"EVALUASI KINERJA SISTEM DRAINASE DI WILAYAH JOMBANG"

SKRIPSI

Disusun Oleh:

WIDHITA SATYA HERLAMBANG

NIM: 09.21.043

PROGRAM STUDI TEKNIK SIPIL S-1 FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI NASIONAL MALANG SEPTEMBER

2015

LEMBAR PERSETUJUAN SKRIPSI

EVALUASI KINERJA SISTEM DRAINASE DI WILAYAH JOMBANG

Disusun dan Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Sipil S-1 Institut Teknologi Nasional Malang

Disusun Oleh:

Widhita Satya Herlambang NIM: 09.21.043

Menyetujui:

Dosen Pembimbing I

114

(Ir. Wayan Mundra, MT)

Dosen Pembimbing II

(Ir. Endro Yuwono, MT)

Mengetahui,

Ketua Program Studi Teknik Sipil S-1

Ir. A. Agus Santosa., M.T

PROGRAM STUDI TEKNIK SIPIL S-1
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI NASIONAL MALANG
2015

LEMBAR PENGESAHAN

EVALUASI KINERJA SISTEM DRAINASE DI WILAYAH JOMBANG

SKRIPSI

Dipertahankan Dihadapan Majelis Penguji Sidang Skripsi Jenjang

Strata satu (S-1)

Pada hari : Kamis

Tanggal: 26 Februari 2015

Dan diterima Untuk Memenuhi Salah Satu Persyaratan

Guna Memperoleh gelar Sarjana Teknik

Disusun Oleh:

WIDHITA SATYA HERLAMBANG

NIM: 09.21.043

DisahkanOleh:

Ketua

Sekretaris

de

Ir. A. Agus Santosa., M.T

Lila Ayu Ratna Winanda., ST, M.T

Anggota Penguji:

Penguji I

Penguji II

Ir. H. Hirijanto, MT

Dr. Ir. Kustamar, MT

PROGRAM STUDI TEKNIK SIPIL S-1 FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI NASIONAL MALANG 2015

INSTITUT TEKNOLOGI NASIONAL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN PROGRAM STUDI TEKNIK SIPIL SI

Kampus I : Jl. Bendungansigura-gura, No.2, Telp. (0341) 551431 (Hunting), Fax. (0341) 553015 Malang 65145 Kampus II : Jl. Raya Karanglo, Km 2 Telp. (0341) 417636, Fax. (0341) 417634 Malang

PERNYATAAN KEASLIAN SKRIPSI

Yang bertanda tangan dibawah ini:

Nama : Widhita Satya Herlambang

Nim : 09.21.043

Program Studi : TeknikSipil S-1

Fakultas : Teknik Sipil dan Perencanaan

Menyatakan dengan sesungguhnya bahwa skripsi saya dengan judul:

"EVALUASI KINERJA SISTEM DRAINASE DI WILAYAH JOMBANG"
Adalah Skripsi hasil karya saya sendiri, dan bukan merupakan duplikat serta tidak
mengutip ataupun menyadur seluruhnya karya orang lain kecuali disebut dari
sumber aslinya.

Malang, 16 September 2015

Yang membuat pernyataan

METERAL BENEVICE BENEVICE BY THE SECOND BY T

(Widhita Satya Herlambang)

"EVALUASI KINERJA SISTEM DRAINASE DI WILAYAH JOMBANG"

Oleh: Widhita Satya H (09.21.043)

Pembimbing I: Ir. Wayan Mundra, MT, Pembimbing II: Ir. Endro Yuwono,

MT.

ABSTRAKSI

Saat ini begitu banyak permasalahan lingkungan yang terjadi. Mulai dari banjir, polusi udara, longsor, hingga kurangnya air bersih. Berbagai permasalahan itu terjadi akibat kelalaian kita dalam menjaga lingkungan. Kini banjir sudah umum terjadi di kawasan perkotaan. Persoalan ini diakibatkan karena berbagai hal, salah satu penyebabnya adalah kurangnya perhatian dalam mengelola sistem drainase. Sistem drainase sendiri terdiri dari empat macam, yaitu sistem drainase primer, sistem drainase sekunder, sistem drainase tersier dan sistem drainase kuarter. Sistem drainase ini memiliki peran dan fungsinya masing-masing. Sudah seharusnya bahwa fungsi drainase ini tidak dialihfungsikan. Alih fungsi ini tidak hanya menimbulkan satu permasalahan saja, tetapi nantinya akan timbul kekacauan dalam penanganan sistem drainase pula. Jenis-jenis drainase dibagi berdasarkan letak salurannya, sejarah terbentuknya, berdasarkan konstruksi, dan berdasarkan fungsinya. Sepanjang aliran drainase banyak ditemukan bangunan pendukung serta pelengkapnya. Bangunan-bangunan pendukung drainase dibagi menjadi dua, yaitu bangunan struktur dan bangunan non struktur. Sedangkan bangunan pelengkap saluran drainase adalah catch basin, inlet, headwall, shipon, manhole, gorong-gorong, bangunan terjun, dan bangunan got miring. Pada sistem drainase dan bangunan pelengkap saluran drainase banyak ditemukan permasalahan yang terjadi. Permasalahan-permasalahan ini terjadi akibat adanya peningkatan debit pada saluran drainase. Penyebab lainnya adalah karena peningkatan jumlah penduduk, amblesan tanah, penyempitan dan pendangkalan saluran, serta sampah di saluran drainase. sudah seharusnya masyarakat dan pemerintah setempat menyadari pentingnya fungsi saluran drainase, khususnya drainase di perkotaan, serta permasalahan yang terjadi di perkotaan.

Kata Kunci: Evaluasi, Drainase

KATA PENGANTAR

Atas hidayah dan ridho Allah S.W.T yang telah memberikan kesempatan dan semangat sehingga terselesaikannya proposal ini dengan judul "Evaluasi Kinerja Sistem Drainase Di Wilayah Jombang" Skripsi ini merupakan salah satu persyaratan akademis untuk memperoleh gelar Sarjana Teknik Sipil di Institut Teknologi Nasional Malang.

Penyelesaian Skripsi ini tidak akan berjalan dengan baik tanpa adanya bimbingan serta bantuan dari berbagai pihak. Oleh karena itu tak lupa kiranya penyusun mengucapkan terima kasih kepada :

- 1. Bapak Ir. Soeparno Djiwo, M.T selaku Rektor ITN Malang.
- 2. Bapak Dr.Ir. Kustamar, MT selaku Dekan Fakultas Teknik Sipil dan Perencanaan ITN Malang.
- Bapak Ir. A. Agus Santosa, M.T selaku Ketua Program Studi Teknik Sipil S-1 ITN Malang.
- 4. Ibu Lila Ayu Ratna W., S.T., M.T selaku Sekretaris Program Studi Teknik Sipil S-1.
- Kedua orang tua, dan keluarga, terima kasih atas segala dukungan materiil dan doanya.
- 6. Rekan-rekan Teknik sipil yang telah turut membantu baik secara langsung maupun tidak langsung, dan semua pihak yang tidak dapat disebutkan satu per satu.

Penulis menyadari Proposal Skripsi ini masih jauh dari kesempurnaan, karena itu dengan segala kerendahan hati penyusun mohon maaf yang sebesar-besarnya jika masih banyak terdapat kekurangan di dalamnya. Kritik dan saran dari pembaca sangat penulis harapkan, diakhir kata semoga laporan skripsi ini dapat bermamfaat bagi kita semua.

Penyusun

Widhita Satya H

DAFTAR ISI

COVER

LEMBAR PERSETUJUAN	i
LEMBAR PENGESAHAN	ii
LEMBAR KEASLIAN	iii
ABSTRAK	iv
KATA PENGANTAR	v
DAFTAR ISI	vi
DAFTAR GAMBAR	ix
DAFTAR TABEL	x
BAB I : PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Lokasi Studi	3
1.3 Identifikasi Masalah	7
1.4 Rumusan Masalah	8
1.5 Batasan Masalah	8
1.6 Maksud dan Tujuan	9
BAB II : LANDASAN TEORI	10
2.1 Pengertian Drainase	10
2.2 Analisa Hidrologi	16
2.2.1 Siklus Hidrologi	16
2.2.2 Curah Hujan Rata-rata Daerah	18
2.2.3 Curah Hujan Rancangan	21
2.2.4 Uji Distribusi Frekuensi	22

2.2.5 Intensitas Hujan	27
2.2.6 Koefisien Aliran Permukaan	28
2.2.7 Luas Daerah Pengaliran	29
2.2.8 Debit Banjir Rencana	29
2.3. Debit Domestik	31
2.3.1 Proyeksi Penduduk	31
2.3.2 Kapasitas Air Yang Terbuang	33
2.4 Hidraulika Saluran	34
2.4.1 Kemiringan Saluran	36
2.4.2 Jagaan	37
2.4.3 Koefisien Kekasaran Manning	37
2.4.4 Bentuk-bentuk Penampang Saluran Drainase	38
2.4.5 Kecepatn Aliran	39
2.4.6 Kapasitas Saluran	39
2.5. Parameter Penentuan Prioritas Penanganan Genangan	41
BAB III DATA PERENCANAAN	47
3.1 Gambaran Umum	47
Flowchart	49
BAB IV ANALISA DAN PEMBAHASAN	50
4.1 Kondisi Daerah Studi	50
4.1.1 Kondisi Sistem Drainase	53
4.1.2 Kondisi Topografi	57
4.1.3 Kondisi Hidrologi	59
4.1.4 Kependudukan Perkotaan	64

4.1.5 Tata Guna Lahan	66
4.2 Analisa Curah Hujan Rencana	74
4.2.1 Stasiun Hujan	74
4.2.2 Analisa Curah Hujan Maksimum Rerata Daerah	75
4.2.3 Perhitungan Curah Hujan Rencana	76
4.2.4 Pemilihan Curah Hujan Rencana	83
4.3 Intensitas Hujan	84
4.3.1 Intensitas Hujan Wilayah Rencana	86
4.3.2 Debit Banjir Rencana	88
4.3.3 Perhitungan Debit Air Kotor	90
4.3.4 Proyeksi Penduduk	91
4.4 Analisa Hidroulika Saluran	93
4.4.1 Dimensi Saluran Eksiting	93
4.4.2 Kapasitas Saluran Eksisting	96
4.4.3 Parameter Dan Matriks Penentuan Lokasi Prioritas	98
BAB V PENUTUP	105
5.1 Kesimpulan	105
5.2 Saran	106
DAFTAR PUSTAKA	

DAFTAR GAMBAR

Gambar 1.1 Peta Administrasi Kabupaten Jombang	4
Gambar 2.1 Siklus Hidrologi	18
Gambar Polygon Theysen	12
Gambar 2.2 Hirarki Susunan Saluran	36
Gambar 2.3. Tipe Saluran	38
Flowchart	. 49
Gambar 3.1 Peta Sebaran Stasiun Hujan Kabupaten Jombang	38
Gambar 3.2 Peta Sebaran Stasiun Hujan Kabupaten Jombang	.40
Gambar 4.1 Peta Administrasi Kabupaten Jombang	52
Gambar 4.2 Peta DAS Kabupaten Jombang	56
Gambar 4.3 Peta DAS	63
Gambar 4.4 Peta Kepadatan Penduduk	65
Gambar 4.6 Grafik Intensitas Hujan Monoboe	85
Gambar 4.7 Peta Titik Genangan	.99
Gambar 4.8 Saluran Drainase Denanyar	101
Gambar 4.9 Saluran Drainase Pasar Citra Niaga	101
Gambar 4.10 Saluran Drainase Buya Hamka	102
Gambar 4.11 Saluran Drainas Undar	102
Gambar 4.12 Saluran Drainase Gatot Subroto	103

DAFTAR TABEL

Tabel 2.1 Nilai K Untuk Distribusi Log-Person III	22
Tabel 2.2 Distribusi Chi-Square	25
Tabel 2.3 Nilai Δ Krisis untuk Uji Smirnov - Kolmogorov	27
Tabel 2.4 Koefisien Aliran Permukaan	29
Tabel 2.5 Harga Koefisien Manning	37
Tabel 2.6 Nilai Parameter Genangan	42
Tabel 2.7 Kerugian Harta Benda milik Pribadi	43
Tabel 2.8 Kriteria Parameter Kerugian Ekonomi	43
Tabel 2.9 Parameter Kerugian Gangguana Sosial Dan Fasilitas Pemerintah	44
Tabel 2.10 Kriteria Parameter Kerugian Dan Gangguan Transportasi	45
Tabel 2.11 Kriteria Parameter Kerugian Pada Daerah Pemukiman	46
Tabel 4.1 Pembagian Wilayah Administrasi Kabupaten Jombang	51
Tabel 4.2 Daerah Aliran Sungai Di Wilayah Kabupaten Jombang	54
Tabel 4.3 Daerah Aliran Sungai Kabupaten Jombang	55
Tabel 4.4 Kondisi Kemiringan Lahan Wilayah Kab. Jombang	57
Tabel 4.5 Nama, Panjang Dan Debit Air	59
Tabel 4.6 Nama, Luas Dan Volume	61
Tabel 4.7 Pemanfaatan Air Bawah Tanah	62
Tabel 4.8 Kepadatan Penduduk	65
Tabel 4.9 Data Fasilitas Luar Dinas Pendidikan	69
Tabel 4.10 Data Fasilitas Pendidikan Swasta	70
Tabel 4.11 Data Fasilitas Pendidikan Diluar Dinas	71

Tabel 4.12 Data Fasilitas Kesehatan	72
Tabel 4.13 Luas Pengaruh Stasiun Hujan	75
Tabel 4.14 Hujan Rerata Daerah	76
Tabel 4.15 Curah Hujan Rencana Metode Gumbel	77
Tabel 4.16 Uji Smirnov Kolmogorov	78
Tabel 4.17 Uji Chi Square	79
Tabel 4.18 Curah Hujan Rencana Log Person Type III	81
Tabel 4.19 Uji Smirnov Kolmogorov log person Type III	82
Tabel 4.20 Uji Chi Square Log Person Type III	83
Tabel 4.21 Curah Hujan Terpilih	84
Tabel 4.22 Intensitas Hujan Metode Monoboe	85
Tabel 4.23 Intensitas Pada Saluran Prioritas	87
Tabel 4.24 Perhitungan Debit Rancangan	89
Tabel 4.25 Perhitungan Debit Air Kotor	90
Tabel 4.26 Proyeksi Penduduk Wilayah Perencanaan	92
Tabel 4.27 Dimnesi Saluran Eksisting	95
Tabel 4.28 Harga Koefisien Manning	96
Tabel 4.29 Perhitungan Kapasitas Saluran Eksisting Rencana	97
Tabel 4.30 Lokasi Prioritas	99
Tabel 4.31 Matrik Kerugian	100
Tabel 4.32 Evaluasi Saluran Drainase Eksisting Jomban dan Diwek	104

BABI

PENDAHULUAN

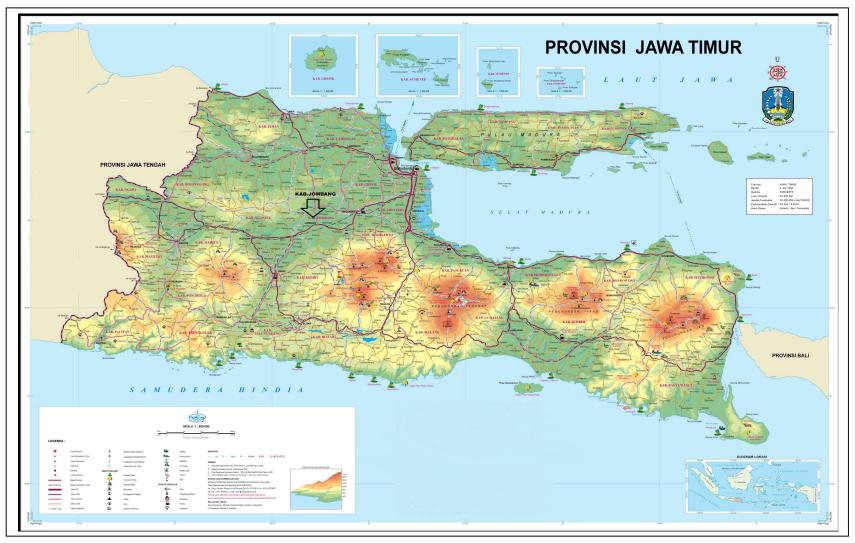
1.1 Latar Belakang

Sejak awal peradaban manusia, air merupakan kebutuhan utama bagi kehidupan di bumi dan syarat penting dalam rangka meningkatkan taraf hidup manusia dan untuk memenuhi berbagai macam kebutuhan manusia. Manusia sangat membutuhkan air, baik dikonsumsi untuk air minum maupun untuk aktifitas dan keperluan yang lainnya. Namun selain dapat memberikan manfaat yang besar, air juga dapat menimbulkan bencana-bencana dan kerugian-kerugian baik jiwa maupun harta apabila manusia tidak lagi memperhatikan keseimbangan alam dalam bertindak dan berbuat. Pertumbuhan penduduk di kabupaten Jombang khususnya di daerah perkotaan yang begitu pesat menuntut perkembangan pembangunan yang merupakan penyebab perubahan tata guna lahan. Banyak lahan-lahan yang semula berupa lahan terbuka atau hutan berubah menjadi areal permukiman maupun industri. Permasalahan yang sering dihadapi oleh masyarakat di kawasan perkotaan adalah adanya genangan di daerah permukiman pada musim penghujan. Penyebab genangan ini diantaranya adanya alih fungsi lahan, yang semula kawasan terbuka hijau ataupun pertanian berubah menjadi kawasan terbangun baik permukiman, perindustrian ataupun perdagangan dan perkantoran. Hal ini tidak hanya terjadi pada kawasan perkotaan, namun sudah merambah ke kawasan budidaya dan kawasan lindung, yang berfungsi sebagai daerah resapan air.

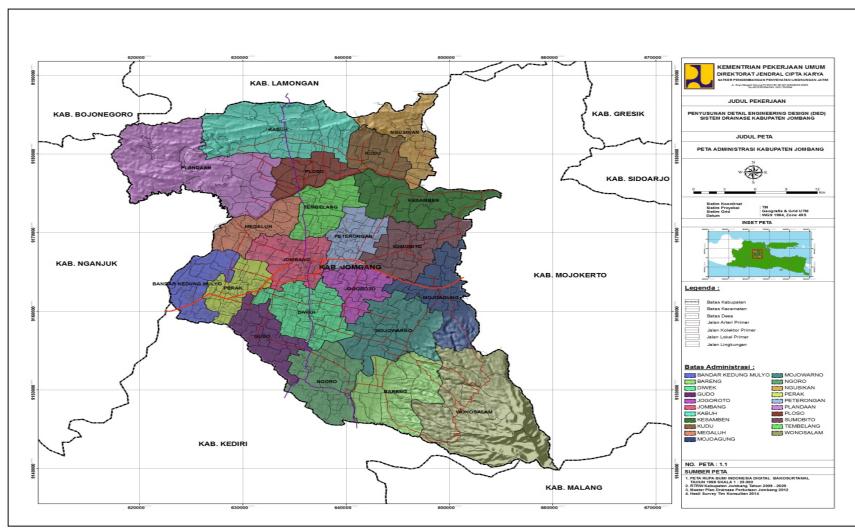
Dampak dari perubahan tata guna lahan yang semakin mempersempit daerah resapan air ini adalah akan memperbesar aliran/ limpasan permukaan langsung sekaligus menurunnya air yang meresap ke dalam tanah. Permasalahan yang lain adalah terdapatnya saluran bottle neck yang menyempit sehingga menyebabkan melubernya air. Selain dari pada itu operasi dan perawatan dalam pengelolaan yang kurang baik dapat menyebabkan kurangnya kapasitas saluran disebabkan oleh sedimen yang tidak segera dikeruk dan juga adanya pembuangan sampah sembarangan ke sungai. Terjadinya perubahan trend limpasan permukaan, kadang kala tidak dibarengi dengan penataan sistim drainase yang memadai, atau sebaliknya berubahnya tata guna lahan tidak memperhatikan sistem drainase yang ada. Hal ini penyebab utama terjadinya banjir/genangan di kawasan perkotaan kawasan yang sedang berkembang. Dengan adanya kejadian-kejadian banjir/ genangan dibeberapa wilayah sepanjang jalan arteri primer perkotaan di Kabupaten Jombang. Dalam perencanaan teknis tersebut harus dievaluasi permasalahan di daerah genangan/banjir maka digunakan parameter yang meliputi parameter genangan, frekuensi terjadinya genangan, kerugian ekonomi, gangguan sosial, kerugian harta benda, kerugian/kerusakan pemukiman penduduk, kondisi hidrologi, hidraulika serta penanganannya pada sungai utama, anak sungai, saluran drainase primer dan saluran drainase sekunder. Maka Kabupaten Jombang akan mempunyai pola sistem drainase yang baku dan dapat digunakan sebagai pedoman pembangunan Drainase di Kabupaten Jombang secara bertahap dan berkelanjutan sesuai prioritasnya.

