengikutinya, nilai waktu selesai paling lambatnya (LF) ditentukan oleh nilai waktu mulai paling lambat (LS) terkecil dari semua aktivitas berikutnya.

Lintasan kritis

Total Float/Slack

Total Float adalah jumlah waktu yang diperbolehkan suatu kegiatan dapat ditunda, tanpa mempengaruhi jadwal proyek secara keseluruhan. Jumlah waktu tersebut sama dengan waktu yang didapat bila semua kegiatan terdahulu dimulai seawal mungkin, sedangkan kegiatan berikutnya dimulai selambat mungkin (Sumarno et al., 2023). Aturan dalam menghitung Total Float adalah sebagai berikut.

- a. Total Float suatu kegiatan sama dengan waktu selesai paling akhir, dikurangi waktu selesai paling awal, atau waktu mulai paling akhir, dikurangi waktu mulai paling awal kegiatan. Rumus: TF = LF EF = LS ES
- b. Salah satu syarat yang menunjukkan bahwa suatu kegiatan kritis atau berada dijalur kritis adalah jika kegiatan tersebut memiliki TF = 0.

2. Free Float/Slack

Total Float adalah jumlah waktu yang diperkenankan suatu kegiatan boleh ditunda, tanpa mempengaruhi jadwal proyek secara keseluruhan. Jumlah waktu tersebut sama dengan waktu yang didapat bila semua kegiatan terdahulu dimulai seawal mungkin, sedangkan kegiatan berikutnya dimulai selambat mungkin. Free Float suatu kegiatan adalah sama dengan waktu mulai paling awal (ES) dari kegiatan berikutnya dikurangi waktu selesai paling awal (EF) kegiatanyang dimaksud. Rumus: FF (ij) = ES (j) – EF (i) (Sumarno et al., 2023).

Kelebihan metode pdm

Metode PDM (Precedence Diagramming Method) menawarkan cara yang lebih sederhana untuk memvisualisasikan hubungan logis antar-aktivitas konstruksi, terutama untuk proyek yang memiliki aktivitas kompleks dan berlangsung secara bersamaan. PDM sangat berguna untuk proyek berulang, seperti pembangunan gedung bertingkat atau jalan raya, karena mampu memodelkan aktivitas yang tumpang tindih tanpa perlu memecahmecahnya. Dengan menambahkan hubungan antaraktivitas, PDM membantu perencana proyek membuat jadwal yang lebih akurat dan komprehensif (Widiasanti & Lenggogeni, 2013).

Microsoft project

Microsoft Project merupakan perangkat lunak manajemen proyek yang dikembangkan dan dipasarkan oleh Microsoft. Program ini dirancang untuk membantu manajer proyek dalam menyusun perencanaan proyek, termasuk di dalamnya penjadwalan kegiatan proyek (Zulfikram et al., 2018). Adapun istilah — istilah dalam aplikasi Microsoft Project yaitu sebagai berikut:

1. Task (tugas)

Task merupakan lembar kerja yang berisi tentang rincian pekerjaan. Jenis pekerjaan ini ada yang bersifat global, bahkan sampai pada rincian pekerjaan yang bersifat detail. Task menghadirkan pekerjaan yang dilaksanakan untuk memenuhi tujuan proyek.

2. Duration (durasi)

Duration adalah jangka waktu atau lamanya waktu yang dibutuhkan untuk menyelesaiakan suatu pekerjaan. Satuan waktu disini terbagi atas: Menit / Minutes (mi), Jam / Hours (h), Hari / Days (d), Minggu / Weeks (w) dan Bulan / Months (mo).

3. *Start* (mulai)

Start adalah suatu nilai yang menyatakan tanggal awal atau dimulainya suatu proyek tertentu.

4. Finish (selesai)

Finish adalah suatu nilai yang menyatakan tanggal akhir atau diakhirinya suatu proyek tertentu. Pengisiannya dilakukan secara otomatis setelah ditentukan durasi pekerjaan.

