TUGAS AKHIR ANALISIS PERILAKU GEDUNG TERHADAP SIMPANGAN SESUAI DENGAN SNI 1726-2019

Disusun dan Ditujukan Untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana (S-1) Institut Teknologi Nasional Malang

Di susun oleh: ESAU LANGGA 18.21.006

PROGRAM STUDI TEKNIK SIPIL S-1
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI NASIONAL MALANG
2025

LEMBAR PERSETUJUAN

ANALISIS PERILAKU GEDUNG TERHADAP SIMPANGAN SESUAI **DENGAN SNI 1726-2019**

Disusun Oleh:

ESAU LANGGA

18.21.006

Telah disetujui oleh Dosen Pembimbing untuk diujikan Pada tanggal 13 Agustus 2025

Menyetujui,

Dosen Pembimbing

Pembimbing I

Pembimbing II

Ir. Ester Priskasari, MT NIP. Y. 103 9400 265

Hadi Surya W Sunarwadi, ST., MT

NIP. P. 103 2000 579

Mengetahui,

ran Studi Teknik Sipil S-1

LEMBAR PENGESAHAN

ANALISIS PERILAKU GEDUNG TERHADAP SIMPANGAN SESUAI **DENGAN SNI 1726-2019**

Tugas Akhir Ini Telah Dipertahankan di Depan Dosen Penguji Ujian Tugas Akhir Jenjang Strata (S-1) Pada Tanggal 13 Agustus 2025 dan Diterima untuk Memenuhi Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik Sipil S-1

Disusun Oleh:

ESAU LANGGA

18.21.006

Dosen Penguji,

Dosen Penguji I

Mohammad Erfan, ST., MT NIP. P. 103 1500 508

Dosen Penguji II

NIP. P. 103 1900 559

Disahkan Oleh:

rogram Studi Teknik

Sekretaris Program Studi

Teknik Sipil S-1

NIP. P. 103 1700 533

LEMBAR KEASLIAN TUGAS AKHIR

Saya yang bertanda tangan di bawah ini:

Nama

: Esau Langga

NIM

: 18.21.006

Program Studi

: Teknik Sipil S-1

Fakultas

: Teknik Sipil dan Perencanaan

Judul Tugas Akhir

: "ANALISIS PERILAKU GEDUNG TERHADAP

SIMPANGAN SESUAI DENGAN SNI 1726-2019"

Menyatakan dengan sebenarnya bahwa Tugas Akhir yang saya serahkan ini benar-benar merupakan hasil karya sendiri, kecuali kutipan-kutipan dari ringkasan yang semuanya telah saya jelaskan sumbernya.

Demikian pernyataan ini dibuat tanpa adanya paksaan dari pihak manapun. Apabila pernyataan ini tidak benar, maka akan diberikan sanksi oleh Fakultas.

Malang, 20 Agustus 2025

Yang Membuat Pernyataan

18.21.006

ANALISIS PERILAKU GEDUNG TERHADAP SIMPANGAN SESUAI DENGAN SNI 1726-2019

Esau Langga, 1821006, Program Studi Teknik Sipil S-1, Fakultas Sipil dan Perencanaan, Institut Teknologi Nasional Malang, Agustus 2025, Dosen Pembimbing I: Ir. Ester Priskasari, MT. Dosen Pembimbing II: Hadi Surya W Sunarwadi, ST., MT.

ABSTRAK

Kota Solo merupakan salah satu daerah di Indonesia yang memiliki tingkat kerawanan gempa cukup tinggi. Hal ini disebabkan karena Pulau Jawa terletak pada zona tektonik aktif, yaitu kawasan pertemuan tiga lempeng besar dunia, yakni Lempeng Indo-Australia, Lempeng Pasifik, dan Lempeng Eurasia. Kondisi geologis tersebut menyebabkan Kota Solo berpotensi mengalami guncangan gempa yang dapat berdampak pada kerusakan infrastruktur maupun keselamatan masyarakat. Oleh karena itu, dalam perencanaan bangunan gedung di Kota Solo diperlukan sistem struktur yang memadai, andal, serta memenuhi standar peraturan ketahanan gempa.

