ANALISIS PERILAKU GEDUNG TERHADAP SIMPANGAN SESUAI DENGAN SNI 1726-2019

Esau Langga¹, Ester Priskasari², dan Hadi Surya W Sunarwadi³

123) Jurusan Teknik Sipil, Institut Teknologi Nasional Malang Email: <u>esau.langga14@gmail.com</u>

ABSTRACT

The city of Solo is one of the regions in Indonesia with a relatively high level of earthquake risk. This is due to the fact that Java Island is located in an active tectonic zone, namely the convergence area of three major tectonic plates: the Indo-Australian Plate, the Pacific Plate, and the Eurasian Plate. These geological conditions make Solo potentially vulnerable to seismic events that may cause damage to infrastructure and endanger public safety. Therefore, in the design of buildings in Solo, it is necessary to implement structural systems that are adequate, reliable, and compliant with earthquake-resistant design standards. One structural system that is widely applied for earthquake-resistant buildings is the Special Moment Resisting Frame (SMRF) system. In this study, the author redesigned the structural system of the Tower Building at Universitas Sebelas Maret using reinforced concrete with the SMRF system as an alternative design for earthquake-resistant buildings. The design was carried out by referring to national standards, namely SNI 1726:2019 on Seismic Design Requirements for Buildings and Non-Buildings and SNI 2847:2019 on Structural Concrete Requirements for Buildings. The analysis results show that the maximum inter-story drift due to dynamic earthquake loads in the X and Y directions is 27.3 mm. This value is still below the allowable drift limit according to SNI 1726:2019 Clause 7.3.4.2, indicating that the building structure meets the required seismic performance criteria.

Keywords: Deviation Analysis, Earthquake Resistant Structures.

ABSTRAK

Kota Solo merupakan salah satu daerah di Indonesia yang memiliki tingkat kerawanan gempa cukup tinggi. Hal ini disebabkan karena Pulau Jawa terletak pada zona tektonik aktif, yaitu kawasan pertemuan tiga lempeng besar dunia, yakni Lempeng Indo-Australia, Lempeng Pasifik, dan Lempeng Eurasia. Kondisi geologis tersebut menyebabkan Kota Solo berpotensi mengalami guncangan gempa yang dapat berdampak pada kerusakan infrastruktur maupun keselamatan masyarakat. Oleh karena itu, dalam perencanaan bangunan gedung di Kota Solo diperlukan sistem struktur yang memadai, andal, serta memenuhi standar peraturan ketahanan gempa. Salah satu sistem struktur tahan gempa yang banyak diterapkan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK). Pada studi ini, penulis merencanakan ulang struktur Gedung Tower Universitas Sebelas Maret menggunakan material beton bertulang dengan sistem SRPMK sebagai alternatif desain bangunan tahan gempa. Perencanaan dilakukan dengan mengacu pada standar nasional, yaitu SNI 1726:2019 tentang Tata Cara Perencanaan Ketahanan Gempa untuk Gedung dan Non-Gedung serta SNI 2847:2019 tentang Persyaratan Beton Struktural untuk Bangunan Gedung. Hasil analisis menunjukkan simpangan antar lantai maksimum akibat beban gempa dinamis pada arah X dan Y sebesar 27,3 mm. Nilai tersebut masih berada di bawah batas simpangan yang diizinkan menurut SNI 1726:2019 Pasal 7.3.4.2, sehingga struktur gedung dinyatakan memenuhi kriteria kinerja seismik yang dipersyaratkan.

Kata Kunci: Analisis Simpangan, Struktur Tahan Gempa

1. PENDAHULUAN

Indonesia terletak di daerah yang memiliki aktifitas gempa yang tinggi karena berada di daerah pertemuan tiga (3) Lempeng Tektonik utama, yakni lempeng Indo - Australia, lempeng Pasifik dan lempeng Eurasia. Ditinjau dari posisinya, Kota Solo berada pada Kawasan selatan pulau Jawa, sehingga dapat dikategorikan sebagai wilayah rawan gempa karena tidak jauh dari Samudra Hindia yang merupakan tempat bertemunya dua lempeng, yaitu lempeng Indo - Australia dan lempeng Eurasia. Akibat bertemunya dua lempeng besar ini menyebabkan terbentuknya berbagai struktur geologi salah satunya adalah patahan yang jelas dapat memicu terjadinya gempa bumi di pulau Jawa. (Sumber :Badan Meteorologi, Klimatologi, dan Geofisika)