5. Predecessor

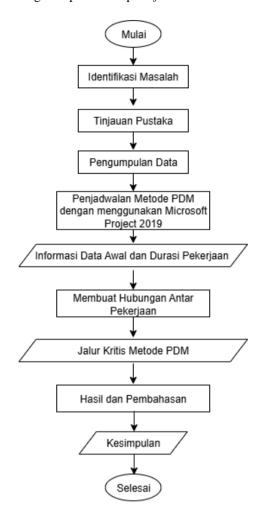
Predecessor merupakan suatu hubungan keterkaitan/ketergantungan antara satu pekerjaan dengan pekerjaan lain.

6. Gantt chart

Gantt Chart adalah bentuk tampilan dari hasil kerja Microsoft Project dalam bentuk batang horizontal yang menggambarkan masing-masing pekerjaan beserta durasinya. Selain itu, grafik ini menunjukkan hubungan antara pekerjaan yang satu dengan yang lain.

7. Network Diagram

Menampilkan daftar tugas — tugas dalam bentuk diagram blok yang berhubungan satu dengan yang lain. Tujuannya untuk menunjukkan keterkaitan antara satu tugas dengan yang lain dalam bentuk rangkaian tugas. Bentuk Network diagram pada aplikasi Microsoft Project salah satunya adalah PDM (*Precedence Diagram Methode*).

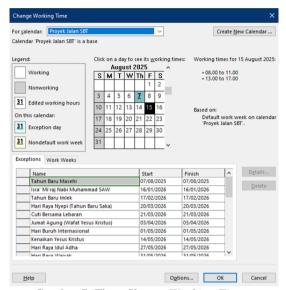

8. Resources

Resource adalah sumber daya baik sumber daya Peralatan, Manusia (Tenaga Kerja) maupun Material dalam Microsoft Project disebut Resources. Satuan atau unit pada sumber daya peralatan dan manusia yaitu dalam bentuk %, misal pada peralatan 1 unit adalah 100% dan pada tenaga kerja 1 orang adalah 100%. Sedangkan pada sumber daya material satuannya tetap dalam bentuk volume.

3. METODE PENELITIAN

Penelitian ini dimaksudkan untuk mengetahui total durasi pelaksanaan dan total biaya pembangunan proyek. Metode analitis yang digunakan dalam penelitian ini dilakukan dengan menggunakan studi literatur dan arsip proyek. Analisis data dilakukan dengan menggunakan perangkat lunak *Microsoft Excel* untuk menghitung estimasi anggaran biaya dan durasi pelaksanaan, serta *Microsoft Project* untuk

penjadwalan dengan metode PDM. Tahapan perhitungan dapat dilihat pada *flowchart* berikut.


Gambar 6. Diagram Alir Penelitian

4. PEMBAHASAN

Penjadwalan PDM menggunakan microsoft project 2019

1. Informasi Dara Awal

Memasukkan data awal proyek, meliputi nama proyek, tanggal mulai pelaksanaan, serta pengaturan kalender kerja proyek yang akan digunakan. Pada tahap pengaturan kalender akan dimasukkan data jam kerja harian, hari kerja, hari libur nasional maupun kalender khusus untuk proyek dengan menggunakan fitur *Change Working Time* pada Microsoft Project.

Gambar 7. Fitur Change Working Time

Informasi Awal yang digunakan yaitu pelaksanaan dimulai dari tanggal 12 Januari 2026 dengan jam kerja selama 7 jam mulai dari jam 08.00-11.00 lalu mulai kembali jam 13.00-17.00.

2. Menghitung Durasi dan Tenaga Kerja Perhitungan durasi dilakukan setelah penyusunan Rencana Anggaran Biaya (RAB), karena data volume pekerjaan dan produktivitas yang digunakan untuk menghitung durasi berasal dari hasil estimasi kuantitas dan kebutuhan sumber daya yang tercantum pada RAB.