1.2 Lokasi Studi

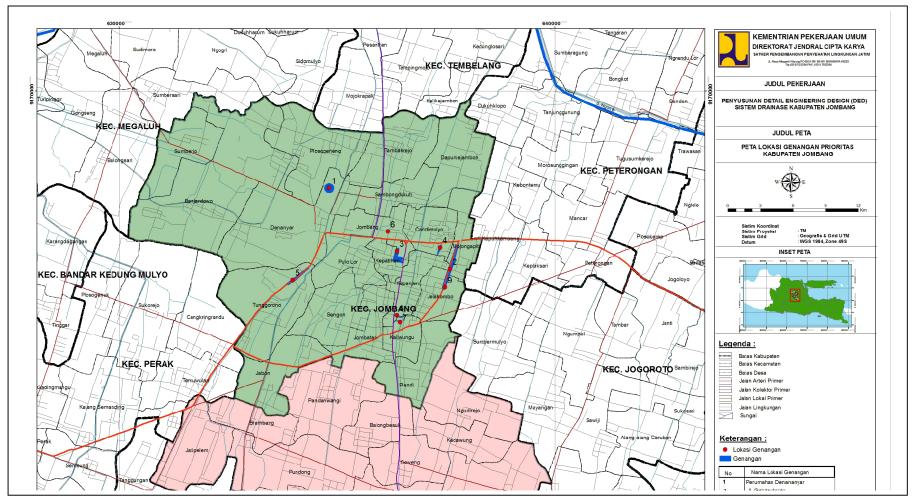
Luas wilayah Kabupaten Jombang adalah sebesar 1.159,50 Km2, terdiri dari 21 Kecamatan dan 306 desa. Kabupaten Jombang secara geografis ini terletak antara 70 20' 48,60" dan 70 46' 41,26" Lintang Selatan serta antara 1120 03' 46,57" dan 1120 27' 21,26" Bujur Timur, dengan luas mencakup 1.159,50 km2. (gambar 1.1)


Batas-batas administrasi Kabupaten Jombang sebagai berikut:

Sebelah Utara : Kabupaten Lamongan


Sebelah Selatan : Kabupaten Kediri dan Kabupaten Malang

Sebelah Timur : Kabupaten Mojokerto


Sebelah Barat : Kabupaten Nganjuk

Gambar 1.1 Peta Provinsi Jawa timur (bpnjatim.wordpress.com/peta-jawatimur)

Gambar 1.2 Peta Administrasi Kabupaten Jombang

Gambar 1.2 Peta Genangan Kabupaten Jombang

1.3 Identifikasi Masalah

Terjadinya genangan di wilayah studi (Saluran Perumahan Denanyar (ASABRI), Saluran Jl.Gatotsubroto, Saluran Jl. Prof. Buya Hamka, Saluran Sebelah Timur GOR dan Saluran Jl. Nurkholis Majid), yaitu :

- Kapasitas saluran dan gorong-gorong yang sudah tidak memadai.
 Kondisi ini, dapat disebabkan oleh desain yang tidak memadai atau karena volume limpasan permukaan yang sudah jauh meningkat dibanding ketika saluran drainase didesain/dibangun.
- Pertumbuhan kawasan kota yang cepat, alih fungsi lahan, pembangunan kawasan pemukiman baru, berkurangnya kawasan retensi dan resapan, dan tidak/ kurangnya upaya pengendalian limpasan di tingkat lokal, memberikan andil signifikan terhadap pertambahan volume limpasan
- Integrasi dan konsistensi sistem jaringan drainase yang belum memadai. Dalam hal ini terkait belum terciptanya satuan sistem drainase yang saling terkait, saling mendukung dan terintegrasi, mulai dari tersier, sekunder hingga primer. Sistem drainase eksisting, masih bersifat spot-spot (setempat) baik dilihat dari aspek sistem jaringan maupun dimensinya.
- Adanya Saluran-saluran yang fungsinya saling tumpang tindih sebagai saluran irigasi dan juga dimanfaatkan sebagi saluran drainase.
- Sangat terbatasnya upaya pembangunan dan operasi dan pemeliharaan. Pembangunan saluran/sistem drainase baru cenderung lebih lambat dibandingkan dengan pertumbuhan fasilitas dan

penduduk kota. Pemeliharaan pada saluran drainase yang ada, tidak bisa mengimbangi penurunan fungsi dan laju kerusakan jaringan drainase yang ada.

- Kondisi daerah yang relatif datar dan berada di posisi cekungan/ lebih rendah dari badan jalan atau sungai.
- Rendahnya kesadaran dan partisipasi masyarakat terkait dengan optimalisasi fungsi saluran/sistem drainase. Terdapat di hampir setiap lokasi prioritas, saluran drainase yang ada tidak dapat berfungsi dengan baik atau bahkan saluran sudah tidak tampak lagi karena sedimentasi dan sampah.

1.3 Rumusan Masalah

Dalam studi ini perumusan masalahnya adalah sebgai berikut :

- Apakah saluran drainase tersebut dapat menampung debit air yang ada?
- Bagaimana penanganan yang harus dilakukan untuk mengatasi genangan?

1.5 Batasan Masalah

Berdasarkan rumusan masalah diatas batasan masalah dalam studi ini adalah:

- Analisa curah hujan rencana dengan menggunakan metode distribusi
 Log-Person type III dan analisa perhitungan debit banjir.
- Mengevaluasi saluran dan dimensi saluran eksisting

1.6 Maksud dan Tujuan

Maksud dari studi ini adalah mengevaluasi sistem drainase yang sudah ada dan dimensi saluran drainase di kabupaten jombang khusunya daerah perkotaan.

Sedangkan tujuan dari studi ini mendapatkan rencana sistem drainase dari hasil perbaikan sitem drainase dan dimensi saluran agar dapat menghilangkan banjir dan genangan di kota jombang.

BAB II

LANDASAN TEORI

2.1 Pengertian Drainase

Drainase merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan infrastruktur khususnya). Berikut beberapa pengertian drainase: Menurut Dr. Ir. Suripin, M.Eng. (2004;7) drainase mempunyai arti mengalirkan, menguras, membuang, atau mengalihkan air. Secara umum, drainase didefinisikan sebagai serangkaian bangunan air yang berfungsi untuk mengurangi dan/atau membuang kelebihan air dari suatu kawasan atau lahan, sehingga lahan dapat difungsikan secara optimal. Drainase juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas. Drainase yaitu suatu cara pembuangan kelebihan air yang tidak diinginkan pada suatu daerah, serta cara-cara penanggulangan akibat yang ditimbulkan oleh kelebihan air tersebut. (Suhardjono 1948:1). Dari sudut pandang yang lain, drainase adalah salah satu unsur dari prasarana umum yang dibutuhkan masyarakat kota dalam rangka menuju kehidupan kota yang aman, nyaman, bersih, dan sehat. Prasarana drainase disini berfungsi untuk mengalirkan air permukaan ke badan air (sumber air permukaan dan bawah permkaan tanah) dan atau bangunan resapan. Selain itu juga berfungsi sebagai pengendali kebutuhan air permukaan dengan tindakan untuk memperbaiki daerah becek, genangan air dan banjir. Kegunaan dengan adanya saluran drainase ini antara lain: Mengeringkan daerah becek dan genangan air sehingga tidak ada akumulasi air tanah.

Menurunkan permukaan air tanah pada tingkat yang ideal. Mengendalikan erosi tanah, kerusakan jalan dan bangunan yang ada. Mengendalikan air hujan yang berlebihan sehingga tidak terjadi bencana banjir. Sebagai salah satu sistem dalam perencanaan perkotaan, maka sistem drainase yang ada dikenal dengan istilah sistem drainase perkotaan. Menurut Dr. Ir. Suripin, M.Eng. (2004;7) drainase mempunyai arti mengalirkan, menguras, membuang, atau mengalihkan air. Secara umum, drainase didefinisikan sebagai serangkaian bangunan air yang berfungsi untuk mengurangi dan/atau membuang kelebihan air dari suatu kawasan atau lahan, sehingga lahan dapat difungsikan secara optimal. Drainase juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas. Drainase yaitu suatu cara pembuangan kelebihan air yang tidak diinginkan pada suatu daerah, serta cara-cara penangggulangan akibat yang ditimbulkan oleh kelebihan air tersebut. (Suhardjono 1948:1) Dari sudut pandang yang lain, drainase adalah salah satu unsur dari prasarana umum yang dibutuhkan masyarakat kota dalam rangka menuju kehidupan kota yang aman, nyaman, bersih, dan sehat. Prasarana drainase disini berfungsi untuk mengalirkan air permukaan ke badan air (sumber air permukaan dan bawah permkaan tanah) dan atau bangunan resapan. Selain itu juga berfungsi sebagai pengendali kebutuhan air permukaan dengan tindakan untuk memperbaiki daerah becek, genangan air dan banjir. Kegunaan dengan adanya saluran drainase ini antara lain:

> Mengeringkan daerah becek dan genangan air sehingga tidak ada akumulasi air tanah.

- Menurunkan permukaan air tanah pada tingkat yang ideal.
 Mengendalikan erosi tanah, kerusakan jalan dan bangunan yang ada.
- Mengendalikan air hujan yang berlebihan sehingga tidak terjadi bencana banjir.

Drainase yang meliputi jenis, system, dan permasalahannya: Drainase merupakan salah satu factor pengembangan irigasi yang berkaitan dalam pengolahan banjir (float protection), sedangkan irigasi bertujuan untuk memberikan suplai air pada tanaman . Drainase dapat juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas.

➤ Jenis – jenis drainase

Banyak hal yang menjadi permasalahan dan kendala dalam sistem drainase perkotaan, masalah teknis konsep drainase perkotaan kita. Air hujan yang turun ke permukaan tanah masih dibuang "secepat-cepatnya" ke sungai. Air hujan yang turun tidak diberi kesempatan untuk meresap sebagai cadangan air tanah. Akibatnya tanah tak punya cadangan air, muka air tanah turun, kekeringan melanda. Sementara itu, sungai tidak lagi mengalirkan air bersih. Air sungai bercampur juga dengan air limbah, baik itu skala kecil maupun besar. Tumpang tindih fungsi atas keberadaan sungai ini jelas membawa banyak permasalahan yang potensial merusak lingkungan.

Muncul dalam pengelolaan sistem drainase perkotaan adalah integrasi jaringan antar wilayah/kabupaten. Sebagai sebuah jaringan dan sistem, tidak mungkin bila aliran air dikelola sendiri-sendiri. Pendimensian saluran, penggunaan sungai secara terpadu, sosialisasi kepada masyarakat harus dilakukan secara menyeluruh. Drainase yang meliputi jenis, system, dan permasalahannya: Drainase merupakan salah satu factor pengembangan irigasi yang berkaitan dalam pengolahan banjir (float protection), sedangkan irigasi bertujuan untuk memberikan suplai air pada tanaman. Drainase dapat juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas.

a). Menurut sejarah terbentuknya:

- Drainase alamiah (natural drainage) Terbentuk secara alamiah, tidak terdapat bangunan penunjang.
- 2. Drainase buatan (artificial drainage) Dibuat dengan tujuan tertentu, memerlukan bangunan khusus.

b). Menurut letak bangunan:

- Drainase permukaan tanah (surface drainage)
 Suatu system pembuangan air untuk menyalurkan air dipermukaan tanah. Hal ini berguna untuk mencegah adanya genangan.
- 2. Drainase bawah permukaan tanah (subsurface drainage) Suatu sistem pembuangan untuk mengalirkan kelebihan air dibawah tanah. Pada jenis tanaman tertentu drainase juga bermanfaat untuk mengurangi ketinggian muka air tanah sehingga tanaman dapat tumbuh dengan baik.

c). Menurut fungsi:

- Single purpose Suatu jenis air buangan : air hujan, limbah domestic, limbah industri dll.
- 2. Multi purpose Beberapa jenis air buangan tercampur

d). Menurut kontruksi:

- 1. Saluran terbuka.
- 2. Saluran tertutup

Untuk air kotor disaluran yang terbentuk di tengah kota.

f) Sistem dan permasalahan drainase:

Sistem drainase dibagi menjadi:

- 1. tersier drainage
- 2. secondary drainage.
- 3. main drainage.
- 4. sea drainage

g). Permasalahan drainase:

Permasalah drainase perkotaan bukanlah hal yang sederhana. Banyak faktor yang mempengaruhi dan pertimbangan yang matang dalam perencanaan, antara lain :

 Peningkatan debit manajemen sampah yang kurang baik memberi kontribusi percepatan pendangkalan /penyempitan saluran dan sungai. Kapasitas sungai dan saluran drainase menjadi berkurang, sehingga tidak mampu menampung debit yang terjadi, air meluap dan terjadilah genangan.

- 2. Peningkatan jumlah penduduk meningkatnya jumlah penduduk perkotaan yang sangat cepat, akibat dari pertumbuhan maupun urbanisasi. Peningkayan jumlah penduduk selalu diikuti oleh penambahn infrastruktur perkotaan, disamping itu peningkatn penduduk juga selalu diikuti oleh peningkatan limbah, baik limbah cair maupun pada sampah.
- Amblesan tanah disebabkan oleh pengambilan air tanah yang berlebihan, mengakibatkan beberapa bagian kota berada dibawah muka air laut pasang.
- 4. Penyempitan dan pendangkalan saluran.
- 5. Reklamasi.
- 6. Limbah sampah dan pasang surut.

j) Penanganan drainase perkotaan:

- Diadakan penyuluhan akan pentingnya kesadaran membuang sampah.
- 2. Dibuat bak pengontrol serta saringan agar sampah yang masuk ke drainase dapat dibuang dengan cepat agar tidak mengendap.
- 3. Pemberian sanksi kepada siapapun yang melanggar aturan terutama pembuangan sampah sembarangan agar masyarakat mengetahui pentingnya melanggar drainase.
- 4. Peningkatan daya guna air, meminimalkan kerugian serta memperbaiki konservasi lingkungn.

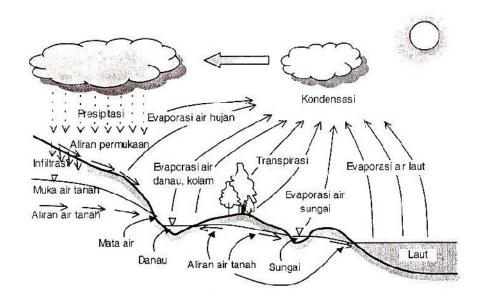
 Mengelola limpasan dengan cara mengembangkan fasilitas untuk menahan air hujan, menyimpan air hujan maupun pembuatan fasilitas resapan.

2.2 Analisa Hidrologi

Analisa hidrologi merupakan sebuah proses pengolahan data curah hujan, data topografi, data tata guna lahan dan data jumlah pertumbuhan penduduk yang mana masing-masing dari data tersebut dapat digunakan untuk mengetahui besarnya intensitas hujan, koefisien pengaliran, luas daerah pengaliran dan debit air kotor. Sehingga dapat diketahui berapa besarnya debit banjir rencana. Kemudian dari debit banjir rencana inilah dapat dilakukan evaluasi terhadap saluran drainase yang ada.

2.2.1 Siklus Hidrologi

Siklus Hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui kondensasi, presipitasi, evaporasi dan transpirasi. Pemanasan air samudera oleh sinar matahari merupakan kunci proses siklus hidrologi tersebut dapat berjalan secara kontinu. Air berevaporasi, kemudian jatuh sebagai presipitasi dalam bentuk hujan, salju, hujan batu, hujan es dan salju (*sleet*), hujan gerimis atau kabut. Pada perjalanan menuju bumi beberapa presipitasi dapat berevaporasi kembali ke atas atau langsung jatuh yang kemudian diintersepsi oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi terus bergerak secara kontinu dalam tiga cara yang berbeda:


• Dalam buku (Asdak, C. 1995. *Hidrologi dan Pengelolaan Daerah Aliran Sungai*. Yogyakarta: Gadjah Mada University Press) Evaporasi adalah penguapan

air dari permukaan air, tanah, dan bentuk permukaan bukan vegetasi lainnnya oleh proses fisika. Dua unsur utama untuk berlangsungnnya evaporasi adalah energi (radiasi) matahari dan ketersediaan air. Proses-proses fisika yang menyertai berlangsungnya perubahan bentuk dari cair menjadi gas berlaku pada kedua proses evaporasi tersebut diatas. Oleh karenanya, kondisi fisika yang mempengaruhi laju evaporasi umum terjadi pada kedua proses alamiah tersebut. Faktor-faktor yang berpengaruh antara lain cahaya matahari, suhu udara, dan kapasitas kadar air dalam udara. Proses evaporasi yang disebutkan diatas tergantung pada jumlah air yang tersedia.

- Menurut Dr. Ir. Suripin, M.Eng. (2004;7) Infiltrasi adalah aliran air ke dalam tanah melalui permukaan tanah. Di dalam tanah air mengalir dalam arah lateral, sebagai aliran antara (interflow) menuju mata air, danau, dan sungai; atau secara vertikal, yang dikenal dengan perkolasi (percolation) menuju air tanah.
- Air Permukaan; Air tanah adalah sejumlah air di bawah permukaan bumi yang dapat dikumpulkan dengan sumur-sumur, terowongan atau sistem drainase atau dengan pemompaan. Dapat juga disebut aliran yang secara alami mengalir ke permukaan tanah melalui pancaran atau rembesan. (Brower, J. E., H. Z. Zerold & Car, I. N. Von Ende. 1990. *Field and Laboratory Methods for General Ecology*).

Sedangkan menurut (Soemarto 1989) air tanah adalah air yang menempati rongga-rongga dalam lapisan geologi. Lapisan tanah yang terletak di bawah permukaan tanah dinamakan lajur jenuh (*saturated zone*), dan lajur tidak jenuh terletak di atas lajur jenuh sampai ke permukaan tanah, yang rongga-rongganya

berisi air dan udara. Proses perjalanan air di daratan itu terjadi dalam komponenkomponen siklus hidrologi yang membentuk sistem Daerah Aliran Sungai (DAS)

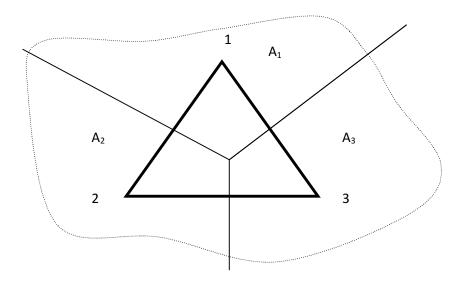
Gambar 2.1 Siklus Hidrologi

(Suripin, 2004, Sistem Drainase Perkotaan yang berkelanjutan: 20).

2.2.2 Curah Hujan Rata – rata daerah

Dalam menentukan curah hujan rata – rata daerah ada tiga macam cara yang umum digunakan dalam menganalisa curah hujan rata – rata daerah di beberapa titik pengamatan, yaitu :

- 1. Cara rata-rata aljabar (Arithmatic Mean Method)
- 2. Cara polygon Thiessen
- 3. Cara Garis Isohyet


Dalam studi kali ini digunakan cara poligon thiessen untuk mendapatkan besarnya hujan rata-rata daerah. Metode Thiesen berusaha mengimbangi tidak meratanya distribusi alat ukur dengan menyediakan suatu faktor pembobot bagi

masing-masing stasiun. Cara penggambaran polygon Thiesen adalah sebagai berikut:

- Stasiun diplot pada suatu peta kemudian dihubungkan massing-masing stasiun dengan stasiun yang lain dengan sebuah garis bantu.
- 2. Tentukan titik potong polygon dengan garis bantu dengan cara membagi dua sama panjang setiap garis Bantu yang menghubungkan dua stasiun tersebut.
- 3. kemudian tarik garis polygon tegak lurus terhadap garis bantu yang menghubungkan dua stasiun melalui dua titik potong tadi yang terbagi sama panjang. Kemudian rangkaian garis-garis yang tegak lurus tersebut hingga membentuk suatu poligon

Sisi-sisi setiap polygon merupakan batas luas daerah efektif daerah tangkapan air hujan yang diasumsikan untuk stasiun tersebut. Luas masingmasing polygon ditentukan dengan planimetri dan dinyatakan dalam prosentasi dari luas keseluruhan tangkapan air hujan.