Ditinjau dari posisinya yang terletak di pulau Jawa sehingga adanya potensi gempa di Kota Solo, kejadian gempa yang terjadi di Kota Solo yang berdasarkan terbaru hasil analisis Meteorologi Klimatologi dan Geofisika (BMKG) terjadi pada 26 agustus 2024, gempa Magnitudo 5,8 mengguncang Sebagian wilayah Jawa Tengah, walaupun tidak berpontesni tsunami gempa dengan kekuatan Magnitudo 5,5 - 6 dapat menyebabkan kerusakan pada bangunan terutama yang tidak dibangun dengan kokoh (Sumber: Liputan6.com, BMKG). Berdasarkan peristiwa gempa yang terjadi maka diperlukan perencanaan struktur sedetail mungkin agar bangunan yang direncanakan mampu menahan gaya-gaya yang ditimbulkan dari beban gempa dan juga harus memenuhi peersyaratan kriteria kekuatan, kenyamanan, keselamatan, dan umur rencana bangunan untuk dapat meminimalisir kerugian insfrastruktur dan resiko korban jiwa akibat runtuhnya bangunan yang disebabkan oleh gempa maka diperlukan suatu sistem struktur yang memadai..

Salah satu sistem struktur tahan gempa yang dapat digunakan adalah Sistem Rangka Pemikul Momen Khusus (SRPMK). Sistem ini dinilai "memenuhi" untuk digunakan pada gedung dengan ketinggian 12 lantai mengacu pada SNI 1726:2019 dan SNI 2847:2019 dan didaerah dengan tingkat resiko gempa yang sedang sampai dengan tingkat resiko gempa yang tinggi. Sistem ini memiliki perilaku yang mamapu menahan kondisi yang menimbulkan beban gempa ekstrim, dimana strukturnya akan dirancang sedemikian rupa sehingga dapat menahan beban gempa rencana.

Berdasarkan kajian diatas maka penyusun mengangkat sebuah judul "Analisi Perilaku Gedung Terhadap Simpangan Sesuai Dengan SNI 1726-2019" dimana judul ini akan membahas perencanaan struktur tahan gempa menggunakan Sistem Rangka Pemikul Momen Khusus.

Rumusan Masalah

Berdasarkan latar belakang diatas maka dapat dirumuskan permasalahan sebagai berikut:

- 1. Berapa dimensi Balok, Kolom dan Pelat Lantai yang mampu menerima beban yang direncanakan?
- 2. Berapa hasil analisis simpangan yang terjadi antar Lantai ?

Tujuan Penelitian

Menentukan diemnsi balok dan kolom yang mampu menerima beban yang direncanakan dan menganalisis besar simpangan yang terjadi antar Lantai.

Manfaat Penelitian

Adapun manfaat yang diharapkan dari penelitian ini adalah Sebagai referensi perhitungan dalam perencanaan struktur beton bertulang yang mengikuti peraturan, rumusan yang diberikan oleh SNI 2847-2019.

2. LANDASAN TEORI Sistem Rangka Pemikul Momen

Sistem Rangka Pemikul Momen merupakan suatu sistem rangka ruang dengan komponen struktur dan join-joinnya menahan gaya-gaya yang bekerja melalui aksi lentur, geser dan aksial. Sesuai dengan SNI 2847-2019 ada 3 macam sistem rangka pemikul momen yaitu sistem rangka pemikul momemn biasa, sistem rangka pemikul momen menengah, dan sistem rangka pemikul momen khusus. Yang digunakan ialah sistem rangka pemikul momen khusus dimana komponen struktur yang mampu memikul gaya akibat besaran gaya yang direncanakan untuk memikul lentur, tingkat daktilitasnya besar dan biasanya dipakai untuk struktur dengan Kategori Desain Seismik D, E, F. Struktur SRPMK diharapkan memiliki tingkat daktilitas yang tinggi, yaitu mampu menerima mengalami siklus respon inelasitis pada saat rencana. menerima beban gempa perencanaan SRPMK ada tiga prinsip yang perlu diperhatikan sebagai berikut:

- Desain kapasitas yang merencanakan terjadinya sendi plastis hanya di balok dan diujung kolom dengan terjadinya sendi plastis dengan keruntuhan tidak serentak. Sedangkan pada elemen lain harus bersifat elastis.
 - 2. Tidak terjadi kegagalan geser pada balok, kolom dan joint.
 - 3. Menyediakan detail yang memungkinkan elemen struktur berperilaku daktail.

Pembebanan Pada Struktur

Sesuai dengan peraturan yang ad , pembebanan terdiri atas beban mati, beban hidup, dan beban gempa. Beban mati sendiri adalah berat seluruh bahan konstruksi bangunan gedung yang terpasang.

Beban hidup Beban hidup adalah beban yang diakibatkan oleh pengguna dan penghuni bangunan gedung atau struktur lain yang tidak termasuk beban konstruksi dan beban lingkungan. Sedangkan beban gempa ditentukan dengan prosedur pada SNI untuk menetapkan dampak gempa rencana yang harus diperhitungkan dalam perencanaan dan evaluasi struktur bangunan.

Kombinasi pembebanan

Desain struktur, komponen struktur harus memastikan kekuatannya setara atau lebih besar daripada pengaruh beban terfaktor dengan kombinasi yang telah diatur dalam SNI 1727:2020.

Kontrol Perilaku Struktur

Perilaku struktur dikontrol berdasarkan SNI 1726:2019. Kontrol perilaku struktur yang dimaksud merupakan gaya geser dasar, partisipasi massa, simpangan antar tingkat, dan pengaruh p-delta.

3. METODOLOGI PERENCANAAN

Tujuan dari studi perencanaan ini adalah untuk menentukan jumlah dan bagaimana formasi penulangan yang diperlukan pada elemen-elemen struktur seperti pelat balok, kolom, dan hubungan balok-kolom. Data konstruksi yang diperlukan mencakup data teknis bangunan, mutu bahan bangunan, dan gambar perencanaan. Kemudian, data tersebut dianalisa menggunakan program bantu ETABS untuk mendapatkan output gaya yang bekerja pada struktur tersebut.

Data Eksisting gedung

Nama gedung = Tower Universitas Sebelas Maret Fungsi bangunan = Gedung perkantoran

Jumlah lantai = 11 Lantai

Lokasi banguan = Jl. Ir. Sutami No.35,

Pucangsawit, Kota Surakarta – Jawa Tengah

Tinggi Bangunan = 48,50 meter

Lebar bangunan = 41,70 meter

Panjang bangunan = 46.80 meter

Struktur bangunan = Beton bertulang

Mutu beton (fc) = 35 MPa

Mutu baja uir (fy) = 420 MPa

Mutu baja polos (fy) = 280 MPa

Gambar 1 Lokasi gedung yang direncanakan

Diagram alir/Flow chart

Gambar 2 Diagram alir/Flow chart perencanaan

4. PEMBAHASAN

A. Dimensi Balok

Dengan menggunakan rumus pendekatan empiris didapatkan dimensi balok sebagai berikut:

Menentukan tinggi balok

h = 1/12 x panjang bentang

atan

h = 1/10 x panjang bentang

Menentukan lebar balok

b = 1/2 x h

Tabel 1. Rekapitulasi Dimensi Balok

D-1-1-	Bentang	Lantai 1 - 9			
Balok	(m)	b (m)	-	h (m)	
B1	7,8	0,4	-	0,7	
B2	7,8	0,3	ı	0,6	
BA1	7,8	0,25	-	0,35	
BA2	7,8	0,20	-	0,30	

B. Dimensi Kolom

Pendimensian penampang kolom ditentukan berdasarkan persyaratan dan batasan dalam SNI 2847 2019, sehingga di dapat dimensi penampang kolom sebagai berikut:

Tabel 2. Rekapitulasi Dimensi Kolom

V -1	Lantai 1 - 9			
Kolom	b (m)	-	h (m)	
K1	0,95	-	0,95	
K2	0,95	-	0,95	
К3	0,95	-	0,95	

Prhitungan Pembebanan

Dalam perhitungan pembebanan struktur terdiri dari beberapa jenis pembebanan, yaitu

- 1. Beban Mati
- Berat sendiri struktur
- Beban mati tambahan pada pelat lantai
- Beban mati tambahan pada pelat atap
- Beban mati tambahan pada balok
- 2. Beban Hidup

Beban hidup yang digunakan pada perencanaan ini mengacu pada SNI 1727 2020

3. Beban Gempa

Beban gempa yang digunakan pada perncanaan ini mengacu pada SNI 1726 2019 untuk menentukan nilai percepatan batuan dasar pada periode pendek (Ss), dan parameter percepatan batuan dasar pada periode 1 detik (S1).

Tabel 3. Rekapitulasi Parameter Perhitungan Beban Gempa

r crintangan Beean Gempa				
Kategori resiko bangunan	IV			
Faktor keutamaan gempa Ie				
Kelas situs tanah	SD			
Parameter percepatan batuan dasar pada periode pendek (Ss)	0,86883			
Parameter percepatan batuan dasar pada periode 1 detik (S1)	0,405815			
Faktor amplikasi periode pendek (Fa)	1,152468			
Faktor amplikasi periode 1 detik (Fv)				
Percepatan pada periode pendek (SMS)				
Percepatan pada periode 1 detik (SM1)	0,768689			
Percepatan desain pada periode pendek (SDS)	0,668			
Percepatan desain paa periode 1 detik (SD1)	0,512459			
Kategori desain seismik (KDS)	D			

Setelah memasukan semua data pembebanan dengan menggunakan program bantu ETABS 2018 maka akan didapatkan berat seismic efektif struktur (W) sebagai berikut:

Tabel 4. Rekapitulasi Berat Seismic Efektif

Story	Wx	Wy	
Story	kg	kg	
LT Atap	11.353	11.353	
ROOFTOP	143.316	143.316	
LT 10	224.490	224.490	
LT9	213.806	213.806	
LT8	247.850	247.850	
LT7	222.400	222.400	
LT6	215.785	215.785	
LT 5	248.177	248.177	
LT4	326.532	326.532	
LT3	259.797	259.797	
LT2	584.788	584.788	
LT1	708.113	708.113	
Jumlah	3.395.055	3.395.055	

Gaya Gempa Lateral

Gaya gempa lateral dapat dihitung dengan rumus

$$F_{\mathbf{X}} = C_{\mathbf{V}\mathbf{X}} \times \mathbf{V}$$

$$Cvx = \frac{w_x h_x^k}{\sum_{i=1}^{n} w_i h_i^k}$$

Dimana:

Cvx = Faktor distribusi vertikal

= Gaya lateral desain total atau geser dasar struktur

Wi, Wx = Bagian berat seismik efektif total struktur (W) yang ditempatkan atau dikenakan pada tingkat i atau x

hi, hx = Tinggi dari dasar sampai tingkat i atau x

k = Eksponen yang terkait dengan periode struktur

Tabel 5. Rekapitulasi perhitungan gaya gempa lateral (F)

gempa lateral (F)								
Story	Fx	Fy						
Siory	(kN)	(kN)						
Lt. Atap	78,4655	78,4655001						
Lt. 9	88,4275	88,4274991						
Lt. 8	105,0254	105,025353						
Lt. 7	128,0964	128,096371						
Lt. 6	162,0094	162,00942						
Lt. 5	215,9645	215,964509						
Lt. 4	312,8469	312,846912						
Lt. 3	527,4453	527,445305						
Lt. 2	1288,168	1288,16791						
Jumlah	2906,449	2906,44878						