Tabel 1. Durasi Setiap Pekerjaan

Pekerjaan	Durasi (hari)
Mobilisasi	7
Galian Biasa	636
Timbunan Biasa dari Hasil galian	313
Timbunan Pilihan dari sumber galian	8
Penyiapan Badan Jalan	7
Lapis Pondasi Agregat Kelas S	11
Lapis Pondasi Agregat Kelas A	38
Lapis Pondasi Agregat Kelas B	37
Lapis Resap Pengikat	17
Lapis Perekat	2
Lataston Lapis Aus (HRS-WC)	29
Lataston Lapis Pondasi (HRS-Base)	11
Total	1110

3. Menghubungkan Setiap Pekerjaan

Dalam penyusunan jadwal proyek, setiap kegiatan harus dihubungkan satu sama lain untuk mencerminkan urutan pelaksanaan yang logis dan realistis. Penghubungan ini dilakukan dengan menetapkan predecessor yang menunjukkan hubungan ketergantungan antara kegiatan pendahulu dan kegiatan penerus. Berikut ini adalah hasil penghubungan kegiatan yang telah dilakukan berdasarkan analisis

urutan pelaksanaan pekerjaan ditunjukkan pada Tabel 2.

Tabel 2. Predecessor

Tube	2.1 reactess	01
Task Name	Duration	Predecessors
Penjadwalan Pembangunan Jalan Nasional Kabupaten Seram Bagian Timur	818,8 days	
DIVISI 1. UMUM	7 days	
Mobilisasi	7 days	
DIVISI 3. PEKERJAAN TANAH	684,8 days	
Galian Biasa	636 days	3
Timbunan Biasa dari hasil galian	161 days	5FS-49%
Timbunan Pilihan dari sumber galian	8 days	6
Penyiapan Badan Jalan	7 days	7;6
DIVISI 4. PELEBARAN PERKERASAN DAN BAHU JALAN	11 days	
Lapis Pondasi Agregat Kelas S	11 days	12SS+1 day
DIVISI 5. PERKERASAN BERBUTIR	75 days	
Lapis Pondasi Agregat Kelas A	38 days	13
Lapis Pondasi Agregat Kelas B	37 days	8
DIVISI 6. PERKERASAN ASPAL	59 days	
Lapis Resap Pengikat - Aspal Cair	17 days	12
Lapis Perekat	2 days	18
Lataston Lapis Aus (HRS-WC) (gradasi senjang/semi senjang)	29 days	16
Lataston Lapis Pondasi (HRS-Base) (gradasi senjang/semi senjang)	11 days	15