Cara ini di dasarkan atas rata-rata timbang (weight average). Masing-masing penakar mempunyai daerah pengaruh yang dibentuk dengan menggambar garis-garis sumbu tegak lurus terhadap garis penghubung antara dua pos penakar.

Misal A1 adalah luas daerah pengaruh pos penakar 1, A2 adalah luas daerah pengaruh pos penakar 2, dan seterusnya. Jumlah A1 + A2 +.....An =A, merupakan jumlah luas daerah /seluruh areal yang dicari tinggi curah hujannya.

Jika pos penakar 1 menakar tinggi hujan d1, pos penakar 2 menakar hujan d2 hingga pos penakar n menakar hujan dn, maka

$$d = \frac{A1.di + A2.d2 + \dots An.dn}{A}$$

$$=\sum_{1}^{n} \frac{Ai.di}{A}$$
 2.1

Jika $\frac{Ai}{A} = pi$ yang merupakan prosentase luas maka

$$d = \sum_{i=1}^{n} pi.di \text{ dimana}$$
 2.2

A = luas daerah

d = tinggi curah hujan rata-rata areal

d1, d2, ...dn = tinggi curah hujan di pos penakar 1, 2, ...n

A1, A2,...An = luas daerah pengaruh di pos 1, 2, ...n

$$\sum_{1}^{n} pi = \text{jumlah prosentasi luas} = 100\%$$

2.2.3 Curah Hujan Rancangan

Dalam studi ini akan dipakai Metode Log Person Type III untuk menentukan besarnya curah hujan rancangan. Adapun persamaanya adalah sebagai berikut :

➤ Hitung harga rata-rata dengan rumus sebagai berikut :

$$Log \ \overline{x} = \frac{\sum \log xi}{n}$$
 2.3

> Hitung harga standart deviasi dengan rumus sebagai berikut :

$$Sd = \sqrt{\frac{\sum (\log xi - \log xi)^2}{n-1}}$$
 2.4

➤ Hitung koefisien kepencengan dengan rumus sebagai berikut :

$$Cs = \frac{n \times \sum (\log xi - \log x)^3}{(n-1) \times (n-2) \times \sigma \log xi^3}$$
 2.5

Persamaan Log Pearson Type III

$$Log x_T = \log x + (K \times Sd)$$
 2.6

Dimana:

 $Log x_T$ = Curah hujan rancangan kala ulang T tahun

 $\log x$ = Rerata Logaritma

S = Standart deviasi

Tabel 2.1 Nilai K Untuk Distribusi Log-Person III

Koefisien-					1	Waktu Bal	ik (Tahun)					
Coensien	1,01	1,05	1,11	1,25	2	5	10	20	50	100	200	1000
Cs						Pelua	ng (%)					
CS	99	95	90	80	50	20	10	5	2	1	0,5	0,1
3,0	-0,667	-0,665	-0,660	-0,636	-0,396	0,420	1,180	2,0950	3,152	4,051	4,970	7,25
2,5	-0,799	-0,790	-0,771	-0,711	-0,360	0,518	1,250	2,0933	3,048	3,845	4,652	6,60
2,2	-0,905	-0,882	-0,844	-0,752	-0,330	0,574	1,284	2,0807	2,970	3,705	4,444	6,20
2,0	-0,990	-0,949	-0,895	-0,777	-0,307	0,609	1,302	2,0662	2,912	3,605	4,298	5,910
1,8	-1,087	-1,020	-0,945	-0,799	-0,282	0,643	1,318	2,0472	2,848	3,499	4,147	5,66
1,6	-1,197	-1,093	-0,994	-0,817	-0,254	0,675	1,329	2,0240	2,780	3,388	3,990	5,39
1,4	-1,318	-1,168	-1,041	-0,832	-0,225	0,705	1,337	1,9962	2,706	3,271	3,828	5,11
1,2	-1,449	-1,243	-1,086	-0,844	-0,195	0,732	1,340	1,9625	2,626	3,149	3,661	4,82
1,0	-1,588	-1,317	-1,128	-0,852	-0,164	0,758	1,340	1,9258	2,542	3,022	3,489	4,540
0,9	-1,660	-1,353	-1,147	-0,854	-0,148	0,769	1,339	1,9048	2,498	2,957	3,401	4,39
0,8	-1,733	-1,388	-1,116	-0,856	-0,132	0,780	1,336	1,8877	2,453	2,891	3,312	4,250
0,7	-1,806	-1,423	-1,183	-0,857	-0,116	0,790	1,333	1,8613	2,407	2,824	3,223	4,10
0,6	-1,880	-1,458	-1,200	-0,857	-0,099	0,800	1,328	1,8372	2,359	2,755	3,132	3,960
0,5	-1,955	-1,491	-1,216	-0,856	-0,083	0,808	1,323	1,8122	2,311	2,686	3,041	3,81
0,4	-2,029	-1,524	-1,231	-0,855	-0,066	0,816	1,317	1,7862	2,261	2,615	2,949	3,67
0,3	-2,104	-1,555	-1,245	-0,853	-0,050	0,824	1,309	1,7590	2,211	2,544	2,856	3,52
0,2	-2,178	-1,586	-1,258	-0,850	-0,033	0,830	1,301	1,7318	2,159	2,472	2,763	3,380
0,1	-2,252	-1,616	-1,270	-0,846	-0,017	0,836	1,292	1,7028	2,107	2,400	2,670	3,23
0,0	-2,326	-1,645	-1,282	-0,842	0,000	0,842	1,282	1,6728	2,054	2,326	2,576	3,09
-0,1	-2,400	-1,673	-1,292	-0,836	0,017	0,836	1,270	1,6417	2,000	2,252	2,482	2,95
-0,2	-2,472	-1,700	-1,301	-0,830	0,033	0,850	1,258	1,6097	1,945	2,178	2,388	2,81
-0,3	-2,544	-1,726	-1,309	-0,824	0,050	0,853	1,245	1,5767	1,890	2,104	2,294	2,67
-0,4	-2,615	-1,750	-1,317	-0,816	0,066	0,855	1,231	1,5435	1,834	2,029	2,201	2,540
-0,5	-2,686	-1,774	-1,323	-0,808	0,083	0,856	1,216	1,5085	1,777	1,955	2,108	2,400
-0,6	-2,755	-1,797	-1,328	-0,800	0,099	0,857	1,200	1,4733	1,720	1,880	2,016	2,27
-0,7	-2,824	-1,819	-1,333	-0,790	0,116	0,857	1,183	1,4372	1,663	1,806	1,926	2,150
-0,8	-2,891	-1,839	-1,336	-0,780	0,132	0,856	1,166	1,4010	1,606	1,733	1,837	2,03
-0,9	-2,957	-1,858	-1,339	-0,769	0,148	0,854	1,147	1,3637	1,549	1,660	1,749	1,910
-1,0	-3,022	-1,877	-1,340	-0,758	0,164	0,852	1,128	1,3263	1,492	1,588	1,664	1,800
-1,2	-3,149	-1,910	-1,340	-0,732	0,195	0,844	1,086	1,2493	1,379	1,449	1,501	1,62
-1,4	-3,271	-1,938	-1,337	-0,705	0,225	0,832	1,041	1,1718	1,270	1,318	1,351	1,46
-1,6	-3,388	-1,962	-1,329	-0,675	0,254	0,817	0,994	1,0957	1,166	1,197	1,216	1,28
-1,8	-3,499	-1,981	-1,318	-0,643	0,282	0,799	0,945	1,0200	1,069	1,087	1,097	1,130
-2,0	-3,605	-1,996	-1,302	-0,600	0,307	0,777	0,895	0,9483	0,980	0,990	0,995	1,000
-2,2	-3,705	-2,006	-1,284	-0,574	0,330	0,752	0,844	0,8807	0,900	0,905	0,907	0,91
-2,5	-3,845	-2,012	-1,250	-0,518	0,360	0,711	0,771	0,7893	0,798	0,799	0,800	0,80
-3,0	-4,051	-2,003	-1,180	-0,420	0,396	0,636	0,660	0,6650	0,666	0,667	0,667	0,66
Dikutip dar	i Ir. CD. So	emarto, B.	I.E. Dipl. HE	/ Hidrolog		-	-					-

2.2.4 Uji Distribusi Frekuensi

Uji kesesuaian distribusi ini dimaksudkan untuk mengetahui apakah distribusi yang dipilih dapat digunakan atau tidak untuk serangkaian data yang tersedia. Dalam studi ini, untuk keperluan analisis uji kesesuaian distribusi diperlukan dua metode statistik, yaitu *Uji Chi Square* dan *Uji Smirnov-Kolmogorov*.

1. Uji Chi Square

Dimaksudkan untuk menentukan apakah persamaan distribusi peluang yang telah dipilih dapat mewakili distribusi statistik sampel yang dianalisis. Pengambilan keputusan uji ini menggunakan parameter χ^2 (Soewarno, 1995:194):

$$\chi_h^2 = \sum_{i=l}^G \frac{(O_i - E_i)^2}{E_i}$$
 2.7

dengan:

 χ_h^2 = parameter *Chi Square* terhitung

G = jumlah sub grup

 O_i = jumlah nilai pengamatan pada sub grup ke i

 E_i = jumlah nilai teoritis pada sub grup ke i

Adapun langkah-langkah perhitungan dari uji *Chi Square* adalah sebagai berikut (Soewarno, 1995:194):

- 1. Urutkan data pengamatan (dari besar ke kecil atau sebaliknya)
- 2. Kelompokkan data menjadi G sub grup, tiap-tiap subgrup minimal empat data
- 3. Jumlahkan data pengamatan sebesar O_i tiap-tiap subgrup
- 4. Jumlahkan data dari persamaan distribusi yang digunakan sebesar E_i
- 5. Tiap-tiap subgrup hitung nilai : $(O_i-E_i)^2$ dan $\frac{(O_i-E_i)^2}{E_i}$
- 6. Jumlah seluruh G sub nilai $\frac{(O_i-E_i)^2}{E_i}$ menentukan nilai *Chi Square* hitung

- 7. Tentukan derajat kebebasan dk = G-R-1
- 8. Menentukan χ^2 dari tabel dengan menentukan derajat kepercayaan (α) dan derajat kebebasan (dk)
- 9. Menyimpulkan hasil perhitungan, apabila $\chi^2_{\rm hit} < \chi^2_{\rm cr}$ maka persamaan distribusi teoritis yang digunakan dapat diterima, dan apabila nilai $\chi^2_{\rm hit}$ > $\chi^2_{\rm cr}$ maka persamaan distribusi teoritis yang digunakan tidak dapat diterima.

Tabel 2.2 Distribusi Chi-Square

	0,995	0,99	0,975	0,95	0,05	0,025	0,01	0,005
1	0,0000393	0,000157	0,000982	0,00393	3.841	5.024	6.635	7.879
2	0,01	0,0201	0,0506	0,103	5.991	7.378	9.210	10.597
3	0,0717	0,115	0,216	0,352	7.815	9.348	11.345	12.838
4	0,207	0,297	0,484	0,711	9.488	11.143	13.277	14.860
5	0,412	0,554	0,831	1.145	11.070	12.832	15.086	16.750
6	0,676	0,872	1.237	1.635	12.592	14.449	16.812	18.548
7	0,989	1.239	1.690	2.167	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	36.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	36.415	39.364	42.980	45.558
25	10.520	11.524	13.120	14.611	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	43.773	46.979	50.892	53.672
(Sumber:	CD Soema	rto, 1999)						

2. Uji Smirnov-Kolmogorov

Uji Smirnov-Kolmogorov digunakan untuk membandingkan peluang yang paling maksimum antara distribusi empiris dan distribusi teoritis yang disebut Δ_{maks} . Prosedur perhitungan uji Smirnov-Kolmogorov adalah (Soetopo, 1998: 25):

- 1. Data diurutkan dari kecil ke besar
- 2. Menghitung peluang empiris (Sn) dengan rumus Weibull

$$Sn = \frac{m}{n+1}$$
 2.8

dengan:

Sn(x) = posisi data x menurut data pengamatan

m = nomor urut data

n = banyaknya data

3. Menghitung peluang teoritis (Pt) dengan rumus: Pt = 1 - Pr dengan:

Pr = probabilitas yang terjadi

- 4. Simpangan maksimum (Δ_{maks}) dengan rumus: $\Delta_{\text{maks}} = |Px(x) Sn(x)|$
- 5. Menentukan nilai Δ_{cr}
- 6. Menyimpulkan hasil perhitungan, yaitu apabila $\Delta < \Delta_{cr}$ maka distribusi terpenuhi dan apabila $\Delta > \Delta_{cr}$ maka distribusi tidak terpenuhi.

Tabel 2.3 Nilai \(\Delta \) Kritis Untuk Uji Smirnov - Kolmogrov

N	α					
IN [0,20	0,10	0,05	0,01		
5	0,45	0,51	0,56	0,67		
10	0,32	0,37	0,41	0,49		
15	0,27	0,30	0,34	0,10		
20	0,23	0,26	0,29	0,36		
25	0,21	0,24	0,27	0,32		
30	0,19	0,22	0,24	0,29		
35	0,18	0,20	0,23	0,27		
40	0,17	0,19	0,21	0,25		
4.5	0,16	0,18	0,20	0,24		
50	0,15	0,17	0,19	0,23		
n>50	1.07/n	1,22/n	1,36/n	1.63/n		

2.2.5 Intensitas Hujan

Perhitungan intensitas curah hujan rencana dipergunakan metode "Mononobe" dengan persamaan sebagai berikut:

$$I_n = \frac{R_{24(n)}}{24} \left(\frac{24}{tc}\right)^{2/3}$$
 Persamaan 15

Dimana:

 I_n = intensitas curah hujan menurut waktu konsentrasi dan masa periode ulangnya, dalam mm/jam

 $R_{24(n)}=$ curah hujan maksimum harian (24 jam), sesuai dengan periode ulang yang direncanakan

tc = waktu konsentrasi

Penentuan T_c menggunankan rumus kirpich seperti pada persamaan di bawah ini :

Tc =0.0195 x
$$\left(\frac{L}{\sqrt{S}}\right)^{0.77}$$

Dimana:

L = Panjang Saluran

S = Kemiringan Dasar Saluran

2.2.6 Koefisien Aliran Permukaan (C)

Koefisien pengaliran adalah perbandingan antara limpasan air hujan dengan total hujan yang menyebabkan limpasan. Sehingga untuk menghitung besarnya koefisien pengaliran rata – rata digunakan rumus rata – rata hitung sebagai berikut *(CD. Soemarto, 1978,217)*:

$$C = \frac{(A_1.C_1) + (A_2.C_2) + \dots + (A_n.C_n)}{A_1 + A_2 + \dots + A_n}$$

Dengan:

C = Koefisien pengaliran

 $A_1 A_2 A_n$ = Luas daerah pengaliran sungai (km²)

 $C_1C_2C_n$ = Koefisien pengaliran pada tata guna lahan yang berbeda

Tabel 2.4. Koefisien Pengaliran

Kawasan	Tata Guna lahan	Nilai Koefisien Pengaliran (C)
	Kawasan Pemukiman	
	Kawasan rendah	0,25 - 0,40
	— Kawasan sedang	0,40 - 0,70
	— Kawasan tinggi	0,70 - 0,80
	Kawasan Perdagangan	0,90 - 0,95
	Kawasan Industri	0,80 - 0,90
perkotaan	Taman Jalur Hijau, Kebun, dll	0,20 - 0,30
	Perbukitan, Kemiringan < 20 %	0,40 - 0,60
	Kawasan Jurang, Kemiringan > 20 %	0,50 - 0,60
	Lahan dengan Terasering	0,25 - 0,35
Pedesaan	Persawahan	0,70 - 0,80

Sumber: Ir. S. Hindarko; 2000

2.2.7 Luas Daerah Pengaliran (A)

Yang dimaksud dengan luas daerah pengaliran adalah luas daerah tangkapan air hujan yang harus dilayani oleh saluran yang direncanakan. Luas daerah pengaliran ditentukan berdasarkan ketinggian daerah rencana. Sehingga dalam menentukannya perencana harus mengetahui keadaan topografi wilayah tersebut.

2.2.8 Debit Banjir Rencana

Hidrograf banjir rencana atau debit banjir rencana adalah debit maksimum yang mungkin terjadi pada suatu daerah dengan peluang kejadian tertentu. Untuk menaksir debit banjir rencana digunakan cara hidrograf satuan yang didasarkan oleh parameter dan karakteristik daerah pengaliranya. Teori hidrograf satuan merupakan suatu cara perhitungan yang relatif sederhana dan teliti. Ada 5 metode yang digunakan untuk menghitung besarnya debit banjir rencana, yaitu :

- 1. Metode Weduwen
- 2. Metode Haspers
- 3. Metode Rational
- 4. Metode Nakayasu
- 5. Metode Snyder dan Alexeyev

Debit banjir dapat dihitung berdasarkan parameter hujan dan karakteristik DAS, dengan rumus berikut (Suyono, 2001):

Keterangan:

Qp = debit puncak banjir (m³/det).

C = koefisien aliran.

I = intensitas hujan selama waktu konsentrasi (mm/jam).

 $A = \text{luas daerah pengaliran Kali (km}^2).$

Waktu konsentrasi adalah selang waktu antar permulaan hujan dan saat selusuh areal DAS-nya ikut berperan pada pengaliran Kali. Salah satu rumus yang digunakan adalah :

$$t_c = 0.0195 I^{0.77} x S^{-0.385}$$
 2.10

Keterangan:

t_c = waktu konsentrasi (menit).

I = panjang lereng (m).

S = kemiringan lereng (m/m).

2.3 Debit Domestik

Debit domestik atau debit air kotor adalah banyaknya air buangan yang bersal dari aktifitas manusia baik berasal dari rumah tangga, bangunan gedung, instalasi dan sebagainya. Untuk memperkirakannya perlu diketahui terlebih dahulu jumlah kebutuhan air rata-rata dan jumlah penduduk daerah studi. Kemudian data yang didapatkan dapat dihitung dengan menggunakan rumus :

$$Od = Pn \ x \ A \ x \ y \dots (2-16)$$

Dimana:

Qd: debit air kotor ($\frac{m3}{dt}$)

Pn: jumlah pertumbuhan penduduk (jiwa)

A: Luas daerah pengaliran (km²)

 γ : besarnya kapasitas air yang akan terbuang (m³/detik/orang)

2.3.1 Proyeksi Penduduk

Jumlah penduduk pada daerah studi pada awal perencanaan dimulai dan pada tahun-tahun yang akan datang harus diperhitungkan untuk menghitung air buangan. Untuk memproyeksikan jumlah penduduk pada tahun-tahun yang akan datang digunakan :

1. Pertumbuhan Eksponensial

Pertumbuhan ini mengasumsikan pertumbuhan penduduk secara terus-menerus setiap hari dengan angka pertumbuhan konstan.

Pengukuran penduduk ini lebih mendekati tepat, karena dalam

kenyataannya pertumbuhan jumlah penduduk juga berlangsung terusmenerus.

Ramalan pertambahan penduduknya adalah:

$$Pn = Po \ x \ ern...$$
 (2-17)

Dengan:

Pn = jumlah penduduk pada tahun ke-n

Po = jumlah penduduk pada awal tahun

r = angka pertumbuhan penduduk

n = interval waktu (tahun)

e = bilangan logaritma (2,71828)

2. Pertumbuhan Geometri

Pertumbuhan ini mengasumsikan besarnya laju pertumbuhan yang menggunakan dasar bunga berbunga dimana angka pertumbuhannya adalah sama tiap tahun.

Ramalan laju pertumbuhan Geometri adalah sebagai berikut :

$$Pn = Po x (1 + r)n$$
.....(2-18)

Dengan:

Pn = jumlah penduduk pada tahun ke-n

Po = jumlah penduduk pada awal tahun

r = angka pertumbuhan penduduk

n = interval waktu (tahun)

2.3.2 Kapasitas Air Yang Terbuang

Air kotor atau air buangan merupakan air sisa atau bekas dari air yang dimanfaatkan untuk kepentingan sehari-hari. Debit air kotor berasal dari air buangan hasil aktivitas penduduk yang berasal dari :

- a. Air buangan domestik, dari rumah tangga dan fasilitas umum
- b. Air buangan industri

Untuk memperkirakan jumlah air kotor harus diketahui kebutuhan air bersih ratarata dan jumlah penduduk kota. Air buangan rumah tangga diperkirakan sebesar 80% dari kebutuhan rata-rata air bersih, sedangkan untuk fasilitas sosial, pemerintahan dan perdagangan diperkirakan 70 – 90% kebutuhan air bersih. Kuantitas air buangan industri diperkirakan sebesar 90% dari kebutuhan air bersih. Untuk lokasi studi, air buangannya hanya berasal dari kebutuhan rumah tangga, dan diperkirakan 80% dari total kebutuhan air rumah tangga.