Salah satu sistem struktur tahan gempa yang banyak diterapkan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK). Pada studi ini, penulis merencanakan ulang struktur Gedung Tower Universitas Sebelas Maret menggunakan material beton bertulang dengan sistem SRPMK sebagai alternatif desain bangunan tahan gempa. Perencanaan dilakukan dengan mengacu pada standar nasional, yaitu SNI 1726:2019 tentang Tata Cara Perencanaan Ketahanan Gempa untuk Gedung dan Non-Gedung serta SNI 2847:2019 tentang Persyaratan Beton Struktural untuk Bangunan Gedung.

Hasil analisis menunjukkan simpangan antar lantai maksimum akibat beban gempa dinamis pada arah X dan Y sebesar 27,3 mm. Nilai tersebut masih berada di bawah batas simpangan yang diizinkan menurut SNI 1726:2019 Pasal 7.3.4.2, sehingga struktur gedung dinyatakan memenuhi kriteria kinerja seismik yang dipersyaratkan.

Kata kunci: Analisis Simpangan, Struktur Tahan Gempa.

KATA PENGANTAR

Puji dan syukur penyusun panjatkan kepada Tuhan Yang Maha Esa, karena atas penyertaan-Nya yang telah memberikan kelancaran menyelesaikan Tugas akhir ini.

Pada kesempatan ini penyusun menyampaikan rasa hormat dan terima kasih yang sebesar-besarnya kepada :

- 1. Awan Uji Krismanto, ST., MT Ph.D selaku Rektor ITN Malang.
- 2. Dr. Yosimson P Manaha, ST., MT selaku Ketua Program Studi Teknik Sipil Institut Teknologi Nasional Malang.
- 3. Ir. Ester Priskasari, MT Dosen Pembimbing I yang telah memberikan bimbingan dalam penyusunan Tugas akhir ini.
- 4. Hadi Surya W Sunarwadi, ST., MT Dosen Pembimbing II yang telah memberikan bimbingan dalam penyusunan Tugas akhir ini.
- Bapak Ibu Dosen Institut Teknologi Nasional Malang yang telah memberikan ilmu pengetahuan guna menunjang penyusunan Tugas akhir ini.

Penyusun menyadari bahwa dalam menyelesaikan Tugas akhir ini masih memiliki banyak kekurangan, untuk itu penyusun mengharapkan kritik dan saran yang membangun demi kesempurnaan Tugas akhir ini.

Akhir kata penyusun mengucapkan mengucapkan terima kasih kepada semua pihak yang telah membantu dan penulis berharap semoga tugas akhir ini dapat bermanfaat bagi semua pihak.

Malang, 20 Agustus 2025

Esau Langga

DAFTAR ISI

KATA P	PENGANTAR	i
DAFTA]	R ISIi	i
DAFTA]	R GAMBAR	V
DAFTA]	R TABEL v	i
DAFTA]	R NOTASI DAN SINGKATANvii	i
BAB I		1
PENDA	HULUAN	1
1.1	Latar Belakang	1
1.2	Identifikasi Masalah	2
1.3	Rumusan Masalah	2
1.4	Maksud Dan Tujuan	3
1.5	Manfaat	3
1.6	Batasan Masalah	3
BAB II.		5
TINJAU	JAN PUSTAKA	5
2.1	Studi Terdahulu	5
2.2	Sistem Rangka Pemikul Momen	7
2.2.	1 Sistem Rangka Pemikul Momen Biasa	7
2.2.	2 Sistem Rangka Pemikul Momen Menengah	7
2.2.	3 Sistem Rangka Pemikul Momen Khusus	7
2.3	Pembebanan Pada Stuktur	3
2.3.	1 Beban Mati	3
2.3.	2 Beban Hidup)
2.3.	3 Beban Gempa)
2.4	Metode Analisis Beban Gempa10	5
2.4.	1 Metode Analisis Statik Ekivalen	5
2.4.	2 Metode Analisis Dinamis	3