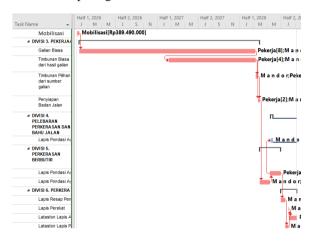
Tabel 3. Hubungan antarkegiatan

	Tabel 3. Hubungan antarkegiatan						
NI-	Pekerjaan	Pendahulu	Linking	Keterangan / Logika			
No.	(Activity)	(Predecessor)	Hubungan	Ini adalah pekerjaan awal yang			
1	Mobilisasi	-	-	tidak memiliki pendahulu.			
2	Galian	Mobilisasi	FS	Pekerjaan Galian dimulai setelah Mobilisasi selesai.			
3	Timbunan Biasa	Galian	FS-49%	Pekerjaan timbunan bisa dimulai setelah pekerjaan galian di lokasi selesai 51%.			
4	Timbunan Pilihan	Timbunan Biasa	FS	Timbunan pilihan, jika diperlukan, dilakukan setelah pekerjaan timbunan biasa selesai.			
5	Penyiapa n Badan Jalan	Timbunan Biasa, Timbunan Pilihan	7FS;6FS	Penyiapan Badan Jalan dilakukan setelah pekerjaan Timbunan Biasa dan pekerjaan Timbunan Pilihan selesai.			
6	Lapis Pondasi B	Timbunan Pilihan	FS	Lapisan fondasi tidak bisa dihamparkan sebelum timbunan selesai dan dipadatkan.			
7	Lapis Pondasi A	Lapis Pondasi B	FS	Lapis Pondasi A harus dihamparkan di atas Lapis Pondasi B yang sudah selesai.			
8	Lapis Agregat Kelas S	Lapis Pondasi A	SS	Pekerjaan bahu jalan dapat dimulai bersamaan (paralel) dengan pekerjaan Lapis Pondasi A karena dilakukan di area yang berbeda namun saling berdekatan.			
9	Pekerjaan Lapis Resap	Lapis Pondasi A	FS	Lapisan resap (<i>Prime Coat</i>) hanya dapat diaplikasikan setelah Lapis Pondasi A selesai dan permukaannya bersih.			
10	HRS- Base	Pekerjaan Lapis Resap	FS	Lapisan HRS-Base baru bisa dihamparkan setelah Lapis Resap selesai diaplikasikan dan mengering.			
11	Pekerjaan Lapis Perekat	HRS-Base	FS	Lapisan perekat (<i>Tack Coat</i>) hanya bisa diaplikasikan setelah lapisan aspal HRS-Base selesai dihampar.			
		Pekerjaan Lapis Perekat		Lapisan HRS WC (Wearing Course) hanya bisa dimulai setelah			
12	HRS WC		FS	lapisan perekat diaplikasikan.			

Perencanaan hubungan antarkegiatan pada Tabel 2 direncanakan 2 jenis hubungan yaitu Finish to Start (FS) dan Start to Start (SS) dengan lag yang selanjutnya diuraikan dalam Tabel 3.

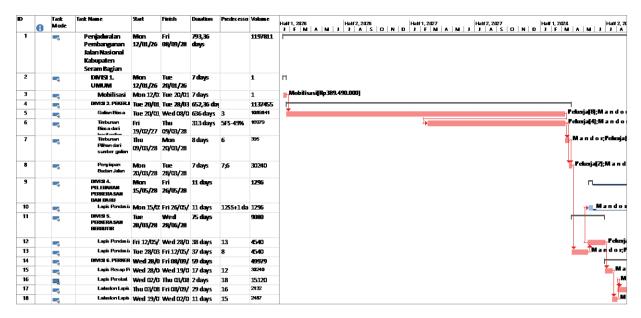
4. Perhitungan ES, EF, LS, LF, Free Float dan Total *Slack (Float)*