Contoh perhitungan debit air kotor tiap hari:

- a. Kebutuhan air domestik = 100 liter/orang/hari
- b. Dikalikan dengan faktor pengaliran air buangan 0,7 0,9 (dalam studi ini diambil 0,8 menghasilkan air buangan sebesar :

 $0.8 \times 100 = 80 \text{ liter/orang/hari}$

= 0,00093 liter/orang/detik

c. Dikalikan dengan faktor penduduk (P) dihasilkan Q_{peak}

Dengan demikian jumlah air kotor yang dibuang pada suatu daerah tiap km2 adalah jumlah air buangan maksimum dikalikan dengan kepadatan penduduknya (Pn/A):

$$Qak = \frac{P_n x 0,00093}{A}$$

Dengan:

Qak = debit air kotor (lt/dt/km²)

Pn = jumlah penduduk (jiwa)

A = luas daerah (km²).

2.4 Hidraulika Saluran

Sebelum menganalisa dimensi saluran, langkah pertama yang harus diketahui adalah seberapa luas daerah yang akan dikeringkan oleh saluran tersebut. Dengan demikian dapat dihitung beban yang diterima saluran tersebut. Adapun aspek-aspek yang perlu diperhatikan dalam perencanaan drainase dilihat dari sisi hidrolika antara lain :

- Kecepatan maksimum aliran agar ditentukan tidak lebih besar dari kecepatan maksimum yang diijinkan shingga tidak terjadi penggerusan dan juga tidak lebih kecil dari kecepatan minimum yang di ijinkan agar tidak terjadi pengendapan.
- Bentuk penampang hendaknya dipilih berupa segi empat, trapesium, lingkaran atau kombinasi dari beberapa bentuk diatas.
- Saluran hendakanya dibuat dalam bentuk majemuk, teridir dari saluran kecil dan saluran besar guna mengurangi beban pemeliharaan.
- Dimensi bangunan pelengkap seperti gorong-gorong, pintu air dan lubang pemeriksaan agar ditentukan berdasrkan kriteria perencanaan ssuai dengan jenis kota, daerah dan macam saluran.

Dalam perencanaan saluran drainase ditinjau deri segi fisik (hirarki susunan

saluran) sistem drainase perkotaan diklasifikasikan atas saluran primer, sekunder,

tersier dan seterusnya.

1. Saluran Primer

Saluran yang memanfaatkan sungai dan anak sungai. Saluran primer adalah

saluran utama yang menerima aliran dari saluran sekunder.

2. Saluran Sekunder

Saluran yang menghubungkan saluran tersier dengan saluran primer (dibangun

dengan beton/ plesteran semen).

3. Saluran Tersier

Saluran untuk mengalirkan limbah rumah tangga ke saluran sekunder, berupa

plesteran, pipa dan tanah.

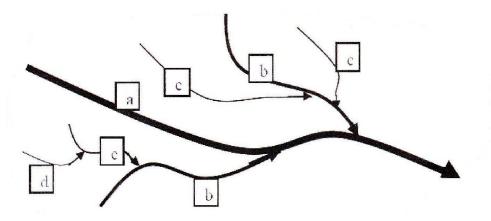
Perencanaan saluran drainase periode ulang (return period) yang dipergunakan

tergantung dari fungsi saluran serta daerah tangkapan hujan yang akan

dikeringkan. Menurut kegiatan yang sering dilaksanakan dan diterapkan di

lapangan, penggunaan periode ulang untuk perencanaan saluran adalah:

- Saluran Kwarter : periode ulang 1 tahun


- Saluran Tersier : periode ulang 2 tahun

- Saluran Sekunder : periode ulang 5 tahun

- Saluran Primer : periode ulang 10 tahun

(Wesli, 2008, Drainase Perkotaan: 49)

35

Gambar 2.2 Hirarki Susunan Saluran

(Tiurma Elita Saragi, 2007, Tinjauan Manajemen Sistem Drainase Kota Pematang Siantar: 11)

Keterangan:

a = Saluran primer

b = Saluran sekunder

c = Saluran tersier

d = Saluran kwarter

2.4.1 Kemiringan Saluran (S)

Kemiringan saluran yang dimaksud disini adalah kemiringan dasar saluran. Kemiringan dasar saluran maksimum yang diperbolehkan adalah 0.001 - 0.070, sesuai dengan eksisting dimensi saluran yang ada.

Hitunglah kemiringan dasar saluran dengan rumus berikut :

$$s = \frac{t1 - t2}{L} \times 100\%$$

Keterangan:

S = kemiringan tanah/dasar saluran

t1 = elevasi di titik awal/bagian tinggi (m)

t2 = elevasi di bagian akhir/bagian rendah (m)

L = panjang saluran dari titik awal ke akhir (m)

2.4.2 Jagaan (freeboard)

Yang dimaksud jagaan atau freeboard dari suatu saluran adalah jarak vertikal dari puncak tanggul sampai permukaan air pada kondisi perencanaan. Jagaan direncanakan anatara kurang dari 5% sampai 30% lebih. Hal unutk mencegah luapan air akibat gelombang serta fluktuasi permukaan air, misalnya berupa gerakan-gerakan angin serta pasang surut.

2.4.3 Koefisien Kekasaran Manning

Dari macam-macam jenis saluran baik berupa saluran tanah maupun dengan pasangan, masing-masing memiliki kekasaran yang berbeda. Hal ini bergantung pada perbedaan bahan atau material dari saluran tersebut. Nilai koefisien manning untuk berbagai macam saluran pada tabel berikut ini :

Tabel 2.5. Harga Koefisien Manning (n)

Jenis/ Macam Saluran	Koefisien Manning (n)
Pasangan batu kali	0,02
Pasangan batu kali diplester, beton tidak diplester	0,017
Beton licin	0,011
Batu kering/rip-rap	0,03

Sumber: SK SNI T-07-1990-F

2.4.4 Bentuk-Bentuk Penampang Saluran Drainase

Dalam pendemensian saluran adalah saluran tersebut harus : efisien, praktis dan ekonomis. Artinya saluran yang kita rencanakan tidak boros (dimensi saluran tidak berlebihan), seperti gambar berikut :

No	Bentuk Saluran	Fungsinya
1	Trapesium	Berfungsi untuk menampung dan menyalurkan limpasan air hujan dengan debit yang besar. Sifat alirannya terus menerus dengan fluktuasi yang kecil. Bentuk saluran ini dapat digunakan pada daerah yang masih cukup tersedia lahan.
2	Empat persegi panjang	Berfungsi untuk menampung dan menyalurkan limpasan air hujan dengan debit yang besar. Sifat alirannya terus menerus dengan fluktuasi yang kecil
3	Segitiga	Berfungsi untuk menampung dan menyalurkan limpasan air hujan untuk debit yang kecil. Bentuk saluran ini digunakan pada lahan yang cukup terbatas.
4	Setengah lingkaran	Berfungsi untuk menyalurkan limpasan air hujan untuk debit yang kecil. Bentuk saluran ini umumnya digunakan untuk saluran rumah penduduk dan pada sisi jalan perumahan yang padat.

Gambar 2.3 Bentuk Saluran

2.4.5 Kecepatan Aliran

Untuk merencanakan kecepatan aliran pada penampang saluran drainase digunakan pendekatan dengan menggunakan rumus Manning, yaitu :

$$V = \frac{1}{n} \cdot R^{2/3} \cdot S^{1/2}$$

Dimana:

V: kecepatan aliran (m/detik)

R : jari-jari hidrolis (m)

n: angka kekasaran saluran

S: kemiringan dasar saluran

2.4.6 Kapasitas Saluran

Besarnya debit yang mampu ditampung oleh saluran yang direncanakan dapat dihitung dengan menggunakan rumus :

$$Q = A \cdot V$$

Dimana:

Q: besarnya debit air yang mampu ditampung saluran.

A: luas penampang basah

V: kecepatan aliran (m/detik)

Luas penampang Saluran

$$A = B x H$$

Dimana:

A = Luas Penampang basah (m²)

B = Lebar Bawah (m)

H = Kedalaman Saluran (m)

Jari- jari hidrolis

$$R = \frac{A}{P}$$

Dimana:

R = Jari - jari hidrolis (m)

A = Luas penampang basah (m²)

P = Keliling basah (m)

Keliling Basah

$$P = b_1 + 2.h \sqrt{(1+m^2)}$$

Dimana:

P = Keliling basah (m)

B = Lebar saluran (m)

H = Kedalaman saluran (m)

2.5 Parameter Penentuan Prioritas Penanganan Genangan

Sebagai acuan dalam penyelesaian masalah genangan/banjir adapun Parameter penentuan prioritas penanganan meliputi hal sebagai berikut :

- Parameter genangan, meliputi tinggi genangan, luas genangan, frekuensi genangan dalam satu tahun dan lama genangan terjadi.
- Parameter ekonomi, dihitung perkiraan kerugian atas fasilitas ekonomi yang ada, seperti kawasan industri, fasum, fasos, perkantoran, perumahan, daerah pertanian dan pertamanan
- Parameter gangguan sosial dan fasilitas pemerintah, seperti kesehatan masyarakat, keresahan sosial dan kerusakan lingkungan dan kerusakan fasilitas pemerintahan.
- Parameter kerugian dan gangguan transportasi.
- Parameter kerugian pada daerah perumahan.
- Parameter kerugian hak milik pribadi/rumah tangga.

1. Penilaian Terhadap Parameter Banjir

Parameter banjir yang diperhitungkan dalam penentuan lokasi prioritas penanganan banjir adalah kedalaman, luas, lama dan frekuensi genangan. Penilaian parameter banjir ditampilkan pada tabel berikut ini.

Tabel 2.6. Nilai Parameter Genangan/Banjir

NO	PARAMETER GENANGAN /	NILAI	PERSENTASE
NO	BANJIR	NILAI	NILAI
1	Kedalaman Genangan	35	
	-> 0,50 m		100
	- 0,30 – 0,50 m		75
	- 0,20 – 0,3 m		50
	- 0,10 – 0,2 m		25
	- < 0.10 m		0
2	Luas Genangan	25	
	- > 8,0 Ha		100
	- 4,0 – 8,0 Ha		75
	- 2,0 – 4,0 Ha		50
	- 1,0 – 2,0 Ha		25
	- < 1,0 Ha		0
3	Lama Genangan	20	
	- > 8,0 Jam		100
	- 4,0 – 8,0 Jam		75
	- 2,0 – 4,0 Jam		50
	- 1,0 – 2,0 Jam		25
	- < 1,0 Jam		0
4	Frekuensi Genangan	20	
	- Sangat sering (10 kali/tahun)		100
	- Sering (6 kali/tahun)		75
	- Kurang Sering (3 kali/tahun)		50
	- Jarang (1 kali/tahun)		25
	- Tidak pernah kebanjiran		0

Sumber: " Urban Drainage Guidelines And Technical Design Standards". Jakarta, 1994

2. Nilai Kerugian Harta Benda Milik Pribadi/Rumah Tangga

Nilai kerugian harta benda milik pribadi / Rumah Tangga dibuat berdasarkan persentase nilai kerugian harta benda milik pribadi terhadap nilai kerugian total yang diakibatkan oleh suatu kejadian banjir. Untuk lebih jelasnya dapat dilihat pada tabel berikut ini.

Tabel 2.7. Nilai Kerugian Harta Benda Milik Pribadi/Rumah Tangga

NO	PENGARUH	NILAI
	KERUGIAN	
1	Tinggi	100
2	Sedang	65
3	Kecil	25
4	Tidak ada kerugian	0

Sumber: "Urban Drainage Guidelines And Technical Design Standards".

Jakarta, 1994

Keterangan

- Tinggi, jika kerugian lebih dari 80% nilai harta benda milik pribadi;
- Sedang, jika kerugian 80% dari nilai harta benda milik pribadi;
- Kecil, jika kerugian kurang dari 40%, harta benda milik pribadi;
- Tidak Ada Kerugian berarti tidak kerusakan miliki pribadi.

3. Nilai Kerugian Ekonomi

Nilai kerugian ekonomi dibuat berdasarkan nilai ekonomi daerah yang mengalami banjir. Untuk lebih jelasnya dapat dilihat pada Tabel 7.3 berikut ini.

Tabel 2.8. Nilai Kerugian Ekonomi

NO	PENGARUH	NILAI
	KERUGIAN	
1	Tinggi	100
2	Sedang	65
3	Kecil	25
4	Tidak ada kerugian	0

Sumber: "Urban Drainage Guidelines And Technical Design Standards".

Jakarta, 1994

Keterangan:

• Tinggi, jika banjir/genangan mempengaruhi daerah industri, daerah perdagangan dan daerah perkantoran yang padat;

- Sedang, jika banjir mempengaruhi daerah industri, daerah perdagangan dan daerah perkantoran yang kurang padat;
- Kecil, jika banjir/genangan mempengaruhi daerah perumahan, dan atau daerah pertanian (di dalam daerah urban yang terbatas);
- Tidak ada Kerugian jika penduduk sangat jarang dan lahan tidak produktif.

4. Nilai Kerugian Milik Sosial dan Pemerintah

Nilai kerugian milik sosial dan pemerintah dibuat berdasarkan jumlah relative fasilitas sosial dan fasilitas pelayanan pemerintah yang mengalami kerusakan akibat kejadian banjir. Untuk lebih jelasnya dapat dilihat pada tabel berikut ini.

Tabel 2.9.
Nilai Kerugian Milik Sosial dan Pemerintah

NO	PENGARUH KERUGIAN	NILAI
1	Tinggi	100
2	Sedang	65
3	Kecil	25
4	Tidak ada kerugian	0

Sumber: "Urban Drainage Guidelines And Technical Design Standards".

Jakarta, 1994

Keterangan:

- Tinggi, jika banjir/genangan mempengaruhi daerah yang banyak fasilitas sosial dan fasilitas pelayanan pemerintah;
- Sedang, jika banjir/genangan mempengaruhi beberapa fasilitas sosial dan fasilitas pelayanan pemerintah;
- Kecil, jika banjir/genangan mempengaruhi terbatas pada fasilitas sosial dan fasilitas pemerintah.

• Tidak Ada Daerah Genangan pada fasilitas sosial dan fasilitas pemerintah.

5. Nilai Kerugian Gangguan Lalu Lintas

Nilai kerugian gangguan lalu lintas dibuat berdasarkan kondisi lalu lintas pada jaringan transportasi yang mengalami gangguan akibat kejadian banjir. Untuk lebih jelasnya dapat dilihat pada tabel berikut ini.

Tabel 2.10. Nilai Kerugian Gangguan Lalu Lintas

NO	PENGARUH	NILAI
	KERUGIAN	
1	Tinggi	100
2	Sedang	65
3	Kecil	25
4	Tidak ada kerugian	0

Sumber: "Urban Drainage Guidelines And Technical Design Standards".

Jakarta, 1994

Keterangan:

- Tinggi, jika banjir/genangan mempengaruhi jaringan transportasi yang padat;
- Sedang, jika banjir/genangan mempengaruhi jaringan transportasi yang kurang padat;
- Kecil, jika banjir/genangan mempengaruhi suatu daerah dengan jaringan transportasi yang terbatas;
- Tidak ada genangan pada sistem jaringan jalan.

6. Nilai Kerugian Daerah Pemukiman

Nilai kerugian daerah permukiman dibuat berdasarkan kondisi lalu lintas pada jaringan transportasi yang mengalami gangguan akibat kejadian banjir. Untuk lebih jelasnya dapat dilihat pada tabel berikut ini.

Tabel 2.11. Nilai Kerugian Gangguan Daerah Permukiman

NO	PENGARUH KERUGIAN	NILAI
1	Tinggi	100
2	Sedang	65
3	Kecil	25
4	Tidak ada kerugian	0

Sumber: "Urban Drainage Guidelines And Technical Design Standards".

Jakarta, 1994

Keterangan:

- Tinggi, jika banjir/genangan mempengaruhi suatu daerah perumahan yang padat;
- Sedang, jika banjir/genangan mempengaruhi suatu daerah perumahan yang kurang padat;
- Kecil, jika banjir/genangan mempengaruhi suatu daerah dengan hanya beberapa bangunan perumahan; Tidak Ada banjir/Genangan pada daerah perumahan.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

BAB III

DATA PERENCANAAN

3.1 Gambaran Umum

Untuk mengevaluasi eksisting berdasarkan hasil analisa hidrologi dan topografi yang telah diperoleh, berdasarkan data lapangan yang ada dengan kebutuhan masyarakat harus dilakukan analisis hidrolika dan struktur bangunan.

❖ Jenis dan Sumber Data

Data curah hujan

Dalam mengevaluasi diperlukan data penunjang berupa data primer dana data sekunder, Data primer merupakan data yang diambil langsung di lokasi pekerjaan, sedangakan untuk data sekunder diperoleh dari instansi terkait dan studi terdahulu.

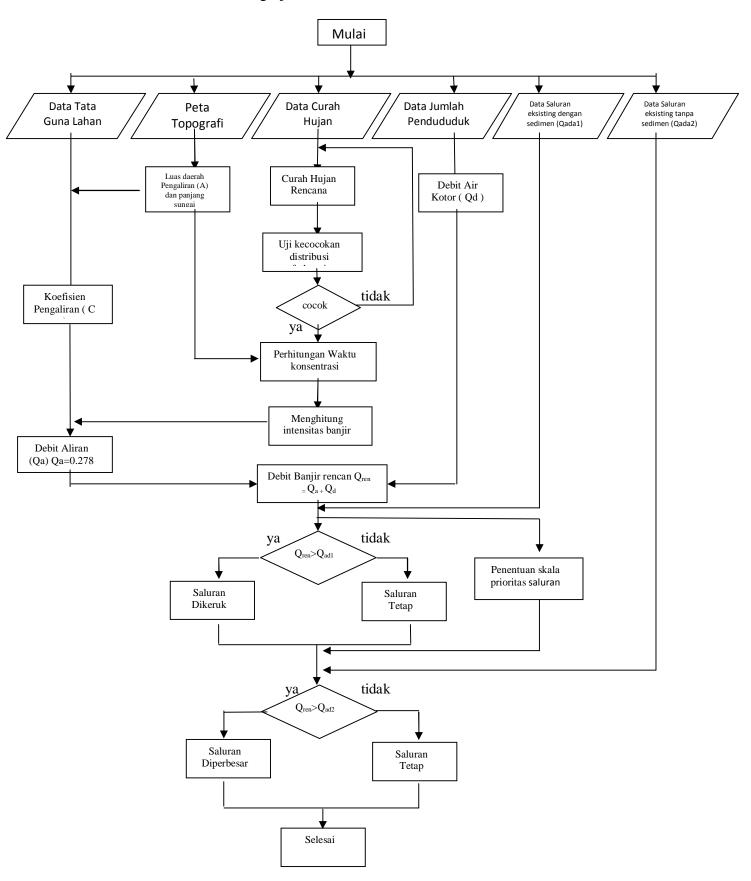
Data sekunder yang diperlukan dalam analisa hidrologi adalah sebagai berikut :

- Kondisi lokasi pekerjaan
- Data hujan dari dinas UPTD Dinas pengairan, dalam hal ini data hujan yang dipakai adalah data hujan harian 10 tahun dari tahun 2004 – 2013.
- Peta daerah aliran sungai (DAS) kabupaten Jombang.

Data Topografi

Luas wilayah Kabupaten Jombang adalah sebesar $1.159,50~\rm Km^2$, terdiri dari 21 Kecamatan dan 306 desa. Kabupaten Jombang secara geografis ini terletak antara 7^0 20' 48,60" dan 7^0 46' 41,26" Lintang Selatan serta antara 112^0

03' 46,57" dan 112° 27' 21,26" Bujur Timur, dengan luas mencakup 1.159,50 $\rm km^2.$


Penentuan lokasi perencanaan dalam studi yang sesuai dengan tujuan studi. Survei dan peninjauan lokasi.

- Survei dan peninjauan lokasi sehingga didapatkan data lokasi daerah studi.
- Studi literatur dilakukan sebagai tambahan dalam mencari materi dan refrensi yang berhubungan dengan kegiatan studi.
- Pengumpulan data, mengumpulkan data data penunjang dalam penyusunan studi diantarnya:
- Data hidrologi
 - ➤ Data curah hujan
 - ➤ Data DAS

Dari perhitungan debit banjir rancangan dapat dipakai untuk merencanakan :

- Dimensi Saluran
- Membuat saran dan kesimpulan.