Kombinasi Pembebanan

Mengacu pada SNI 1726 2019. Beban gempa harus dimodifikasi untuk memperhitungkan faktor kuat lebih a. Pengaruh beban gempa vertikal $Ev = 0.2 \times SDS \times D$

b. Pengaruh beban gempa horizontal termasuk faktor kuat lebih Emh = ρ Qe (100% dan 30%)

c. Beban gempa E = Emh + Ev

Kontrol Perilaku Struktur

1. Kontrol Gaya geser dasar Dari hasil analisa ETABS didapatkan *Base Reaction* sebagai berikut

Tabel 6. Base Reaction

Tipe Beban Gempa	Fx (kN)	Fy (kN)
Gempa Statis - X (user loads)	2906,4	
Gempa Statis - Y (user loads)		2906,4
Gempa Dinamis - X (Respon spektrum)	5293,8	
Gempa Dinamis - Y (Respon spektrum)		5126,6

Tabel 7. Konfigurasi Base Shear

Arah	Vdinamis	100% Vstatis	Keterangan
X	5293,758	2906,44878	Terpenuhi
Y	5126,618	2906,44878	Terpenuhi

Dari hasil konfigurasi diatas maka syarat pada SNI 1726 2019 yaitu Vdinamis ≥ 100% Vstatis sudah terpenuhi dan dengan demikian digunakan gempa dinamis

2. Kontrol Partisipasi Massa

Tabel 8. Konfigurasi Base Shear

Case	Mode	Periode	UX	UY	UZ	SumUX	SumUY
Cuse	Mode	detik	UA		OZ.	BullOA	Dunio 1
Modal	1	1,478	0	0,7148	0	0	0,7148
Modal	2	1,437	0,74	0	0	0,74	0,7148
Modal	3	1,095	0,0008	2,69E-05	0	0,7408	0,7149
Modal	4	0,406	0,1308	7,41E-07	0	0,8716	0,7149
Modal	5	0,387	5,008E-07	0,153	0	0,8716	0,8678
Modal	6	0,268	0,0002	3,44E-06	0	0,8718	0,8678
Modal	7	0,195	0,0572	0	0	0,929	0,8679
Modal	8	0,176	0	0,0637	0,0000	0,929	0,9316
Modal	9	0,12	0,0196	0	0,0001	0,9486	0,9316
Modal	10	0,117	0,0001	0,0003	0,2156	0,9487	0,9319
Modal	11	0,116	0,0004	0,0001	0,0466	0,9491	0,932
Modal	12	0,116	0,0083	7,28E-06	0,0001	0,9574	0,932

Dari tabel di atas, dapat disimpulkan bahwa partisipasi massa telah terpenuhi pada modal 8 dan sudah bisa memenuhi syarat partisipasi massa SNI 1726 2019 yang mana mencapai lebih dari 90%.

3. Kontrol Simpangan

Kontrol desain struktur dilakukan terhadap pengecekan batas simpangan antar lantai yang diatur dalam pasal 7.8.6 dan 7.12.1. sedangkan besar batasan simpangan antar lantai tingkat tertera pada pasal 7.12.1 dan 7.12.2 SNI 1726-2019.

Tabel 9. Simpangan arah X

		1 0					
Story	h	hsx	δ xe	δe	Δ	Δijin	Ket.
Story	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ket.
Lt. Atap	39500	3500	59,153	216,89433	8,547	26,923077	memenuhi
Lt. 9	36000	4500	56,822	208,34733	18,249	34,615385	memenuhi
Lt. 8	31500	4500	51,845	190,09833	22,35933	34,615385	memenuhi
Lt. 7	27000	4500	45,747	167,739	27,41933	34,615385	memenuhi
Lt. 6	22500	4500	38,269	140,31967	31,889	34,615385	memenuhi
Lt. 5	18000	4500	29,572	108,43067	34,463	34,615385	memenuhi
Lt. 4	13500	4500	20,173	73,967667	33,70767	34,615385	memenuhi
Lt. 3	9000	4500	10,98	40,26	27,56233	34,615385	memenuhi
Lt. 2	4500	4500	3,463	12,697667	12,69767	34,615385	memenuhi