Tabel 4. Nilai ES, EF,LS,LF, Free Float dan Total Slack dari Microsoft Project


	nai Sia	cit duii .	111101050	ntrioje		
Task Name	Early Start	Early Finish	Late Start	Late Finish	Free Slack	Total Slack
Penjadwalan Pembangunan Jalan Nasional Kabupaten Seram Bagian Timur	Mon 12/01/26	Fri 08/09/2	Mon 12/01/26	Fri 08/09/28	0 days	0 days
DIVISI 1. UMUM	Mon 12/01/26	Tue 20/01/26	Mon 12/01/26	Tue 20/01/26	0 days	0 days
Mobilisasi	Mon 12/01/26	Tue 20/01/26	Mon 12/01/26	Tue 20/01/26	0 days	0 days
DIVISI 3. PEKERJAAN TANAH	Tue 20/01/26	Tue 28/03/28	Tue 20/01/26	Tue 28/03/28	0 days	0 days
Galian Biasa	Tue 20/01/26	Wed 08/03/28	Tue 20/01/26	Wed 08/03/28	0 days	0 days
Timbunan Biasa dari hasil galian	Fri 19/02/27	Thu 09/03/28	Fri 19/02/27	Thu 09/03/28	0 days	0 days
Timbunan Pilihan dari sumber galian	Thu 09/03/28	Mon 20/03/28	Thu 09/03/28	Mon 20/03/28	0 days	0 days
Penyiapan Badan Jalan	Mon 20/03/28	Tue 28/03/28	Mon 20/03/28	Tue 28/03/28	0 days	0 days
DIVISI 4. PELEBARAN PERKERASAN DAN BAHU JALAN	Mon 15/05/28	Fri 26/05/28	Fri 25/08/28	Fri 08/09/28	85 days	85 days
Lapis Pondasi Agregat Kelas S	Mon 15/05/28	Fri 26/05/28	Fri 25/08/28	Fri 08/09/28	85 days	85 days
PERKERASAN	Tue 28/03/28	Wed 28/06/28	Tue 28/03/28	Wed 28/06/28	0 days	0 days
Lapis Pondasi Agregat Kelas A	Fri 12/05/28	Wed 28/06/28	Fri 12/05/28	Wed 28/06/28	0 days	0 days
Lapis Pondasi Agregat Kelas B	Tue 28/03/28	Fri 12/05/28	Tue 28/03/28	Fri 12/05/28	0 days	0 days
PERKERASAN	Wed 28/06/28	Fri 08/09/28	Wed 28/06/28	Fri 08/09/28	0 days	0 days
Lapis Resap Pengikat - Aspal Cair	Wed 28/06/28	Wed 19/07/28	Wed 28/06/28	Wed 19/07/28	0 days	0 days
Lapis Perekat	Wed 02/08/28	Thu 03/08/28	Wed 02/08/28	Thu 03/08/28	0 days	0 days
(gradasi senjang/semi senjang)	Thu 03/08/28	Fri 08/09/28	Thu 03/08/28	Fri 08/09/28	0 days	0 days
Lataston Lapis Pondasi (HRS- Base) (gradasi senjang/semi senjang)	Wed 19/07/28	Wed 02/08/28	Wed 19/07/28	Wed 02/08/28	0 days	0 days

Berdasarkan hasil perencanaan pada Microsoft Project didapatkan hasil 11 pekerjaan merupakan kegiatan yang hasil total float dan free floatnya 0 hari dan pekerjaan Lapis Pondasi Agregat Kelas S merupakan kegiatan yang bisa ditunda dengan total float dan free floatnya 85 hari sehingga pekerjaan ini dapat ditunda maksimal selama 85 hari.

Jalur Kritis Precedence Diagran Method
 Setelah durasi setiap pekerjaan diketahui, langkah selanjutnya adalah menentukan hubungan antar pekerjaan melalui penyusunan


jaringan kerja menggunakan metode PDM, baik secara manual maupun dengan bantuan aplikasi Microsoft Project 2019.

Berdasarkan hasil perhitungan total float pada Microsoft Project sebelumnya didapatkan hasil 11 pekerjaan merupakan kegiatan yang berada di jalur kritis dengan hasil total float 0 hari dan dan pekerjaan Lapis Pondasi Agregat Kelas S berada pada jalur non-kritis atau merupakan kegiatan yang bisa ditunda dengan hasil total float 85 hari sehingga pekerjaan ini dapat ditunda maksimal selama 85 hari. Kegiatan yang merupakan kegiatan kritis dalam Bar Chart ditampilkan dengan warna merah sedangkan kegiatan non-kritis ditampilkan dalam warna biru seperti gambar 8 berikut.

Gambar 8. Bar Chart

Dari hasil penyusunan jaringan kerja dengan metode PDM, diperoleh total durasi pekerjaan sebesar 794 hari dengan jalur kritis dan nonkritis, yang pada network diagram ditandai dengan kotak dan garis berwarna merah yaitu pada mobilisasi dengan durasi 7 hari, pekerjaan galian dengan durasi 636 hari, Pekerjaan Timbunan Biasa dengan durasi 311 hari, Pekerjaan Timbunan Pilihan dengan durasi 8 hari, pekerjaan penyiapan badan jalan dengan durasi 7 hari, pekerjaan LPA dengan durasi 38 hari, pekerjaan LPB dengan durasi 37 hari, pekerjaan lapis resap pengikat denagn durasi 17 hari, pekerjaan Lapis Perekat dengan durasi 2 hari, Pekerjaan Lataston Lapis Aus (HRS-WC) dengan durasi 29 hari, dan pekerjaan Lataston Lapis Pondasi (HRS-Base) dengan durasi 11 hari.