2.5	Skala Gaya Geser Dasar	19
2.6	Kombinasi Beban	19
2.7	Menentukan Simpangan antar lantai	21
2.8	Perencanaan Pelat Lantai	22
2.9	Perencanaan Balok	25
2.9.	.1 Dimensi Balok	25
2.9.	.2 Syarat Tulangan longitudinal balok	25
2.9.	.3 Desain Balok persegi	26
2.9.	.4 Kontruksi Balok T	27
2.9.	.5 Tulangan tranversal Balok	32
2.9.	.6 Desain Balok Terhadap Torsi	34
2.10	Perencanaan Kolom	35
2.10	0.1 Syarat Dimensi Pena`mpang Kolom	35
2.10	0.2 Kekuatan Lentur Minimum Kolom	35
2.10	0.3 Desain Tulangan Longitudinal Kolom	35
2.10	0.4 Tulangan Geser Kolom	40
2.11	Perencanaan Hubungan Balok Kolom (HBK)	43
2.12	Pendetailan Tulangan	46
2.12	2.1 Spasi minimum penulangan	46
2.12	2.2 Penyaluran Tulangan	47
2.12	2.3 Sambungan Lewatan	49
BAB III	[51
METOD	OOLOGI PERENCANAAN	51
3.1	Data Perencanaan	51
3.1.	.1 Data Teknis Bangunan	51
3.1.	.2 Lokasi Bangunan dan Gambar Rencana Struktur	51
3.2	Tahapan Perencanaan	52
3.2.	.1 Studi Literatur	52
3.2.	.2 Pengumpulan Data Perencanaan	52
3.2.	.3 Analisa Pembebanan	52
3.2.	.4 Perencanaan Awal Dimensi Balok dan Kolom	52
3.2.	.5 Analisa Struktur	53

3.2.6	Pemeriksaan Hasil Analisa struktur	53
3.3 H	Sagan Alir	54
BAB IV		54
PERENCA	ANAAN STRUKTUR	58
4.1 F	Perencanaan Awal Dimensi Balok Dan Kolom	58
4.1.1	Perencanaan awal dimensi Balok dan Sloof	58
4.1.2	Perencanaan awal dimensi kolom	62
4.1.3	Perencanaan dimensi pelat	63
4.2 I	Perhitungan pembebanan	66
4.2.1	Beban Mati	66
4.2.2	Beban Hidup	70
4.2.3	Beban Gempa	70
4.3 H	Kombinasi pembebanan	91
4.4 H	Kontrol perilaku struktur	94
4.4.1	Pengecekan simpangan antar lantai	94
4.4.2	Eksentrisitas	97
BAB V		98
PENUTUI)	98
5.1 H	Kesimpulan	98
DAFTAR	PUSTAKA	99
LAMPIR /	AN	101

DAFTAR GAMBAR

Gambar 2. 1 Peta Percepatan Spectrum Respons 0,2 Detik (Ss)	. 10
Gambar 2. 2 Peta Percepatan Spectrum Respon 1 Detik (S1)	. 10
Gambar 2. 3 Peta transisi periode panjang TL Wilayah Indonesia	. 11
Gambar 2. 4 Spektrum Respon Desain	. 19
Gambar 2. 5 Gambar analisis dan desain balok persegi	. 26
Gambar 2. 6 Balok T dengan pelat kedua sisi	. 28
Gambar 2. 7 Balok T dengan pelat satu sisi	. 28
Gambar 2. 8 Diagram tegangan-regangan momen negatif	. 29
Gambar 2. 9 Diagram tegangan regangan momen positif	. 31
Gambar 2. 10 Skema gaya geser desain	. 33
Gambar 2. 18 Luas Hubungan Balok Kolom (Joint) Efektif	. 46
Gambar 4. 1 Penampang balok dan Lebar efektif balok (Be)	. 63
Gambar 4. 2 Peta respon percepatan 0,2 detik (Ss)	. 70
Gambar 4. 3 Peta respon percepatan 1 detik (S1)	. 71
Gambar 4. 4 Peta panjang periode TL Indonesia	
Gambar 4. 5 Grafik Respon Spektrum Gedung Tower UNS	. 79