Tabel 10. Simpangan arah Y

		1 0					
Story	h	hsx	δ xe	δe	Δ	Δijin	Ket.
Story	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Ket.
Lt. Atap	39500	3500	63,061	231,22367	9,944	26,923077	memenuhi
Lt. 9	36000	4500	60,349	221,27967	24,948	34,615385	memenuhi
Lt. 8	31500	4500	53,545	196,33167	28,10133	34,615385	memenuhi
Lt. 7	27000	4500	45,881	168,23033	31,48567	34,615385	memenuhi
Lt. 6	22500	4500	37,294	136,74467	34,034	34,615385	memenuhi
Lt. 5	18000	4500	28,012	102,71067	34,59133	34,615385	memenuhi
Lt. 4	13500	4500	18,578	68,119333	31,99167	34,615385	memenuhi
Lt. 3	9000	4500	9,853	36,127667	24,88567	34,615385	memenuhi
Lt. 2	4500	4500	3,066	11,242	11,242	34,615385	memenuhi

Pada simpangan akibat gempa dinamis perlu mengontrol kinerja batas layan dan juga kontrol kinerja batas ultimit per tingkat dari arah x maupun arah y. Dari hasil kontrol kinerja analisa perhitungan dapat diketahui bahwa simpangan antar lantai memenuhi dan tidak melebihi dari batas yang telah ditentukan pada SNI 1726 2019.

5. PENUTUP

Berdasarkan hasil analisis perilaku gedung terhadap simpangan izin mengacu pada SNI 1726-2019 dan SNI 2847-2019 dengan analisa yang dilakukan menggunakan program bantu ETABS 2018, maka didapatkan kesimpulan sebagai berikut:

1.Dimensi penampang diperoleh

a.Balok

Balok B1 400 x 700 mm

Balok B2 300 x 600 mm

Balok BA1 250 x 350 mm

Balok BA2 200 x 300 mm

b.Kolom

Kolom K1 950 x 950 mm

Kolom K2 950 x 950 mm

Kolom K3 950 x 950 mm

c.Pelat

Pelat Lantai PL = 120 mm

Pelat Atap PA = 100 mm

2.Simpangan antar lantai akibat beban gempa dinamis arah X dan Y didapatkan terbesar (27,3 mm). Nilai simpangan terbesar masih dibawa batas yang diijinkan sesuai dengan SNI 1726-2019.

DAFTAR PUSTAKA

- Anonim. (2017). SNI 2052:2017 Baja Tulangan Beton. Jakarta: Badan Standarisasi Nasional.
- Anonim. (2019). SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung. Badan Standarisasi Nasional.
- Anonim. (2019). SNI 2847:2019 Persyaratan Beton Struktural Untuk Bangunan Gedung. Badan Standarisasi Nasional.
- Anonim. (2020). SNI 1727:2020 Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain. Badan Standarisasi Nasional.
- Fernandes, B. (2021). Perencanaan Struktur Beton bertulang Pada Gedung Kantor PT. Jasa Tirta Malang.
- Koswandi, A., Santosa, A., & Ester Priskasari. (2020). Perencanaan Struktur Tahan Gempa Beton Bertulang Pada Gedung Rusunawa Universitas Teknologi Sumbawa. *Student Journal* ..., 2(2), 168–176. https://ejournal.itn.ac.id/index.php/gelagar/art icle/view/2966
- Lempow, A. H. (2019). Perencanaan Struktur
 Portal Beton Bertulang pada Gedung Kantor
 Satker Pelaksanaan Jalan Nasional Wilayah
 I Manokwari Propvinsi Papua Barat dengan
 menggunakan sistem rangka pemikul momen
 khusus
- Riyanto, A. O. L. (2021). Perencanaan Struktur

 Pembangunan Rumah Susun Asn 10 Lantai

 Kabupaten Bulungan Provinsi Kalimantan

 Utara Dengan Menggunakan Sistem Rangka

 Pemikul Momen Khusus.
- Setiawan, Agus. 2016. Perancangan Struktur Beton

 Bertulang (Berdasarkan SNI

 2847:2013). Jakarta: Erlangga.
- Wardita, I. W. A., Santosa, A., & Erfan, M. (2020).

 Studi perencanaan struktur gedung
 perkuliahan PPG Universitas Negeri Malang

(UM) dengan Sistem Rangka Pemikul Momen Khusus (SRPMK). 2(2), 278–283. https://ejournal.itn.ac.id/index.php/gelagar/article/view/3097