Flowchart Alur Pengerjaan

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

BAB IV

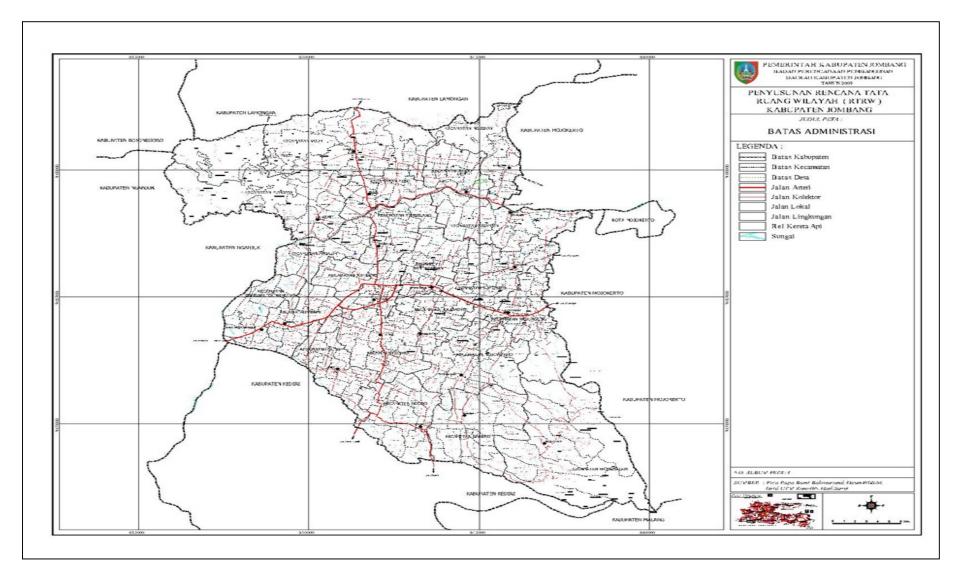
ANALISA DAN PEMBAHASAN

4.1 Kondisi Daerah Studi

Luas wilayah Kabupaten Jombang adalah sebesar 1.159,50 Km², terdiri dari 21 Kecamatan dan 306 desa. Kabupaten Jombang secara geografis ini terletak antara 7^o 20' 48,60" dan 7^o 46' 41,26" Lintang Selatan serta antara 112^o 03' 46,57" dan 112^o 27' 21,26" Bujur Timur, dengan luas mencakup 1.159,50 km².

Kondisi fisik dasar Kabupaten Jombang dibagi dalam beberapa aspek yaitu ketinggian lahan, topografi, hidrologi, klimatologi, geologi dan jenis tanah. Berikut ini penjabaran singkat mengenai aspek fisik dasar tersebut :

- a. Ketinggian, tentang titik tinggi yang diukur dalam daerah berada di atas permukaan laut (dpl).
- Topografi, tentang kondisi bentang alam serta relief permukaan tanah Perkotaan Jombang.
- c. Hidrologi, tentang sumber air yang ada di Kabupaten Jombang seperti adanya sungai, mata air, waduk, sumur dan sumber lainnya.
- d. Klimatologi, tentang iklim di Kabupaten Jombang yang juga meliputi curah hujan, suhu serta kelembaban.
- e. Geologi, tentang jenis batuan yang menyusun struktur tanah di Kabupaten Jombang.
- f. Jenis tanah, tentang jenis, struktur maupun kondisi fisik tanah di Kabupaten Jombang.


Dengan diketahuinya kondisi dari 6 (aspek) tersebut diatas, maka dapat dilakukan analisis drainase di Kabupaten Jombang, sehingga pada proses

perencanaan dapat ditetapkan beberapa tempat genangan maupun banjir yang ada di Kabupaten Jombang. Secara adminstrasi, Kabupaten Jombang dibagi dalam 21 kecamatan dan 306 desa, seperti yang terdapat pada tabel 4.1 dan peta 4.1. dibawah ini.

Tabel 4.1.
Pembagian Wilayah Administrasi Kabupaten Jombang

		wuuyan Aamin	ustrası Kabupaten	i Jombang
No.	Kecamatan	Luas (Km²)	Jumlah Desa	Jumlah Dusun
1	Bandar Kedungmulyo	32,50	11	42
2	Perak	29,05	13	36
3	Gudo	34,39	18	75
4	Diwek	47,70	20	100
5	Ngoro	49,86	13	82
6	Mojowarno	78,62	19	68
7	Bareng	94,27	13	50
8	Wonosalam	121,63	9	48
9	Mojoagung	60,18	18	60
10	Sumobito	47,64	21	76
11	Jogoroto	28,28	11	46
12	Peterongan	29,47	14	56
13	Jombang	36,40	20	72
14	Megaluh	28,41	13	41
15	Tembelang	32,94	15	65
16	Kesamben	51,72	14	61
17	Kudu	77,75	11	47
18	Ngusikan	34,98	11	39
19	Ploso	25,96	13	50
20	Kabuh	97,35	16	87
21	Plandaan	120,40	13	57
Jumlah		1.159,50	306	1.258

Sumber: Kabupaten Jombang Dalam Angka, 2013

Gambar 4.1. Peta Administrasi Kabupaten Jombang

4.1.1 Kondisi Sistem Drainase

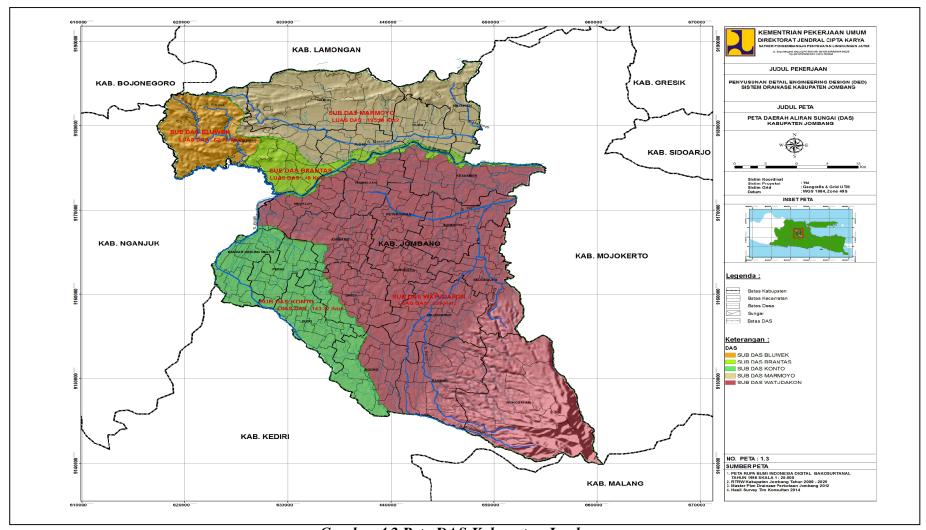
Sistem drainase eksisting Wilayah drainase Kabupaten Jombang terdiri dari sistem drainase makro yang meliputi jaringan saluran drainase primer dan sekunder berupa sungai/ kali/ saluran drainase yang melayani/ mematus daerah aliran saluran yang cukup besar, dan sistem drainase mikro yang terdiri dari saluran tersier yang berada atau melintasi blok kawasan dengan luas DAS yang lebih kecil, dan saluran tepi jalan berupa saluran drainase terbuka maupun tertutup dibawah trotoir.

Penentuan sistem drainase meliputi kawasan wilayah prioritas perencanaan Kabupaten Jombang, terutama kawasan bagian hulu yang aliran salurannya masuk kedalam wilayah perencanaan yaitu kawasan pegunungan yang terdapat di sebelah Selatan wilayah perencanaan.

Tabel 4.2

No.	Sistem	No.	Nama Saluran	Luas DAS	D	imensi S	Saluran		Peringkat	Fungsi
	Drainase	ID Saluran			Panjang	Lebar	Lebar	Dalam	Saluran	Saluran
						Atas	Bawah			
				(hektar)	(m)	(m)	(m)	(m)		
1.	Kali Gude	10	Sal Sek. Wangkal	1,032.6	1,448.1	11.0	10.0	1.0	Primer	Pembawa
		11	Kali Tengah	245.8	1,699.6	5.0	3.0	1.0	Primer	Pembuang
		12	Sal. Sek. Gude	1,636.2	2,578.9	10.0	9.0	2.0	Primer	Pembawa
		1	Sal. Primer Gude Di pintu Air Pulo Kalimalang	1,704.5	1,351.5	13.0	10.0	2.0	Primer	Pembawa
		1	Sal. Primer Gude Ploso Di pintu Air Pulo Lor	48.0	681.5	10.0	8.0	2.0	Primer	Pembawa
		2	Sal. Gude Denanyar (Utara Jl. P. Sudirman)	98.5	3,006.7	10.0	8.0	1.5	Primer	Pembawa
		3	Sal. Gude Ploso (Utara Jl. P. Sudirman)	212.6	3,060.7	9.0	8.0	1.5	Primer	Pembawa
		16	Sal. Turibaru	379.6	6,822.7	6.0	5.0	1.0	Primer	Pembawa
			Subtotal	2,443.3	20,649.7					
2.	K. Jombang	13	Sal. Sengon 1	29.2	791.6	4.0	2.0	1.5	Sekunder	Pembuang
		14	Sal. Sengon 2	226.3	1,753.2	4.0	2.0	1.5	Primer	Pembuang
		4	K. Jombang di Rel KA	1,751.3	1,413.7	30.0	25.0	5.0	Primer	Pembuang
		4	K. Jombang di pertemuan K. Sengon 1	1,930.1	1,863.7	30.0	25.0	5.0	Primer	Pembuang
		4	K. Jombang di pertemuan K. Sengon 2/Bendung Cokenongo	2,156.4	588.9	30.0	25.0	5.0	Primer	Pembuang
		4	K. Jombang Kulon (Bendung Cokkenongo-Jl. A Yani)	157.5	1,663.5	12.0	10.0	1.5	Primer	Pembuang
		5	K. Jombang Kulon di Bendung Sambongdukuh	228.2	905.6	12.0	10.0	1.5	Primer	Pembuang
		5	K. Jombang Kulon di Bendung Kepetengan	295.2	1,533.5	12.0	10.0	1.5	Primer	Pembuang
		5	K. Jombang Kulon di batas wilayah perencanaan	306.7	1,294.1	12.0	10.0	1.5	Primer	Pembuang
			Subtotal	2,463.1	11,807.8					
		15	Sal. Pandan di Rel KA	1,342.2	2,532.9	7.0	5.0	2.0	Primer	Pembuang
		15	Sal. Pandan di pertemuan K. Jombang Wetan	1,418.8	1,415.1	10.0	8.0	2.5	Primer	Pembuang
		7	Sal. Rejo Agung IV A di Pintu air Wersah	123.4	4,302.2	5.0	5.0	1.0	Sekunder	Pembawa
		6	K. Jombang Wetan (Bendung Cok Kenongo-Jl. A. Yani)	1,645.5	1,681.6	10.0	8.0	4.0	Primer	Pembuang
		6	K. Jombang Wetan di bendung Pancasila	1,704.9	1,005.6	16.0	13.0	5.0	Primer	Pembuang
		6	K. Jombang Wetan di batas Wilayah Perencanaan	1,972.3	2,635.9	16.0	13.0	5.0	Primer	Pembuang
			Subtotal	1,972.3	13,573.2					
3.	Sal. Gatot Subroto	18	Sal. Mojongapit di Rel KA	101.2	20.0	1.5	1.0	1.0	Sekunder	Pembuang
		18	Sal. Mojongapit di Jl. Merdeka	245.4	2,221.6	2.4	2.0	1.0	Primer	Pembuang
		18	Sal. Mojongapit di batas Wilayah Perencanaan	392.4	1,179.3	4.0	3.0	1.0	Primer	Pembuang
			Subtotal	392.4	3,421.0					
4.	Rejo Agung IV B	8	Sal. Sumbermulyo di Rel KA	491.3	1,743.4	5.0	3.0	1.0	Primer	Pembuang
		8	Sal. Sumbermulyo di Jl Merdeka	699.1	2,037.3	5.0	3.0	1.0	Primer	Pembuang
		9	Sal. Rejo Agung IV B di Rel KA	9,310.5	2,301.9	11.0	10.0	2.5	Primer	Pembawa
		9	Sal. Rejo Agung IV B di Jl. Merdeka	9,382.5	1,556.8	11.0	10.0	2.5	Primer	Pembawa
		9	Sal. Rejo Agung IV B di batas Wilayah Perencanaan	10,109.9	343.4	11.0	10.0	2.5	Primer	Pembawa
			Subtotal	10,109.9	7,982.7					
5.	Banjardowo	17	Sal. Desa Banjardowo	626.8	2,018.4	6.0	3.0	3.0	Primer	Pembuang
	·		Subtotal	626.8	2,018.4					
			Total	18,007.7	59,452.8					

Daerah Aliran Sungai di Wilayah Kabupaten Jombang


Berdasarkan analisa kondisi topografi Kabupaten Jombang yang kemiringannya dari arah selatan ke utara dengan dilalui beberapa sungai yang melintasi Kabupaten Jombang, Sistem Drainase eksisting pada dasarnya berada pada wilayah DAS Brantas yang terbagi menjadi beberapa Sub DAS yang mempengaruhi sistem drainase eksisting di wilayah Kabupaten Jombang. Beberapa Sub DAS tersebut yaitu : Sub DAS Watudakon , Sub DAS Konto, Sub DAS Brantas, Sub DAS Bluwek, dan Sub Das Marmoyo.

Daerah Aliran Sungai di Wilayah Kabupaten Jombang

Tabel 4.3

No	Nama Sub DAS	Luas Sub DAS (Km²)	Wilayah DAS
1	MARMOYO	196	BRANTAS
2	KALI PUTIH	62,7	BRANTAS
3	BRANTAS	48	BRANTAS
4	KONTO	143,32	BRANTAS
5	WATUDAKON	633	BRANTAS

Sumber : data BBWS Brantas

Gambar 4.2 Peta DAS Kabupaten Jombang

4.1.2. Kondisi Topografi

Berdasarkan data yang terdapat dalam RTRW Kabupaten Jombang tahun 2009-2029 diketahui bahwa wilayah Kabupaten Jombang mayoritas berada pada ketinggian ± 350 meter dpl, dan hanya sebagian kecil yang berada pada ketinggian > 1500 meter dpl, yaitu wilayah yang berada di Kecamatan Wonosalam. Seperti diketahui pada tabel

Tabel 4.4 Kondisi Kemiringan Lahan Wilayah Kabupaten Jombang

Kecamatan	Kemiringan (derajat)							
Kecamatan	0 - 2 %	2 - 5 %	15 - 40 %	> 40 %				
(1)	(2)	(3)	(4)	(5)				
010. Bandar Kedung Mulyo	4,360	1-	-	-				
020. Perak	2,890	-	-	-				
030. Gudo	4,300	-	-	-				
040. Diwek	5,500	-	-	-				
050. Ngoro	4,637	-	-	-				
060. Mojowarno	6,425	525.0	-	-				
070. Bareng	3,700	1,475.0	225	175				
080. Wonosalam	-	4,421.4	1,350	125				
090. Mojoagung	4,550	225.0	3,950	6,629				
100. Sumobito	4,763	-	125	150				
110. Jogoroto	2,660	-	-	-				
120. Peterongan	2,890	-	-	-				
130. Jombang	3,975	125.0	-	-				
140. Megaluh	4,540	-	-	-				
150. Tembelang	3,310	-	-	-				
160. Kesamben	7,500	-		-				
170. K u d u	0	1,200.0	225	-				
171. Ngusikan	0	300.0	75	525				
180. Ploso	2,250	-		-				
190. Kabuh	3,200	6,125.0	225	-				
200. Plandaan	3,825	6,725.0	850	150				
Kabupaten Jombang	75,275	21,121.4	7,025	7,753.6				

Sumber: Kabupaten Jombang Dalam Angka 2012

Berdasarkan tabel diatas, diketahui bahwa Wilayah Kabupaten Jombang didominasi oleh wilayah datar hingga bergelombang. Kecamatan Bandar Kedungmulyo, Kecamatan Perak, Kecamatan Gudo, Kecamatan Diwek,

Kecamatan Ngoro, Kecamatan Jogoroto, Kecamatan Peterongan, Kecamatan Megaluh, Kecamatan Tembelang, Kecamatan Kesamben, dan Kecamatan Ploso berada di kemiringan lahan 0–2 %. Kecamatan Mojowarno dan Kecamatan Jombang berada pada kemiringan 0–5 %. Kecamatan Kabuh berada pada kemiringan 0–40 %. Kecamatan Bareng, Kecamatan Mojoagung dan Kecamatan Plandaan merupakan kecamatan yang mempunyai kemiringan bervariasi dari datar hingga terjal 0- >40 %. Kecamatan Wonosalam, Kecamatan Kudu dan Kecamatan Ngusikan merupakan wilayah yang berada pada kategori bergelombang hingga terjal.

4.1.3 Kondisi Hidrologi

Sesuai dengan data hidrologi, Kabupaten Jombang memiliki aliran sungai yang melintas dan beberapa waduk. Sungai-sungai yang melintasi wilayah ini dapat dilihat pada tabel-tabel berikut ini :

Tabel. 4.5 Nama, Panjang dan Debit Air Sungai Di Kabupaten Jombang

NT C	Panjang	Debit Air	(M3/DT)
Nama Sungai	(Km)	Maksimum	Minimum
(1)	(2)	(3)	(4)
01. Kali Brantas	44,261	439,330	21,967
02. Kali Konto Kediri	14,119	71,502	2,599
03. Kali Pait Tengah	2,300	41,318	3,085
04. Kali Bening	7,250	12,065	1,938
05. Kali Sembung	10,700	21,932	1,595
06. Kali Jarak	12,800	37,194	2,628
07. Kali Pakel	12,800	49,956	1,225
08. Kali Jiken	5,245	39,204	1,488
09. Kali Krisik	4,850	19,602	0.872
10. Kali Gogor	4,850	30,199	0.885
11. Kali Bengawan	6,000	28,707	0.876
12. Kali Putih	7,250	23,634	1,426
13. Kali Catak Banteng	8,750	38,634	1,298
14. Kali Gunting	12,876	61,635	1,736
15. Kali Jurang Jero	12,375	13,707	1,829
16. Kali Sumber Aren	6,075	7,672	0.736
17. Kali Pasinan	2,880	8,883	0.64
18. Kali Mangir	5,300	18,634	0.955
19. Kali Gondang	3,800	14,496	0.95
20. Kali Marmoyo	23,860	53,484	1,841
21. Kali Bancang	7,000	14,761	0.712
22. Kali Gembyang	1,500	13,089	0.736

Sumber: Dinas Pengairan Kabupaten Jombang 2012

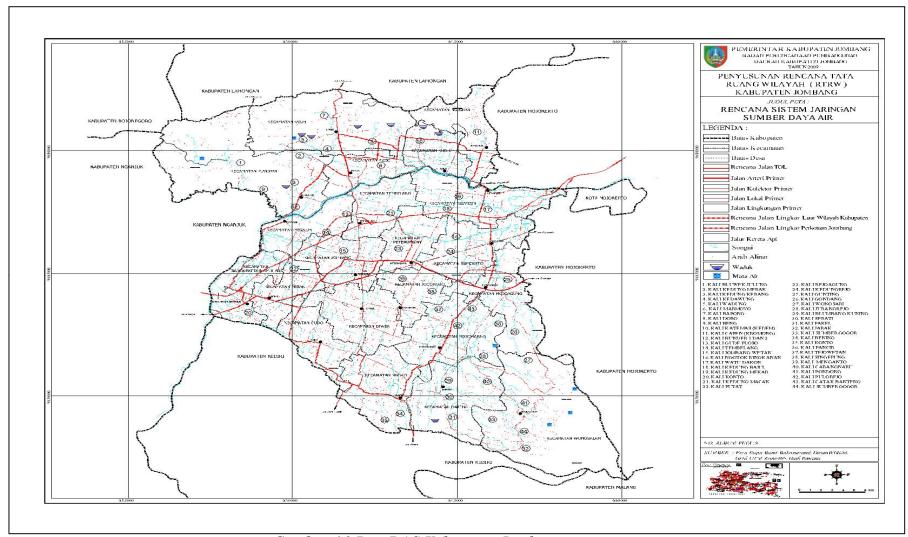
NT C	Panjang	Debit Air	(M3/DT)
Nama Sungai	(Km)	Maksimum	Minimum
(1)	(2)	(3)	(4)
23. Kali Kabuh	12,000	47,969	0.963
24. Kali Kulak	8,300	14,803	0.612
25. Kali Peleman	8,450	15,547	0.649
26. Kali Katemas	10,440	19,578	0.728
27. Kali Made	8,000	18,478	0.728
28. Kali Kromong	3,250	17,696	0.699
29. Kali Door	5,500	24,719	1,935
30. Kali Beng	3,500	32,245	2,438
31. Kali Pelabuhan	2,500	12,968	0.701
32. Kali Ngotok Ring Kanal	27,846	70,445	4.91
33. Kali Jombang	4,250	29,712	1,935
34. Kali Jombang Wetan	6,115	19,482	1,728
35. Kali Jombang Kulon	8,250	13,578	0.947
36. Kali Kuwik	5,000	13,965	0.869
37. Kali Sumber Pangkat	1,938	6,248	0.66
38. Kali Langkap	4,000	4,806	0.609
39. Kali Maling	1,000	6.23	0.716
40. Kali Wungu	8,000	6,548	0.84
41. Kali Seloatep	5,111	23,707	1,061
42. Kali Pancir	5,000	47,414	1,948
	1 1 2012		