DAFTAR TABEL

Tabel 2. 1 Beban Hidup pada gedung
Tabel 2. 2 Kategori Resiko Bangunan
Tabel 2. 3 Faktor Keutamaan Gempa (Ie)
Tabel 2. 4 Klasifikasi situs Tanah
Tabel 2. 5 Koefisien Situs (Fa)
Tabel 2. 6 Koefisien Situs (Fv)
Tabel 2. 7 Kategori Desain Seismik Berdasarkan SDS
Tabel 2. 8 Kategori Desain Seismik Berdasarkan SD1
Tabel 2. 9 Nilai $R^a,\Omega_o,$ dan C_d
$Tabel\ 2.\ 10\ Nilai\ Parameter\ Periode\ Pendekatan\ C_t\ dan\ x \\ 16$
Tabel 2. 11 Koefisien Untuk Batas Atas Pada Perioda Yang Dihitung
Tabel 2. 12 Simpangan antar lantai Ijin
Tabel 2. 13 Tabel Ketebalan minimum pelat solid satu arah nonprategang 22
Tabel 2. 14 Ketebalan minimum pelat dua arah nonprategang tanpa balok interior
Tabel 2. 15 Ketebalan minimum pelat dua arah nonprategang dengan balok di
antara tumpuan pada semua sisinya
Tabel 2. 16 As,min untuk pelat satu arah nonprategang
Tabel 2. 17 Batasan dimensi lebar sayap efektif untuk Balok-T
Tabel 2. 18 Kekuatan Geser Nominal Joint Vn
Tabel 2. 19 Geometri kait standar untuk penyaluran tulangan dalam kondisi tarik
47
Tabel 2. 20 Geometri kait standar untuk penyaluran tulangan dalam kondisi tarik
47
Tabel 2. 21 Panjang sambungan lewatan tulangan dalam kondisi Tarik
Tabel 4. 1 Hasil Pendimensian Balok dan Sloof
Tabel 4. 2 Hasil Pendimensian Kolom Bulat
Tabel 4. 3 Hasil Pendimensian Kolom Kotak
Tabel 4. 4 Beban hidup rencana pada gedung

Tabel 4. 5 Kategori Resiko Bangunan	71
Tabel 4. 6 Faktor keutamaan gempa (Ie)	72
Tabel 4. 7 Sampel uji SPT 1	73
Tabel 4. 8 Sampel uji SPT 2	73
Tabel 4. 9 Klasifikasi situs tanah	74
Tabel 4. 10 Koefisien situs F _a	74
Tabel 4. 11 Koefisien situs F _V	75
Tabel 4. 12 KDS berdasarkan S _{DS}	76
Tabel 4. 13 KDS berdasarkan S _{D1}	76
Tabel 4. 14 Penentuan Faktor R, Cd, Ωo	76
Tabel 4. 15 Data parameter respon spektrum	78
Tabel 4. 16 Kesimpulan parameter beban gempa	79
Tabel 4. 17 Koefisien untuk batas pada perioda yang dihitung	80
Tabel 4. 18 Nilai parameter perioda pendekatan Ct dan x	80
Tabel 4. 19 Rekapitulasi berat seismik efektif (W)	83
Tabel 4. 20 Faktor distribusi gaya vertikal.	86
Tabel 4. 21 Rekapitulasi perhitungan gaya gempa tiap lantai	87
Tabel 4. 22 Tabel Modal rasio partisi massa	88
Tabel 4. 23 Selisih periode (T)	89
Tabel 4. 24 Hasil perhitungan gaya gempa statik dan dinamis	90
Tabel 4. 25 Kontrol nilai gaya geser dasar	90
Tabel 4. 26 Hasil perhitungan gaya geser dasar baru.	90
Tabel 4. 27 Kontrol nilai gaya geser dasar baru	91
Tabel 4. 28 Hasil pengecekan simpangan arah X	95
Tabel 4. 29 Hasil pengecekan simpangan arah Y	95
Tabel 4 30 Eksentrisitas struktur	97

DAFTAR NOTASI DAN SINGKATAN

As = Luas tulangan tarik longitudinal

Acp = Luas penampang beton

As, min = Luas minimum tulangan lentur

Ast = Luas tulangan yang diperlukan

Ag = Luas bruto penampang

bw = Lebar komponen struktur lentur (mm)

Cd = Faktor amplifikasi defleksi sesuai dengan sistem struktur.