Gambar 9. Hasil Penjadwalan Proyek Dengan Microsoft Project

Gambar 10. Diagram Penjadwalan Proyek Metode PDM

6. Hasil dan Pembahasan

Dari hasil penjadwalan pada Proyek pembangunan jalan nasional dengan metode Precedence Diagram Method (PDM) menggunakan Microsoft Project didapatkan total durasi pelaksanaan proyek yaitu 794 hari keria dan lebihcepat 317 hari dibandingkan dengan durasi awal yaitu 1110 hari kerja setelah peniadwalan dilakukan dengan sistem overlapping.

5. PENUTUP

Kesimpulan

Dari hasil analisis total durasi Pembangunan Jalan Nasional Kabupaten Seram Bagian Timur Sta.06+400 sampai dengan 10+800 menggunakan metode Precedence Diagram Method (PDM) dengan program bantu Microsoft Project 2019 dapat yaitu durasi total pelaksnaan proyek lebih cepat 317 hari kerja setelah dilakukan *overlapping* sehingga total durasinya yaitu 793 hari kerja.

DAFTAR PUSTAKA

- Ervianto, Wulfram, I. (2007). Manajemen Proyek Konstruksi - Edisi Revisi. *PT. Gramedia Pustaka*, 2006.
- Hutagaol, J. D., Sendi, Wibowo, M. A., & Tanto. (2014). Perbandingan Metode Critical Path Method (CPM), Precedence Diagram Method (PDM), dan Line of Balance (LoB) terhadap Proyek Repetitif. *Jurnal Karya Teknik Sipil*, 2(1), 205–227. https://ejournal3.undip.ac.id/index.php/jkts/article/view/4108/3993
- Rani, H. A. (2016). Manajemen Proyek Konstruksi. 99.

https://www.researchgate.net/publication/3160 81639_Manajemen_Proyek_Konstruksi

Sumarno, W., Sanjaya, I., & Maskur, A. (2023). Pengaruh Penggunaan Precedence Diagram Setelah dilakukan scheduling pada Pembangunan Jalan Nasional Kabupaten Seram Bagian Timur menggunakan metode Precedence Diagram Method (PDM) didapat durasi yaitu 215 hari.

Saran

Dari hasil analisis dan kesimpulan studi ini maka ada beberapa saran dari penulis yaitu penulis menyarankan agar perencanaan selanjutnya dapat menerapkan metode penjadwalan lainnya, seperti Project Evaluation and Review Technique (PERT), Linear Schedule Method (LSM), Critical Path Method (CPM), dan metode sejenisnya. Dengan demikian, dapat diperoleh perbandingan hasil penjadwalan dari berbagai metode tersebut serta diketahui metode mana yang memberikan hasil paling optimal.

- Method (Pdm) Terhadap Waktu Dan Biaya Pada Proyek Jalan. *Jurnal Teknik Mesin Dan Elektro*, 4(03).
- Syammaun, T., A. Rani, H., & Rahmat, F. (2024). Optimalisasi Waktu Dan Biaya Dengan Metode Precedence Diagram Method. *Tameh*, 8(1), 1–12. https://doi.org/10.37598/rb684r71
- Widiasanti, I., & Lenggogeni. (2013). Manajemen Konstruksi.
- Zulfikram, Z., Muhyi, A., & Riyadhsyah, T. (2018). Rencana Waktu pelaksanaan Proyek Peningkatan Jalan Iskandar Muda Dengan Menggunakan Aplikasi Microsoft Project 2016. *Jurnal Sipil Sains Terapan*. http://ejurnal.pnl.ac.id/JSST/article/view/867%0Ahttp: //e-

jurnal.pnl.ac.id/JSST/article/viewFile/867/799