Sumber: Dinas Pengairan Kabupaten Jombang 2012

Debit air antara musim hujan dan musim kemarau pada beberapa sungai menunjukkan perbandingan yang cukup ekstrim. Perbedaan yang sangat menonjol (fluktuatif) ini berpotensi menimbulkan bencana banjir. Selanjutnya salah satu komponen yang memberi pengaruh besar terhadap kondisi hidrologi adalah sistem Daerah Aliran Sungai (DAS) dan Sub DAS. Mayoritas wilayah Kabupaten Jombang masuk dalam DAS Brantas yang merupakan sungai utama yang mempengaruhi ekosistem wilayah tersebut. Selain sungai di wilayah perencanaan juga terdapat 14 buah waduk sebagai satu kesatuan sistem dalam hidrologi wilayah yang dapat dilihat pada tabel berikut ini:

Tabel 4.6 Nama, Luas dan Volume Tampungan Waduk Di Kabupaten Jombang

Nama Wadult / Emburg	Luas Waduk	Volume
Nama Waduk / Embung	(Ha)	(M3)
(1)	(2)	(3)
01. Kepuhrejo	2.00	40,000.00
02. Grogol	1.93	38,600.00
03. Mangunan	5.00	100,000.00
04. Kradenan	1.50	30,000.00
05. Brumbung	1.50	30,000.00
06. Sempal	4.50	90,000.00
07. Karangjati	1.10	22,000.00
08. Karangpakis	1.50	30,000.00
09. Ngabar	1.25	22,000.00
10. Tanjung Wadung	1.25	25,000.00
11. Bangsri	3.05	39,650.00
12. Plabuhan	3.48	73,080.00
13. Sidowayah	1.00	15,000.00
14. Glugu	0.48	9,600.00
15. Grojokan	5.00	234,500.00
16. Banjardowo	2.50	13,726.00
17. Sumbergondang	4.00	212,300.00
18. Banjaragung	0.70	10,416.00
19. Kalak	0.30	12,350.00


Sumber: Kabupaten Jombang Dalam Angka 2012

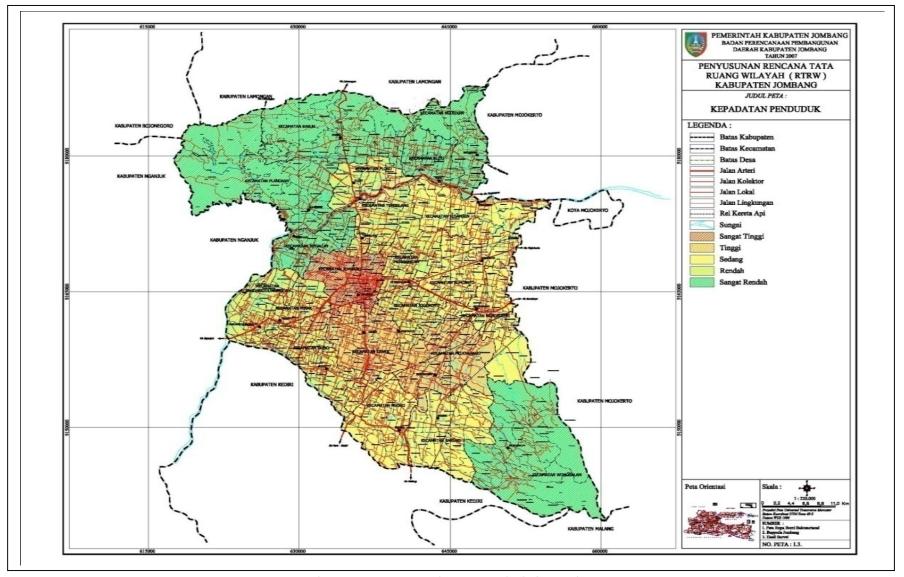
Aliran air permukaan, di Kabupaten Jombang juga terdapat aliran air bawah tanah atau air tanah. Dimana sumberdaya air bawah tanah mempunyai peranan yang sangat penting sebagai salah satu alternatif sumber air baku. Pemanfaatan air bawah tanah di Kabupaten Jombang digunakan untuk domestik, pertanian, komersil, dan industri. Untuk lebih jelasnya dapat dilihat pada berikut ini.

Tabel 4.7.
Pemanfaatan Air Bawah Tanah / Air Tanah Di Kabupaten Jombang

		Pemanfaa	Jumlah			
No.	Kecamatan	Domestik	Pertanian	Komersil	Industri	(m ³ /thn)
1	Bandar Kedung Mulyo	1.311.547	0	2.796	0	1.314.343
2	Perak	1.389.658	0	5.616	27.996	1.423.270
3	Gudo	1.596.478	1.200	2.760	0	1.600.438
4	Diwek	2.435.796	362.976	47.208	103.728	2.949.708
5	Ngoro	1.941.385	3.108	19.944	27.996	1.992.433
6	Mojowarno	2.320.378	0	26.436	27.996	2.374.810
7	Bareng	1.430.538	1.596	1.380	0	1.433.514
8	Wonosalam	888.673	0	12.960	0	901.633
9	Mojoagung	1.634.658	3.000	29.868	0	1.667.526
10	Sumobito	2.228.505	0	6.216	0	2.234.721
11	Jogoroto	1.617.466	0	0	0	1.617.466
12	Peterongan	1.679.873	3.060	43.464	104.388	1.830.785
13	Jombang	4.823.402	334.176	200.556	464.988	5.823.122
14	Megaluh	1.075.524	0	1.092	27.996	1.104.612
15	Tembelang	1.441.575	0	0	27.996	1.469.571
16	Kesamben	1.763.418	0	0	0	1.763.418
17	Kudu	1.447.182	0	0	0	1.447.182
18	Ngusikan	0	0	0	0	0
19	Ploso	1.318.855	4.176	8.988	937.632	2.269.651
20	Kabuh	1.107.878	0	0	0	1.107.878
21	Plandaan	1.077.042	0	0	27.996	1.105.038
	Jumlah	34.529.831	713.292	409.284	1.778.712	37.431.119

Sumber : Laporan Akhir Studi Potensi Sumberdaya Air Bawah Tanah Kabupaten Jombang

Gambar 4.3 Peta DAS Kabupaten Jombang


4.1.4 Kependudukan Perkotaan Jombang

Berdasarkan hasil registrasi jumlah penduduk Kabupaten Jombang akhir tahun 2008 sebesar 1.340.229 jiwa. Dari 21 Kecamatan yang ada di Kabupaten Jombang, Kecamatan Jombang mempunyai jumlah penduduk terbesar, yaitu sebanyak 147.634 jiwa atau 10,22 persen dari total penduduk Kabupaten Jombang. Kepadatan penduduk Kabupaten Jombang sedikit meningkat dari 1.007 jiwa/km² pada tahun 2007 menjadi 1.154 jiwa/km² pada tahun 2008. Kepadatan penduduk tertinggi berada di Kecamatan Jombang sebagai Ibukota Kabupaten dan kepadatan terendah berada di Kecamatan Wonosalan, Kabuh, Plandaan dan Ngusikan. Perkembangan penduduk di Kabupaten Jombang selama 6 tahun terakhir mengalami pertumbuhan, mulai dari tahun 2003 hingga tahun 2008 sebesar 2,8%. Untuk lebih jelasnya dapat dilihat pada tabel.

Tabel 4.8 Kepadatan Penduduk Akhir Tahun Menurut Kecamatan 2003-2008

Керишин	Repaddian I enduduk Akhir I ahan Menarui Recamaian 2003-2008							
	Luas Daerah		Kepadatan Penduduk					
Kecamatan	(Km ²)	2003	2004	2005	2006	2007	2008*)	
Bandar Kedung Mulyo	32,5	1.391	1.393	1.399	1.401	1.408	1.536	
2. Perak	29,05	1.676	1.686	1.699	1.700	1.701	2.009	
3. Gudo	34,39	1.533	1.536	1.539	1.541	1.546	1.718	
4. Diwek	47,7	1.913	1.919	1.932	1.937	1.947	2.382	
5. Ngoro	49,86	1.311	1.315	1.315	1.322	1.365	1.630	
6. Mojowarno	78,62	1.029	1.034	1.035	1.034	1.035	1.195	
7. Bareng	94,27	528	532	538	541	542	607	
8. Wonosalam	121,63	251	255	257	257	257	291	
9. Mojoagung	60,18	1.176	1.185	1.182	1.188	1.199	1.268	
10. Sumobito	47,64	1.553	1.565	1.563	1.564	1.571	1.779	
11. Jogoroto	28,28	1.904	1.905	1.906	1.909	1.983	2.354	
12. Peterongan	29,47	1.933	1.946	1.936	1.940	1.939	2.330	
13. Jombang	36,4	3.246	3.262	3.260	3.254	3.247	4.056	
14. Megaluh	28,41	1.309	1.330	1.336	1.338	1.339	1.494	
15. Tembelang	32,94	1.530	1.542	1.565	1.569	1.568	1.682	
16. Kesamben	51,72	1.186	1.188	1.186	1.191	1.195	1.375	
17. Kudu	27,54	1.078	1.079	1.084	1.088	1.132	1.154	
18. Ngusikan	50,21	421	421	405	410	414	449	
19. Ploso	25,96	1.606	1.598	1.605	1.610	1.621	1.674	
20. Kabuh	132,33	293	295	295	295	296	320	
21. Plandaan	120,4	308	308	313	314	314	318	
Jumlah	11.590	997	1.001	1.003	1.005	1.013	1.156	

Sumber: BPS Kab. Jombang (Registrasi Penduduk

Gambar 4.4 Peta Kepadatan Penduduk Jombang

4.1.5 Tata Guna Lahan

Perkembangan sebuah perkotaan tidak terlepas dari adanya fasilitas – fasilitas yang mendukung kegiatan didalamnya. Adapun fasilitas yang terdapat di Kabupaten Jombang terdiri dari fasilitas perumahan, fasilitas perdagangan dan jasa, fasilitas perkantoran, fasilitas industri, fasilitas pelayanan umum dan fasilitas lainnya yang juga mendukung berlangsungnya kegiatan di wilayah perkotaan Kabupaten Jombang.

1. Fasilitas Perdagangan dan Jasa

Pola kegiatan perdagangan dan jasa di Kabupaten Jombang menunjukan perkembangan yang begitu menonjol. Kawasan perdagangan dan jasa di Kabupaten Jombang dibedakan menjadi kawasan perdagangan dan jasa skala kabupaten, kecamatan, kawasan dan skala lingkungan. Adapun kondisi persebaran dan pola perkembangan kawasan perdagangan dan jasa di Kabupaten Jombang antara lain:

a. Perdagangan dan Jasa Skala Kabupaten

Perdagangan dan jasa skala Kabupaten yaitu fasilitas perdagangan dan jasa yang melayani lingkup Kabupaten Jombang, Perkotaan Jombang dan wilayah sekitarnya. Fasilitas ini pada umumnya untuk kebutuhan sekunder dan tersier. Fasilitas perdagangan meliputi Pasar Induk Kabupaten Jombang. Sedangkan fasilitas jasa antara lain: Bank BNI, Bank BRI, Hotel, kantor pos dan lain sebagainya. Fasilitas ini membentuk kawasan tersendiri tidak bercampur dengan fungsi rumah tinggal. Kawasan ini ini cenderung berkembang secara linier di sepanjang Jalan Ahmad Yani yang merupakan jalan utama di Perkotaan Jombang dan merupakan pusat perdagangan jasa.

b. Perdagangan dan Jasa skala kecamatan

Perdagangan dan jasa skala kecamatan berupa fasilitas yang menjual kebutuhan primer, sekunder dan tersier. Fasilitas perdagangan skala Perkotaan Jombang terdiri dari Pasar Induk Kabupaten,kawasan ruko yang jual kebutuhan penduduk seperti kebutuhan sandang, rumah makan dan lain sebagainya. Sedangkan fasilitas jasa misalnya fotocopy, koperasi simpan pinjam, bengkel sepeda motor dan lain sebagainya.

c. Perdagangan dan Jasa Skala Kawasan

Perdagangan dan jasa skala kawasan merupakan fasilitas perdagangan dan jasa yang melayani kawasan misalnya: warung makan, toko, dan lainnya. Kawasan ini terletak pada kawasan yang cenderung berkembang sebagai pusat kawasan.

d. Perdagangan dan Jasa Skala Lingkungan

Perdagangan dan jasa skala lingkungan yaitu fasilitas perdagangan dan jasa skala lingkungan pada umumnya mempunyai pola persebaran yang merata di tiap lingkungan perumahan. Fasilitas ini misalnya: toko, warung, wartel, dan lainnya Fasilitas ini berkembang secara pesat.

2. Fasilitas Perkantoran

Adapun perkantoran yang ada di Kabupaten Jombang terdiri dari kantor pemerintah dan kantor milik BUMN. Sebagai ibu kota kabupaten, maka pusat perkantoran berada di wilayah perkotaan Jombang. Perkantoran tersebut belum terorientasi pada satu kawasan khusus. Misalnya Kantor Bupati Jombang, Kantor Bappeda, Dinas Bina Marga, Dinas Kehutanan, Kantor Agama, Dinas Koperasi berada dan Dinas Kesehatan berada. Sementara itu kantor BUMN yang ada Kabupaten Jombang terdiri kantor PLN, Kantor Pos dan Kantor Telkom, Kantor

PDAM serta kantor lain yang berupa Bank seperti Bank Rakyat Indonesia (BRI) dan Bank Jatim, , Bank Bank Negara Indonesia (BNI), Selain itu juga terdapat perkantoran pertahanan dan keamanan. Fasilitas pertahanan dan keamanan yang berada di wilayah perkotaan Jombang berupa kantor Polisi yang terdiri dari Kantor Kepolisian Resort Kabupaten Jombang, Kantor Kepolisian Sektor Kabupaten Jombang serta Kantor Komando Distrik Militer Kabupaten Jombang.

3. Fasilitas Pelayanan Umum

Fasilitas pelayanan umum yang ada di Kabupaten Jombang terdiri dari fasilitas pendidikan, fasiltas transportasi, fasilitas kesehatan, fasilitas olahraga, fasilitas sosial budaya serta fasilitas peribadatan.

a. Fasilitas Pendidikan

Fasilitas pendidikan yang ada di Perkotaan Jombang sudah lengkap. Mulai dari tingkat Sekolah Dasar (SD)/ sederajat, Sekolah Menengah Pertama (SMP)/ sederajat, Sekolah Menengah Atas (SMA)/ sederajat, Sekolah Menengah Kejuruan (SMK) serta Perguruan Tinggi baik itu milik pemerintah maunpun yang dikelola oleh swasta. Selain sekolah formal juga ada sekolah nonformal lainnya seperti pondok pesantren, lembaga pendidikan keahlian dan lainnya.

Tabel 4.9 Data Fasilitas Pendidikan Milik Pemerintah di Kab. Jombang Tahun 2011

Kecamatan	TK	SD	SLTP	SMA	SMK	PT
010. Bandar Kedung Mulyo	-	18	2	1	-	-
020. Perak	-	23	2	-	-	-
030. G u d o		24	2	-	1	-
040. Diwek	-	35	2	-	-	-
050. Ngoro	-	34	2	1	-	-
060. Mojowarno	1	30	2	-	-	-
070. Bareng	-	32	2	1	-	-
080. Wonosalam	-	22	3	-	1	-
090. Mojoagung	-	29	3	1	1	-
100. Sumobito	-	28	2	-	-	-
110. Jogoroto	-	14	2	1	-	-
120. Peterongan	-	22	3	-	-	-
130. Jombang	1	51	6	3	3	-
140. Megaluh	-	22	2	-	-	-
150. Tembelang	-	26	2	-	-	-
160. Kesamben	-	25	2	1	-	-
170. K u d u	-	15	1	-	1	-
171. Ngusikan	-	14	2	-	-	-
180. Ploso	1	19	4	1	-	-
190. Kabuh		27	3	1	-	-
200. Plandaan	-	24	1	1	-	-
Jumlah	3	534	50	12	7	0

Sumber Kabupaten Jombang Dalam Angka 2012

Tabel 4.10 Data Fasilitas Pendidikan Swasta di Kab. Jombang Tahun 2011

Kecamatan	TK	SD	SLTP	SMA	SMK	PT
010. Bandar Kedung Mulyo	14	-	1	-	-	-
020. Perak	14	1	4	4	3	-
030. Gudo	18	-	1	1	-	-
040. Diwek	20	3	4	4	9	1
050. Ngoro	21	2	6	2	6	-
060. Mojowarno	19	2	5	3	2	-
070. Bareng	18	-	1	-	-	-
080. Wonosalam	14	-	1	-	-	-
090. Mojoagung	25	2	8	2	5	-
100. Sumobito	26	2	6	1	4	-
110. Jogoroto	14	2	1	1	1	-
120. Peterongan	20	2	4	5	4	1
130. Jombang	55	7	12	5	11	10
140. Megaluh	10	-	-	1	-	-
150. Tembelang	18	-	2	1	1	-
160. Kesamben	16	1	3	2	1	-
170. K u d u	11	-	1	2	1	-
171. Ngusikan	8	-	1	-	-	-
180. Ploso	13	-	2	2	2	-
190. Kabuh	16	-	1	-	-	-
200. Plandaan	11	-	-	-	-	-
Jumlah	381	24	64	36	50	12

Sumber Kabupaten Jombang Dalam Angka 2012

Tabel 4.11 Data Fasilitas Pendidikan di Luar Dinas Pendidikan Kab. Jombang Tahun 2011

	N	<u> </u>	M	TS	M	[A
Kecamatan	Negeri	Swasta	Negeri	Swasta	Negeri	Swasta
010. Bandar Kedung Mulyo	1	14	0	3	1	-
020. Perak		13	1	4		3
030. Gudo		8	0	2		-
040. Diwek		32	3	21		16
050. Ngoro		17	1	8	1	6
060. Mojowarno		21	0	10		5
070. Bareng		11	1	2		1
080. Wonosalam		5	1	1		2
090. Mojoagung		15	1	6	1	4
100. Sumobito		19	1	5		1
110. Jogoroto		21	1	14		7
120. Peterongan	1	11	1	5	1	4
130. Jombang	1	16	2	8	4	10
140. Megaluh		11	1	2		2
150. Tembelang		11	1	5	1	1
160. Kesamben		15	1	4		1
170. K u d u	1	6	0	2		
171. Ngusikan		5	1	1	1	1
180. Ploso		4	0	1		1
190. Kabuh		3	0	1		
200. Plandaan	1	3	0	3		1
Jumlah	5	261	17	108	10	66

Sumber Kabupaten Jombang Dalam Angka 2012

b. Fasilitas Kesehatan

Fasilitas Kesehatan yang ada di Kabupaten Jombang sudah cukup lengkap yang terdiri Rumah sakit Umum , puskesmas, klinik dan masih banyak fasilitas lainnya. Untuk lebih jelasnya dapat dilihat pada tabel 4.10

Tabel 4.12 Data Fasilitas Kesehatan di Kab.Jombang Tahun 2011

	Rumah Sakit			Puskesmas
Kecamatan	Pemerintah	Swasta	Puskesmas	Pembantu
010. Bandar Kd. Mulyo	-	-	1	2
020. Perak	-	-	1	2
030. G u d o	-	-	2	3
040. Diwek	-	-	2	4
050. Ngoro	-	-	2	4
060. Mojowarno	-	1	2	4
070. Bareng	-	-	1	3
080. Wonosalam	-	-	1	4
090. Mojoagung	-	1	2	4
100. Sumobito	-	-	2	4
110. Jogoroto	-	-	2	2
120. Peterongan	-	1	2	4
130. Jombang	1	7	4	8
140. Megaluh	-	-	1	3
150. Tembelang	-	1	2	4
160. Kesamben	-	-	2	2
170. K u d u	-	-	1	2
171. Ngusikan	-	-	1	3
180. Ploso	-	-	1	3
200. Plandaan	-	-	1	5
Jumlah	1	11	34	73

c. Fasilitas Olahraga

Fasilitas Olahraga yang ada di Kabupaten Jombang sebagian besar berupa lapangan olahraga yang tersebar di setiap desa dan memiliki satu stadion sepakbola.

d. Fasilitas Sosial Budaya

Fasilitas Sosial Budaya yang ada di Kabupaten Jombang berupa balai desa yang ada di setiap desa dan sebuah Pendopo.

e. Fasilitas Peribadatan

Fasilitas peribadatan di Kabupaten Jombang terdiri dari Masjid, Mushola/ Langgar, gereja katolik, dan gereja protestan.

f. Ruang terbuka non hijau

Ruang terbuka non hijau yang ada di Kabupaten Jombang terdiri dari kompleks pemakaman umum dan lapangan yang tersebar hampir disetiap desa di Kabupaten Jombang.