Cs = Koefisien respon seismic

 C_t dan x = Koefisien periode pendekatan

Cu = Koefisien batas atas pada periode yang dihitung

C_{VX} = Faktor distribusi vertikal

d =Tinggi efektif penampang komponen struktur lentur (mm)

E = Pengaruh beban gempa

Eh = Pengaruh beban gempa horizontal

 E_m = Pengaruh beban gempa termasuk faktor kuat lebih

 E_{mh} = Pengaruh beban seismic horizontal termasuk kuat lebih struktur

 E_v = Pengaruh beban seismic vertikal

Fa = Faktor amplifikasi periode pendek

Fv = Faktor a mplifikasi periode 1 detik

fc' = mutu beton

hi, hx = Tinggi dari dasar sampai tinggi i atau x

hn = Ketinggian struktur

Ie = Faktor keutamaan gempa

 $I_g \ = momen \ inersia \ penampang \ bruto \ beton \ terhadap \ garis \ sumbu \ tanpa \quad tulangan$

Ktr = indeks tulangan transversal

k = Eksponen yang terkait dengan periode struktur

M⁺ = Momen Positif

 $M^- = Momen Negatif$

Mn = Momen Nominal

MPR = Momen Probabilitas

N = Jumlah tingkat

Pcp = keliling penamapang beton

QE = Pengaruh gaya gempa horizontal

R = Faktor modifikasi respons

Sa = Spektrum respon percepatan desain

 S_{D1} = Percepatan spektral desain untuk periode 1 detik

 S_{DS} = Percepatan Spektral desain untuk periode pendek

 S_{M1} = Percepatan pada periode 1 detik

 S_{MS} = Percepatan pada periode pendek

Ss = Percepatan gempa MCEr terpetakan untuk periode pendek

S1 = Percepatan gempa MCEr terpetakan untuk periode 1 detik

T = Periode fundamental struktur

Ta = Periode fundamental

TB = Tidak dibatasi

Tc = Perioda fundamental bangunan dari hasil analisa ETABS

TI = Tidak diijinkan

Tmax = Perioda maksimum

 $T_0 = Periode$

 $T_S = Periode$

V = Gaya lateral desain total atau geser dasar struktur

Vc = Kuat geser nominal beton penampang yang ditinjau

Vn = Kuat geser nominal penampang yang ditinjau

Vs = Kuat geser nominal tulangan geser pada penampang yang ditinjau

Vu = Gaya geser terfaktor penampang yang ditinjau

W = Berat seismic efektif struktur

wi, wx = Bagian berat seismik efektif total struktur (W) yang ditempatkan atau dikenakan pada tingkat i atau x

 $\Delta a = \text{Simpangan antar lantai tingkat ijin.}$

Δexa = Perpindahan elastis yang dihitung akibat gaya gempa desain tingkat kekuatan pada tingkat atas.

Δexb = Perpindahan elastis yang dihitung akibat gaya gempa desain tingkat kekuatan pada tingkat bawah.

 $\Delta xe = defleksi$ pada lokasi yang disyaratkan yang ditentukan dengan analisis elastis.

 $\Delta x = Simpangan pada lantai ke-x.$

 ρ = Faktor redundansi

 ρ' = nilai rasio tulangan tekan

 $\rho g = Rasio tulangan memanjang$

 ΣM_{nb} = jumlah kekuatan lentur nominal balok yang merangka ke dalam joint

 ΣM_{nc} = jumlah kekuatan lentur nominal kolom yang merangka ke dalam joint

 Ψe = faktor pelapisan tulangan

 Ψs = faktor ukuran tulangan

 Ψt = faktor lokasi tulangan