4.2 Analisa Curah Hujan Rencana

4.2.1 Stasiun Hujan

Pada analisa ini data curah hujan yang digunakan adalah data hujan selama 10 (sepuluh) tahun pengamatan. Analisa curah hujan dalam perencanaan diperlukan untuk menghitung debit banjir rencana yang mungkin terjadi selama masa efektif bangunan tersebut.

Analisis ini bertujuan untuk mendapatkan hujan maksimum rata-rata kawasan (areal rainfall) yang mewakili suatu DAS/Sub-DAS, dengan mempertimbangkan besar curah hujan yang terjadi baik pada pos pengamatan hujan di dalam maupun di sekitar DAS/Sub-DAS yang ditinjau. Analisis curah hujan dilakukan melalui tahapan kegiatan sebagai berikut :

- pemilihan pos hujan yang akan digunakan
- penyaringan data dan pengisian data kosong.
- penghitungan curah hujan rencana.

Data curah hujan yang digunakan dalam analisa curah hujan di lokasi prioritas yaitu pada Kecamatan Jombang dan Kecamatan diwek adalah data curah hujan dari stasiun hujan yang dapat mewakili catchment area di wilayah prioritas pekerjaan, yaitu :

- 1. Stasiun Hujan Jombang
- 2. Stasiun Hujan PG. Jombang
- 3. Stasiun Hujan Ceweng
- 4. Stasiun Hujan PG. Cukir
- 5. Stasiun Hujan Sumber Penganten
- 6. Stasiun Hujan Cukir

- 7. Stasiun Hujan Blimbing
- 8. Stasiun Hujan Keplak
- 9. Stasiun HujanTanggungan

Data yang digunakan adalah data curah hujan selama 10 tahun (tahun 2004-2013) dalam bentuk data hujan harian. Pengolahan data dilakukan dengan metode **Polygon Thieesen** pada DPS Kecamatan Jombang dan Kecamatan Diwek di Kabupaten Jombang.

4.2.2 Analisa Curah Hujan Maksimum Rerata Daerah

Dari hasil analisa polygon thiesien diatas didapat 9 (Sembilan) stasiun hujan yang berpengaruh dengan luas dan koefisien pada tabel berikut ini :

Tabel 4.13 Luas Pengaruh Stasiun Hujan dan Koefisien Theissen

No	Stasiun hujan	Luas (km²)	KoefisienTheissen
1	PG.Jombang Baru	12.38	0.14
2	Jombang	22.84	0.25
3	Ceweng	19.96	0.22
4	PG.Cukir	9.57	0.11
5	Tanggungan	6.90	0.08
6	Sumber Pengaten	5.08	0.06
7	Cukir	8.73	0.10
8	Blimbing	1.43	0.02
9	Keplak	3.10	0.03
	Total	89.97	

Dari pengolahan data hujan maksimum dari 9 (Sembilan) stasiun tersebut didapat data curah hujan rerata daerah sebagai berikut :

Tabel 4.14 Hujan Rerata Daerah Metode Thiessen

Tahun	Hujan Rerata Daerah (mm)
2004	22.99
2005	60.72
2006	43.30
2007	61.64
2008	61.92
2009	62.19
2010	62.61
2011	65.35
2012	66.64
2013	120.85

Sumber : Hasil Perhitungan

4.2.3 Perhitungan Curah Hujan Rancangan

Untuk menghitung curah hujan rancangan di wilayah perencanaan pada Sub DAS Watudakon metode yang digunakan untuk perhitungan tersebut adalah:

- 1. Metode Gumbel
- 2. Metode Log Person Type III

Tabel 4.15 Curah Hujan Rencana Metode Gumbel

No	Tahun	Tinggi Hujan	R-Rrerata	(R - Rrerata)2
1	2004	22.99	-397.425	15.794.673
2	2005	60,27	-10.907	11.897
3	2006	43.30	-194.359	3.777.550
4	2007	61.64	-10.907	11.897
5	2008	61.92	-10.907	11.897
6	2009	62,19	-10.907	11.897
7	2010	62,61	-10.907	11.897
8	2011	65.35	26.116	68.206
9	2012	66.64	39.068	152.629
10	2012	120.85	581.138	33.772.087
J	lumlah	6.273.439		53.624.630
]	Rerata	627.344		5.362.463
	Sx		24.409.613	·
			Yn	0.499600
			Sn	0.967600

Sumber Hasil Perhitungan

Curah Hujan Rencana Metode Gumbel

Tr	Y _T	K	SD.K	R rancangan
5	14.999	1.033.794.957	2.523.453.505	87.97
10	22.504	1.809.425.382	4.416.737.375	106.90
20	29.606	2.543.406.366	6.208.356.569	124.82
50	39.019	3.516.225.713	8.582.970.969	148.56
100	45.001	4.134.456.387	1.009.204.813	163.65

Sumber Hasil Perhitungan

Uji Smirnov-Kolmogorov Metode Gumbel

Tabel 4.16 Uji Semirnov-Kolmogorov

No.	R (mm)	Sn(x)	K	Yt	Tr (tahun)	Pr	Px	D
1	22.992	0.091	-1.628	-1.076	1.056	0.947	0.053	0.038
2	60.27	0.182	-0.045	0.456	2.131	0.469	0.531	0.349
3	43.30	0.273	-0.796	-0.271	1.369	0.730	0.270	0.003
4	61.64	0.364	-0.045	0.456	2.131	0.469	0.531	0.167
5	61.92	0.455	-0.045	0.456	2.131	0.469	0.531	0.076
6	62.19	0.545	-0.045	0.456	2.131	0.469	0.531	0.015
7	62.61	0.636	-0.045	0.456	2.131	0.469	0.531	0.106
8	65.35	0.727	0.107	0.603	2.373	0.421	0.579	0.149
9	66.64	0.818	0.160	0.654	2.467	0.405	0.595	0.223
10	12.085	0.909	2.381	2.803	17.003	0.059	0.941	0.032
	D Max							

Sumber : Hasil Perhitungan

Dari tabel nilai kritis untuk uji Smirnov-Kolmogorov

Untuk $\alpha = 5 \%$; Dcr = 0.430

Untuk $\alpha = 1 \%$; Dcr = 0.515

Karena $Dcr_{Hitung} > Dcr_{Tabel}$ maka **Memenuhi**

Uji Chi Square Metode Gumbel

Tabel 4.17 Uji Schi Square Gumbel

	- (a()	Tr			
Kelas	Pr (%)	(tahun)	Yt	K	Batasan Kelas
1	80.000	1.250	-0.476	-1.008	38.126
2	60.000	1.667	0.087	-0.426	52.336
3	40.000	2.500	0.672	0.178	67.077
4	20.000	5.000	1.500	1.034	87.970

Kelas	Batas Kelas	(Ej)	(Oj)	X^2
1	0,000 - 38.126	2.200	2	0.018
2	38.126 - 52.336	2.200	2	0.018
3	52.336 - 67.077	2.200	2	0.018
4	67.077 - 87.970	2.200	2	0.018
5	87.970 - ~	2.200	2	0.018
			Σ	0.091

Dari tabel Chi Square (a = 5%) X2 = 9,49

Dari tabel Chi Square (a = 1%) X2 = 13.3

Karena X^2 hitung $< X^2$ tabel maka **Memenuhi**

Metode Log Pearson Type III

Distribusi Log Pearson II (Puslitbang-Balai Hidrologi I), adalah:

$$LogX_{TR} = \overline{LogX} + k * \sigma_{\log X}$$

$$\overline{LogX} = \frac{\sum LogX}{n}$$

$$S_{\log X} = \sqrt{\frac{\sum \left(LogX - \overline{LogX}\right)^2}{n-1}}$$

$$G = \frac{n\sum(LogX - \overline{LogX})^3}{(n-1)(n-2)(S_{LogX})^3}$$

dimana:

X = Curah hujan (mm)

 \overline{X} = Curah hujan rata-rata

TR = Perioda ulang

k = faktor frekuensi tertentu f(G,TR)

G = Koefisien kemencengan

n = Jumlah data

Perhitungan curah hujan rencana dilakukan untuk periode ulang 2, 5, 10, dan 20 tahun.

Perhitungan curah hujan rancangan dengan metode Log Pearson III pada tabel berikut ini.

Tabel 4.18 Perhitungan Curah Hujan Rencana Log Pearson Type III

NI.	T-1	R	Xi	I V:	$(\text{Log Xi-LogX})^2$	(Log Xi-LogX) ³
No.	No. Tahun (mm) Log Xi		(Log M-LogA)	(Log M-LogA)		
1	2004	22,99	22,99	1,36	0,164775	-0,066887
2	2005	60,27	60,72	1,78	0,000252	0,000004
3	2006	43,30	43,30	1,64	0,017155	-0,002247
4	2007	61,64	61,64	1,79	0,000503	0,000011
5	2008	61,92	61,92	1,79	0,000594	0,000014
6	2009	62,19	62,19	1,79	0,000689	0,000018
7	2010	62,61	62,61	1,80	0,000851	0,000025
8	2011	65,35	65,35	1,82	0,002281	0,000109
9	2012	66,64	66,64	1,82	0,003167	0,000178
10	2013	120,85	120,85	2,08	0,099084	0,031189
Jumlah			628,21	17,67	0,289351	-0,037584
Rerata			62,82	1,77		

Sumber: Hasil Perhitungan

Curah Hujan Rencana Metode Log Pearson Type III

No.	Kala Ulang	Probabilitas	Faktor Frekwensi	Log R ranc	Curah Hujan
	(tahun)	(%)	(G)		Rancangan (mm)
1	5	20	0,896	1,928	84,76
2	10	10	1,202	1,983	96,14
3	25	4	1,453	2,028	106,67
4	50	2	1,584	2,052	112,59
5	100	1	2,179	2,158	143,92

Sumber : Hasil Perhitungan

Uji Smirnov-Kolmogorov Metode Log Pearson Type III

Tabel 4.19 Uji Smirnov-Kolmogorov Log Pearson Type III

		<u> </u>		- 0	- 0	71		
R	Xi	Lag V:		Pe	G	Pr	Pt	D
(mm)	(mm)	Log Xi	m	(%)	G	(%)	(%)	(%)
22,99	22,99	1,36	1	9,09	-2,26	99,74	0,26	8,83
60,27	60,72	1,78	2	18,18	0,09	47,54	52,46	34,28
43,30	43,30	1,64	3	27,27	-0,73	77,78	22,22	5,05
61,64	61,64	1,79	4	36,36	0,13	46,19	53,81	17,45
61,92	61,92	1,79	5	45,45	0,14	45,79	54,21	8,76
62,19	62,19	1,79	6	54,55	0,15	45,40	54,60	0,06
62,61	62,61	1,80	7	63,64	0,16	44,80	55,20	8,43
65,35	65,35	1,82	8	72,73	0,27	40,97	59,03	13,70
66,64	66,64	1,82	9	81,82	0,31	39,21	60,79	21,03
120,85	120,85	2,08	10	90,91	1,76	4,24	95,76	4,85

Sumber Hasil Perhitungan

Banyaknya data : 10

Derajat Kepencengan (a) : 5%

Harga Δcr dari tabel : 0.354 atau 35.4%

Δmaksimum : 34,28 %

 Δ maksimum < Δ cr : 34,28% < 35,4 % maka distribusi **Memenuhi**

Uji Chi Square Metode Log Pearson Type III

Tabel 4.20 Uji Chi Square Log Pearson Type III

Vlas	Intornal	Σ		
Klas	Interval	Oi	Ei	Xh ²
1	> 67.58	2,8	2	0,32
2	67.58 - 71.71	2,8	1	3,24
3	71.71 - 77.91	2,8	4	0,36
4	77.91 - 85.15	2,8	5	0,968
5	85.15 <	2,8	2	0,32
		jumlah		5,208

Sumber Hasil Perhitungan

Jumlah Kelas : $1 + 3,22 \log n = 4,690 = 5$

Banyaknya data : 10

Derajat Kepencengan (a) : 5%

Derajat Kebebasan (dk) : 2

Harga X^2 tabel : 5,991

Harga Xh^2 : 5,208

 $Xh^2 < X^2$ tabel : 5,208 < 5,991, maka distribusi **Memenuhi**

4.2.4 Pemilihan Curah Hujan Rancangan

Untuk pemilihan curah hujan rencana dari beberapa metode perhitungan didasarkan pada uji kosistensi masing-masing metode. Dari perhitungan uji kosistensi kedua metode di ketahui pada uji kosistensi Smirnov-Kolmogorov kedua metode ini memenuhi, sedangkan pada uji kosistensi menggunakan Chi Squre kedua metode ini juga memenuhi. Maka untuk memilih metode yang digunakan adalah dengan melihat Dmax yang paling kecil dari uji kosistensi

menggunakan metode Smirnov-Kolmogorov pada kedua Metode tersebut.

Berdasarkan hasil tersebut,diambil metode Log Pearson Type III

Tabel 4.21 Curah Hujan Rancangan Terpilih

No.	Kala Ulang	Curah Hujan
110.	(tahun)	Rancangan (mm)
1	5	84.60
2	10	96.01
3	25	106.63
4	50	112.64
5	100	143.78

Sumber: Hasil Perhitungan

4.3 Intensitas Hujan

Intensitas hujan adalah tinggi curah hujan yang terjadi secara kontinyu pada suatu kurun waktu tertentu di mana air tersebut berkonsentrasi. Intensitas hujan biasa dinotasikan dengan huruf I dengan satuan mm/jam. Metode yang digunkan pada pekerjaan ini menggunakan **Metode Mononobe**

Proyeksi intensitas hujan metode monobe untuk setiap durasi hujan (t ; menit) pada setiap periode ulang dapat dihitung dan digambarkan. Hasil perhitungan untuk wilayah kajian disajikan dalam bentuk tabel dan gambar berikut ini :

$$Tc = \frac{0.0195}{60} \times \left(\frac{448,7}{\sqrt{0.0270}}\right)^{0.77} = 0.19 \text{ jam}$$

$$I = \frac{R24}{24}x(\frac{24}{T})^2/_3 = 89,84 \, mm/jam$$

Tabel 4.22. Intensitas Hujan Metode Mononobe

t	Intensitas Curah Hujan (mm/jam)				
(Menit)	I 5	I10	125	I50	I100
5	153.73	174.47	193.76	204.68	261.26
10	96.84	109.91	122.06	128.94	164.58
15	73.90	83.87	93.15	98.40	125.60
20	61.01	69.24	76.89	81.23	103.68
30	46.56	52.84	58.68	61.99	79.12
45	35.53	40.32	44.78	47.31	60.38
60	29.33	33.29	36.97	39.05	49.84
90	22.38	25.40	28.21	29.80	38.04
120	18.48	20.97	23.29	24.60	31.40

Grafik Intensitas Curah Hujan Metode Mononobe 300 250 Intensitas (mm/jam) 200 5 TAHUNAN 150 10 TAHUNAN 100 **50 TAHUNAN** 50 X-100 TAHUNAN 0 0 20 40 60 80 100 120 140 Waktu kosentrasi (menit)

Gambar 4.6. Grafik Intensitas Hujan Metode Mononobe

Berdasarkan uraian di atas diketahui bahwa:

- Proyeksi Intensitas hujan pada berbagai periode ulang berdasarkan model Mononobe berdasarkan data curah hujan yang tersedia seperti digambarkan dalam bentuk grafik pada Gambar 4.6 menunjukan pola/trend yang hampir sama, dimana besar intensitas hujan cenderung menurun/mengecil jika durasi hujannya lebih lama. Intensitas hujan terbesar terjadi pada durasi hujan 5 menit pertama pada periode ulang 100 tahunan.
- Terdapat perbedaan /selisih yang cukup signifikan antara Intensitas hujan
 5 (Lima) tahunan dengan Intensitas hujan 100 (Seratus) tahunan Intensitas hujan rencana yang biasa digunakan dalam perencanaan drainase adalah intensitas hujan 5 (lima) tahunan, sesuai dengan debit rencana yang digunakan dalam Kajian ini yaitu debit puncak rencana lima tahunan (Q5).

4.3.1 Intensitas Hujan Wilayah Rencana

Pada perhitungan Intensitas hujan dengan kala ulang 5 tahun untuk masing-masing saluran drainase eksisting pada wilayah perencanaan yang disajikan pada tabel berikut ini :

Tabel 4.23 Intensitas Hujan

			L	v	To	Ts	Tc	Тс	Rc	I
No	Nama Saluran	S	(m)	(m/dt)	(menit)	(menit)	(menit)	(jam)	(mm)	(mm/jam)
1	Perum Denanyar	0.0270	448.7	2.89	8.63	2.59	11.22	0.19	84.60	89.84
2	Pasar Citra	0.0027	872.0	1.05	35.08	13.84	48.92	0.82	84.60	33.65
3	Desa Pulo Lor (toko Buku Bekas)	0.0147	1182.0	2.47	22.96	7.98	30.94	0.52	84.60	45.67
4	Jl.Hayam Wuruk (Undar)	0.0146	698.9	2.56	15.39	4.55	19.93	0.33	84.60	61.23
5	Gatot Subroto Pattimura	0.0069	1179.3	2.54	30.69	7.73	38.42	0.64	84.60	39.52

Sumber: Hasil Perhitungan

Keterangan:

S: data kemiringan saluran Ts: perhitungan waktu aliran saluran

L : data panjang saluran Tc : perhitungan waktu kosentrasi

v : data kecepatan aliran Rc : data curah hujan rancangan

 $To: perhitungan \ waktu \ aliran \ permukaan \qquad \qquad I: perhitungan \ intensitas \ hujan$

4.3.2 Debit Banjir Rencana

Besarnya debit banjir rancangan digunakan metode rasional. Penggunaan metode ini disesuaikan dengan ketersediaan data curah hujan, iklim, jenis tanah, karakteristik daerah, luas area dan sebagainya. Perhitungan debit rancangan menggunakan metode rasional dengan kala ulang 5 tahun untuk masing-masing saluran drainase eksisting pada wilayah perencanaan yang disajikan pada gambar dan tabel berikut ini :

Tabel 4.24 Perhitungan Debit Rencana Saluran

		A	I	C	Ts	Тс	Cs	Q_1	Q_2	Qranc per saluran	Qranc total
No	Nama Saluran	(km²)	(mm/jam)		(menit)	(menit)		(m3/dt)	(m3/dt)	(m3/dt)	(m3/dt)
1	Perum Denanyar	1.774	89.845	0.8	2.588	11.218	0.897	29.769	0.000186	29.769	29.769
2	Pasar Citra	8.585	34.365	0.8	12.310	47.387	0.885	54.395	0.000898	54.396	54.396
3	Desa Pulo Lor (toko Buku Bekas)	18.318	46.554	0.8	7.100	30.061	0.894	158.895	0.001917	158.896	158.896
4	Jl.Hayam Wuruk (Undar)	8.937	62.309	0.8	4.032	19.418	0.906	105.103	0.000935	105.104	105.104
5	Gatot Subroto Pattimura	37.272	39.791	0.8	7.348	38.038	0.912	281.758	0.003900	281.762	281.762

Sumber: Hasil Perhitungan

Keterangan:

 $A \qquad : luas \ tata \ guna \ lahan \qquad \qquad Ts \qquad : perhitungan \ waktu \ aliran \ saluran \qquad \qquad Q_{renc} \qquad : debit \ banjir \ rancangan$

 $\begin{array}{cccc} C & : Koefisien \, Pengaliran & Q_1 & : debit \, air \, hujan \\ Tc & : perhitungan \, waktu \, kosentrasi & Q_2 & : debit \, air \, kotor \end{array}$

4.3.3 Perhitungan debit Air Kotor

Air kotor atau air buangan merupakan air sisa atau bekas dari air yang dimanfaatkan untuk kepentingan sehari-hari. Debit air kotor berasal dari air buangan hasil aktivitas penduduk yang berasal dari :

- a. Air buangan domestik, dari rumah tangga dan fasilitas umum
- b. Air buangan industri

Tabel 4.25 Perhitungan Debit Air Kotor Wilayah Perencanaan

No Saluran	Nama Saluran	Luas Daerah Permukiman (ha)	Kepadatan Penduduk (jiwa/ha)	Jumlah Penduduk (jiwa)	Debit Air Kotor (m³/dt)
1	Perum Denanyar	1.77	113	200	0.000186
2	Pasar Citra	8.58	113	970	0.000898
3	Desa Pulo Lor (Toko Buku Bekas)	18.32	113	2070	0.001917
4	Jl.Hayam Wuruk (Undar)	8.94	113	1010	0.000935
5	Gatot Subroto Pattimura	37.27	113	4212	0.003900

4.3.4 Proyeksi Penduduk

Jumlah penduduk pada daerah studi pada awal perencanaan dimulai dan pada tahun-tahun yang akan datang harus diperhitungkan untuk menghitung air buangan. Untuk memproyeksikan jumlah penduduk pada tahun-tahun yang akan datang digunakan :

1. Pertumbuhan Eksponensial

Pertumbuhan ini mengasumsikan pertumbuhan penduduk secara terusmenerus setiap hari dengan angka pertumbuhan konstan. Pengukuran penduduk ini lebih mendekati tepat, karena dalam kenyataannya pertumbuhan jumlah penduduk juga berlangsung terus-menerus.

Ramalan pertambahan penduduknya adalah:

$$Pn = Po \times e^{rn}$$

Dengan:

Pn = jumlah penduduk pada tahun ke-n

Po = jumlah penduduk pada awal tahun

r = angka pertumbuhan penduduk

n = interval waktu (tahun)

e = bilangan logaritma (2,71828)

2. Pertumbuhan Geometri

Pertumbuhan ini mengasumsikan besarnya laju pertumbuhan yang menggunakan dasar bunga berbunga dimana angka pertumbuhannya adalah sama tiap tahun.

Ramalan laju pertumbuhan Geometri adalah sebagai berikut :

$$Pn = Po x (1 + r)^n$$

Dengan:

Pn = jumlah penduduk pada tahun ke-n

Po = jumlah penduduk pada awal tahun

r = angka pertumbuhan penduduk

n = interval waktu (tahun)

Untuk hasil proyeksi pertumbuhan penduduk dapat dilihat pada **tabel 4.26** berikut ini :

Tabel 4.26 Proyeksi Penduduk Wilayah Perencanaan 2011 – 2021

No	Kecamatan	Jumlah	Proyek	si Penduduk	Kepadatan 10 tahun yad
		Tahun 2011	Geometris Eksponensia		
		(jiwa)			(jiwa/ha)
1	Jombang	130,413	133,045	133,048	113
2	Diwek	108,085	110,266	110,268	73
	Jumlah pen	duduk =	238,498	243,311	243,316

Sumber: Kabupaten Jombang dalam Angka 2012

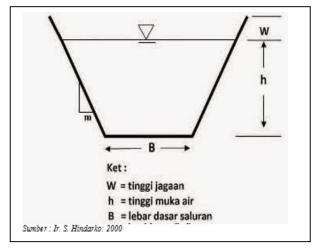
4.4 Analisa Hidroulika Saluran

Pada Analisa Hidroulika ini meliputi beberapa aspek hidrolis pada saluran drainase eksisting, yang meliputi dimensi saluran dan kapasitas saluran.

4.4.1 Dimensi Saluran Eksiting

Di dalam perhitungan ini digunakan perumusan untuk saluran terbuka, yang mana saluran tersebut berbentuk trapesium dan persegi empat. rumus tersebut adalah sebagai berikut :

Bentuk Trapesium untuk saluran drainase adalah:


$$A = (B1 + Z.H1).H1$$

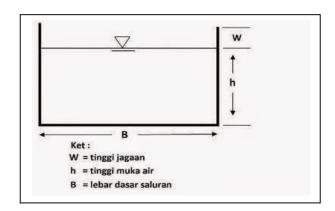
$$P = B1 + 2H1.\frac{H1}{\sqrt{Z^2 + 1}}$$

$$R = A/P$$

$$V = \frac{1}{n}.R^{2/3}.I^{1/2}$$

$$Q = V.A$$

Bentuk Empat persegi untuk saluran drainase adalah:


$$A = B.H1$$

$$P = 2H1 + B$$

$$R = A/P$$

$$V = \frac{1}{n}.R^{2/3}.I^{1/2}$$

$$Q = V.A$$

Dimana:

n = koefisien kekasaran

I = kemiringan dasar saluran

 B_1 = lebar dasar saluran (m)

 H_1 = tinggi air dalam saluran (m)

Z = kemiringan lerengan saluran

A = luas penampang basah (m²)

P = keliling basah saluran (m)

R = jari-jari hidraulis (m) = A/P

V = kecepatan Aliran (m/det)

Q = debit saluran (m³/det)

Dimensi saluran eksisting prioritas adalah sebagai berikut :

Tabel 4.27
Dimensi Saluran Eksisting Wilayah Prioritas

		2	ist Saturant Brests	***************************************	11011111				
		L		Tipe		Dimensi	Saluran		
No	Nama Jalan	(m)	Tipe Saluran	Konstruksi	Penampang	B1 (m)	B2 (m)	B (m)	H (m)
1	Perum Denanyar	448.73	terbuka	plesteran	segiempat			1.00	0.60
2	Pasar Citra	871.98	terbuka	plesteran	trapesium	1.00	1.00		0.70
3	Desa Pulo Lor	1182	terbuka	plesteran	trapesium	1.00	1.00		0.70
4	Jl.Hayam Wuruk (Undar)	698.87	terbuka	plesteran	trapesium	1.50	1.00		0.90
5	Gatot Subroto	2135.63	terbuka	plesteran	trapesium	4.00	3.00		1.00

4.4.2 Kapasitas Saluran Eksisting

Perhitungan kapasitas saluran drainase eksisting pada Prioritas wilayah pekerjaan menggunaakan pendekatan rumus Manning's dengan melihat bentuk penampang saluran baik pada saat survey lokasi maupun dari data sekunder.

Dalam merencanakan saluran terbuka, diperlukan rumus untuk aliran uniform adalah rumus Manning, yaitu:

$$Q = \frac{1}{n} R^{2/3} I^{1/2} . A$$

Untuk perhitungan kapasitas saluran eksisting dapat dilihat pada tabel-tabel berikut ini :

Tabel 4.28 Harga Koefisien Manning's

Jenis/ Macam Saluran	Koefisien Manning (n)
Pasangan batu kali	0,025
Pasangan batu kali diplester, beton tidak diplester	0,017
Beton licin	0,011
Batu kering/rip-rap	0,030

Sumber : SK SNI T-07-1990-F

Tabel 4.29 Perhitungan Kapasitas Saluran Drainase

No	Nama Jalan	L	Tipe Saluran	Tipe	Bentuk	Dimensi Saluran			S	m	n	A	P	R	V	Q	
		()		17 / 1	D	\mathbf{B}_1	* *					2			/1/	3,1	
-	l .	(m)		Konstruksi	Penampang	(m)	(m)	(m)	(m)				(m ²)	(m)	(m)	m/dt	m ³ /dt
1	Perum Denanyar	448.7	terbuka	plesteran	segiempat			1.00	0.60	0.027		0.025	0.600	2.200	0.273	2.763	1.658
2	Pasar Citra Desa Pulo Lor (toko	872.0	terbuka	plesteran	trapesium	1.00	1.00		0.70	0.003	0.250	0.025	0.823	2.443	0.337	1.000	0.822
3	Buku Bekas) Jl.Hayam Wuruk	1182.0	terbuka	plesteran	trapesium	1.00	1.00		0.70	0.01475	0.250	0.025	0.823	2.443	0.337	2.350	1.933
4	(Undar)	698.9	terbuka	plesteran	trapesium	1.5	1.00		0.90	0.01458	0.250	0.025	1.553	3.355	0.463	2.889	4.485
5	Gatot Subroto	2135.6	terbuka	plesteran	trapesium	4	3.00		1.00	0.00691	0.5	0.025	4.500	6.236	0.722	2.675	12.036

Sumber : Hasil Perhitungan

Keterangan:

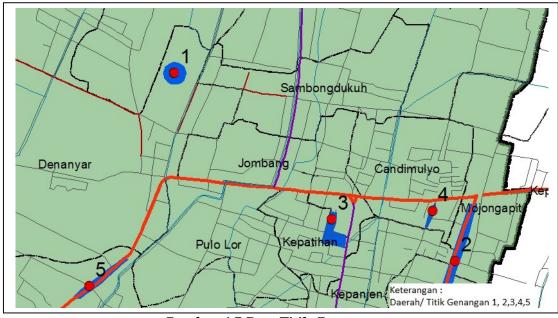
L : panjang saluran m : kemiringan tebing/talud A : luas penampang saluran

B : lebar dasar saluran n : koefisien mannings v : kecepatan saluran

H : kedalaman air salauran P : keliling basah saluran Q : kapasitas debit saluran

S : kemiringan dasar saluran R : jari-jari hidrolis

4.5 Penentuan Lokasi Prioritas


Tahap yang harus dilakukan sebelum evaluasi sistem drainase Kabupaten Jombang khususnya pada wilayah perencanaan dilakukan, yaitu tahap studi kelayakan dan tahap penyususun rencana detail. Lokasi prioritas didasarkan atas 4 parameter genangan, dan 5 parameter yang didasarkan pada kerugian yang ditimbulkan.

- 1. Penilaian Terhadap Parameter Banjir
- 2. Nilai Kerugian Harta Benda Milik Pribadi/Rumah Tangga
- 3. Nilai Kerugian Ekonomi
- 4. Nilai Kerugian Milik Sosial dan Pemerintah
- 5. Nilai Kerugian Gangguan Lalu Lintas
- 6. Nilai Kerugian Daerah Pemukiman

No	Nama Saluran Drainase	Lokasi
1	Saluran Perumahan Denanyar (ASABRI)	Desa Denanyar
2	Saluran Jl.Gatotsubroto	Desa Jelak Ombo
		Desa Mojongapit
		Desa Jombang,
		Dusun Sawahan
3	Saluran Jl. Prof. Buya Hamka	Desa Jombang/ Desa Sambong Dukuh
	(Saluran bawah toko buku bekas)	
4	Saluran Sebelah Timur GOR	Desa Candi Mulyo
5	Saluran Jl. Nurkholis Majid	Desa Denanyar
6	Saluran Pasar Citra Niaga (Jl. KH.Mimbar)	Desa Jombang
7	Saluran Jl. Kartini	Kelurahan Kepanjen
	(Lingkungan Balai Desa Kepanjen)	
8	Saluran Jl. Kartini s/d Jl. Sriwijaya	Kelurahan Kali Wungu &
		Kelurahan Kepanjen
9	Saluran Jl. Patimura (STKIP)	Desa Sengon
10	Saluran Makam Abdurrahman Wahid	Desa Cukir

Tabel 4.30 Tabel Lokasi Prioritas

Dari hasil analisa 10 saluran yang ditentukan dari parameter genangan dan parameter kerugian yang berdampak paling besar pada perkotaan jombang, terdapat pada 5 saluran utama drainase seperti pada tabel 4.1 dan gambar 4.1 berikut :

Gambar 4.7 Peta Titik Genangan

Tabel 4.31 Matrik Penilaian Skala Prioritas Sistem Drainase

No	Nama Saluran	Hirarki	Besa Gena	aran Ingan	Frekv Genai		Kerusa Harta B		Gang Ekon		Gangg Sosi		Gangguan Lalu Lintas						Gangguan Perumahai		TOTAL	Skala Prioritas Penanganan
			Luas (ha)	Nilai	Kriteria	Nilai	Kriteria	Nilai	Kriteria	Nilai	Kriteria	Nilai	Kriteria	Nilai	Kriteria	Nilai						
1	Perum Denanyar	Sekunder	5.63	75	S	75	S	65	S	65	S	65	S	65	Т	100	510	5 Tahun Pertama				
2	Pasar Citra	Sekunder	8.29	100	S	75	S	65	S	65	S	65	S	65	S	65	500	5 Tahun Pertama				
3	Desa Pulo Lor	Sekunder	18.02	100	S	75	S	65	S	65	S	65	S	65	Т	100	535	5 Tahun Pertama				
4	Jl. Hayam Wuruk	Sekunder	6.51	75	S	75	S	65	S	65	S	65	S	65	S	65	475	5 Tahun Pertama				
5	Jl. Gatot Subroto	Primer	22.36	100	Т	100	S	65	S	65	S	65	Т	100	Т	100	595	5 Tahun Pertama				

Sumber : Hasil Analisis

Keterangan:

T : Tinggi

S : Sedang

K : Kecil

TT : Tidak ada

1. Saluran Perumahan Denanyar (ASABRI)

Gambar 4.8 Saluran Drainase di Perum Denanyar

2. Saluran Pasar Citra Niaga (Jl. KH.Mimbar)

Gambar 4.9 Drainase tertutup pasar citra niaga

3. Saluran Jl. Prof. Buya Hamka (Saluran bawah toko buku bekas)

Gambar 4.10 Saluran drainase di bawah toko buku bekas

4. Saluran Sebelah Timur GOR

Gambar 4.11 Saluran Drainase Jl. Gus Dur (Depan UNDAR)

5. Saluran Jl.Gatot Subroto

Gambar 4.12 Saluran Drainase di Jalan Gatot Subroto

4.6 Hasil Analisa Saluran

Dari hasil analisa perhitungan kapasitas saluran (Q_{eks}) dan (Q_{renc}), dapat diketahui bahwa pada daerah yang terjadi genangan pada umunya disebabkan tidak berfungsinya saluran dengan baik dikarenakan rusaknya saluran yang ditandai dengan amblasnya permukaan dasar saluran serta tersumbatnya saluran akibat sampah dan timbunan lainnya. Kapasitas saluran yang ada masih mecukupi debit air sebesar 1.658 m³/detik, Dapat disimpulkan bahwa penyebab genangan adalah sampah dan sedimen dibutuhkan normalisasi pada tiap saluran untuk penanganan 5 tahun pertama dan menumbuhkan kesadaran masyarakat untuk tidak membuang sampah pada saluran dan pengawasan dari pemerintah setempat.

Tabel 4.32 Evaluasi Saluran Drainase Existing Jombang dan Diwek

No	Nama Saluran	L	Qranc	Qsaluran	Analisa	Qgenangan	Kondisi
		(m)	(m3/dt)	(m3/dt)		(m3/dt)	
1	Perum Denanyar	448,7	1,201	3,159	memenuhi	0,000	Perlu adanya optimalisasi saluran
2	Pasar Citra	872,0	1,142	0,822	tidak memenuhi	0,319	Perbaikan Dimensi
3	Desa Pulo Lor (toko Buku Bekas)	1182,0	1,829	1,495	tidak memenuhi	0,334	Perbaikan Dimensi
4	Jl.Hayam Wuruk (Undar)	698,9	2,547	2,823	memenuhi	0,000	Perlu adanya optimalisasi saluran
5	Gatot Subroto	2135,6	3,435	12,036	memenuhi	0,000	Perlu adanya optimalisasi saluran

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

BAB IV

PENUTUP

Dari analisa awal, khususnya mengenai kondisi sistim drainase di wilayah perkotaan, diketahui bahwa Kabupaten Jombang merupakan pusat pertumbuhan regional. Dari pembahasan ini, terdapat beberapa hal yang perlu dijadikan dasar dalam penyusunan studi akhir dan dalam pelaksanaan pembangunan Kabupaten Jombang di masa tahun-tahun berikutnya.

5.1 KESIMPULAN

Dengan mencermati hasil analisa saluran drainase eksisting yang menjadi prioritas perencanaan, diperoleh kesimpulan sebagai berikut :

- a. Kondisi saluran drainase eksisting secara umum sistem drainase di wilayah Kabupaten Jombang masih menggunakan sistem drainase gabungan dimana pembuangan air limbah, air hujan dan sebagai saluran irigasi dialirkan melalui satu saluran drainase.
- b. Analisa Sementara Genangan yang terjadi pada prioritas rencana adalah sebagai berikut :
 - Adanya penumpukan sedimentasi dan tumpukan sampah dalam jumlah yang cukup besar pada saluran sehingga aliran air tertahan hingga mengakibatkan luapan air di sekitarnya.
 - Pandangan bahwa sungai atau selokan merupakan tempat pembuangan sampah, merupakan kendala tersendiri yang perlu mendapatkan perhatian yang serius dari berbagai pihak. Karena walau secara teknis sudah

dinyatakan aman tapi karena sumbatan sampah maka saluran drainase jadi tidak berfungsi sebagaimana yang direncanakan.

5.2 SARAN

- Perlunya pemeliharaan yang intensif pada saluran-saluran drainase yang ada misalnya instansi yang terkait melakukan pengerukan dua sampai tiga bulan sekali sehingga debit total saluran dapat ditampung dan tidak ada genangan lagi.
- kepada masyarakat untuk turut memelihara saluran saluran drainase yang ada di sekitar tempat tinggal mereka masing – masing sehingga saluran yang ada dapat berfungsi secara maksimal.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.

DAFTAR PUSTAKA

Asdak, C. 1995. *Hidrologi dan Pengelolaan Daerah Aliran Sungai*. Yogyakarta: Gadjah Mada University Press.

Brower, J. E., H. Z. Zerold & Car, I. N. Von Ende. 1990. *Field and Laboratory Methods for General Ecology*. Thrid Edition. Wm. C. New York: Brown Publisher.

bpnjatim.wordpress.com/peta-jawatimur.

Departemen Pemukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP 01 Kriteria Detail desain Bagian Detail desain Jaringan Irigasi, Jakarta.

Departemen Permukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP-02, Kriteria Perencanaan Bagian Bangunan Utama, Jakarta.

Departemen Permukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP-03, Kriteria Perencanaan Bagian Saluran, Jakarta.

Departemen Pemukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP 04 Kriteria Perencanaan Bagian Bangunan, Jakarta.

Departemen Pemukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP 05 Kriteria Perencanaan Bagian Petak Tersier, Jakarta.

Departemen Pemukiman dan Prasarana Wilayah, Badan Penelitian dan Pengembangan, 2002, KP 07 Kriteria Perencanaan Bagian Standar Penggambaran, Jakarta.

Dinas Cipta Karya. 2014. *Laporan Penyusunan DED sistem drainase Kabupaten Jombang*. Jombang.

Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2012, *Tata Cara Pernyusunan Rencana Induk Sistem Drainase Perkotaan*.

Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2012, *Tata Cara Pelaksnaan Konstruksi Sistem Drainase Perkotaan*.

Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2012, *Panduan Operasi Dan Pemeliharaan Prasarana* & Sarana Drainase Perkotaan.

Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2012, *Tata Cara Pemantaun Dan Pengelolaan Drainase Perkotaan*.

Direktorat Jenderal Cipta Karya, Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2012, *Tata Cara Pernyusunan Rencana Induk Sistem Drainase Perkotaan*.

(Flood Control Manual, 1993, Volume I Summary of Flood Control Criteria and Guidelines: 4).

Suripin, 2004. Sistem Drainase Perkotaan Yang Berkelanjutan. Yogyakarta : Penerbit Andi

Soemarto, C.D. 1999. *Hidrologi Teknis Edisi II*, Jakarta: Penerbit Erlangga. Sri Harto, 1993, *Analisis Hidrologi*, PT. Gramedia Pustaka Utama, Jakarta.

Tiurma Elita Saragi, 2007, *Tinjauan Manajemen Sistem Drainase Kota Pematang Siantar*:

Undang-Undang No. 7 Tahun 2004, tentang Sumber Daya Air

Ven Te Chow, Ph, D, 1997, *Hidrolika Saluran Terbuka (Open Channel Hydraulic)*, Erlangga, Jakarta.

Wesli, (2008), Drainase Perkotaan, PT.Graha Ilmu, Yogyakarta.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.