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  Abstract—In computer vision and robotics community, a 

normalized cross correlation image matching is widely known 

as a robust method to determine conjugate points between two 

overlapping images. In photogrammetric community, however, 

this method is less favor due to stringent requirements of 

precision. To achieve such a high standard, a least square 

adjustment is utilized to minimize a cost function of the image 

matching process, and then the sum of the residual errors of 

the cost function is employed to judge the precision and 

reliability of the match. This paper elaborates the least square 

image matching adjustment to match conjugate points for 

surface reconstructions in a highly convergent imaging 

network or in a wide baseline of stereo images. 

  Key-words: surface reconstruction, image matching, least-

square, photogrammetry. 

 

I. INTRODUCTION 

  Reconstructing three-dimensional surface models from 

one or more digital images has long been one of the central 

topics in photogrammetry [1, 2]. Surface reconstruction in 

industrial settings means determination of geometric models 

of three dimensional objects in arbitrary coordinate systems 

[3], and its ultimate goal is always to find a way to generate 

a computer model of the object surfaces which best fits 

reality [4]. 

  In seeking this ultimate goal, the photogrammetric 

method nowadays requires a reliable mensuration system by 

means of digital images. This process consists of a few well-

known steps [5], namely imaging network design, image 

measurement, geometric and texture modeling, and 

visualization of the results. As has been pointed out by some 

authors [6, 7], a final result of the measurement phase is 

usually three-dimensional coordinate data for the object 

points. To convert these finite points into a precisely 

meaningful surface, the geometrical condition of the 

object’s surface per se must be taken into consideration [4]. 

Apart from the postulate that increasing sampling density of 

object points might increase the chance of the geometric 

modeling procedure recovering the unknown surface [2], the 

measured points must satisfy certain properties required by 

the algorithm to infer the correct geometry of the surface. 

For example, the image points must have little noise. This 

paper will provide a discussion of the fundamental 

mathematical concepts of the least squared image matching 

including a normalized cross correlation method, by which 

3D object space determination is achieved. Its reliable 

photogrammetric point determination is central to accurate 

surface reconstruction. 

 

II. AREA –BASED IMAGE MATCHING 
 

  The term ‘image matching’ refers to the process of 

finding corresponding or conjugate points in digital images 

(or parts thereof) in the form of a matrix of reflectance 

levels [8]. Photogrammetric literature shows that there are 

three general methods of image matching, namely area-

based matching, feature-based matching and relational 

matching [9]. Since this research focuses on the area-based 

matching, it gives an insight into the utilization of this 

technique only. 

  Area-based matching is based on the idea that grey 

values of pixels of conjugate points have similar radiometric 

characteristics [9]. The process generally requires a close 

approximation to the matched patches in order to ensure a 

successful match. In other words, having a point in one 

image, its conjugate in the other one is obtained by 

optimizing a certain similarity measure, defined over the 

pixel grey values within the image window. Two techniques 

are adopted to calculate the possible similarity measures: a 

normalized cross correlation method and a least square 

matching method. 

A. Normalized Cross Correlation (NCC) Method 

  The general procedure of the cross correlation method is 

to calculate a similarity measure between a patch f(x,y) on a 

reference image, and a matching or target patch g(x,y) on an 

overlapping or matching image (Fig. 1). The position of the 

best agreement is assumed to be the location of the reference 

patch on the matching image. The similarity measure is 

indicated by a cross correlation coefficient [9] which is 

computed by comparing every pixel in the reference patch 

with the corresponding pixel in the matching patch. A 

common similarity measure is the normalized cross-

correlation coefficient [10, 11]: 
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In Eq. (1), it is the normalized cross-correlation coefficient; 

m and n are the numbers of rows and columns of the patches 

respectively; fij is the ith row and jth column of the grey value 

from the reference patch; gij is the ith row and jth column of 

the grey value from the matching patch; and are the 

arithmetic means of the grey values in the reference patch 

and the matching patch, respectively. 
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Fig. 1. The concept of area-based image matching 

 

  Despite its computational simplicity, it is 

computationally expensive considering that the correlation 

coefficient is calculated at every pixel in two directions over 

a given patch in the search window. Another major 

disadvantage of this method is that it neither takes into 

account the fact that there may be geometric and radiometric 

differences between the two patches being matched, nor 

adapts to distortions caused by scale and perspective 

differences between images, different lighting condition, 

and high frequency noise contaminations. Consequently, the 

match determined by this technique is error prone, and can 

often produce a misleading match. These disadvantages 

underpin a concept of solution which needs to account for 

geometric and radiometric differences between patches in 

order to seek a better match. This concept is set up in the 

context of least squares estimation. 

B. Least-Squared Image Matching (LSM) Method 

  The concept of least squares matching is to minimize the 

grey level differences between the reference patch and the 

matching patch, whilst computing the position and the 

shaping parameters of the matching patch during the least 

squares estimation process. Therefore, the position and the 

shape of the matching patch are both varied until the grey 

level differences between the deformed matching patch and 

the reference patch reaches a minimum. The method of least 

squares matching (LSM) employs iterative radiometric and 

geometric transformations between the reference patch and 

the matching patch. As illustrated in Fig. 1, if f(x,y) is to be 

a reference patch of n x n pixels and g(x,y) is to be a 

matching patch of an equal size, the objective of LSM is to 

estimate a new location of g(x,y) such that the grey value 

differences between f(x,y) and g(x,y) are minimized. In an 

ideal situation where noise free patches exist, matching is 

established if the following condition is met [12]: 

  
y) g(x,      y) f(x,     (2) 

In a real situation, however, either one or both images are 

affected by noise. Thus, Eq. (2) becomes inconsistent. 

Therefore, assuming the reference image is noise free, a 

noise vector e(x,y) is added to the matching patch resulting 

in (3) 

 y) g(x,   y) e(x,-  y) f(x,   (3) 

e(x,y) is the true error vector of a goal function, which 

measures the differences of grey values between the 

reference patch and the matching patch. The goal function to 

be minimized is the quadratic form of the residuals of the 

least squares estimation. The Eq. (3) is a non-linear least 

squares observation equation in terms of g(x,y), which 

models the reference patch function of f(x,y) with the 

matching patch function of g(x,y). The position of the 

matching patch g(x,y) in the matching image has to be 

estimated to a positional tolerance of a pixel or so with 

respect to an approximate position of the matching patch,

 y x,g . The location is described by shift parameters x

and y , which are applied to the patch  y x,g  to yield the 

best estimate for the position of g(x,y). In order to account 

for a variety of systematic image deformations and to obtain 

a better match, geometric corrections such as image shaping 

parameters as well as the shift parameters, and radiometric 

corrections are introduced [1] [12]. The image shaping 

parameters are determined by a resampling of  y x,g  over 

the transformed grid points. The geometric correction 

parameters need to be estimated from Equation 3, and in 

order to conform with the least squares approach, the 

function g(x,y) must be linearized as follows: 
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And the Eq. (4) is then modified to become 
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The gx and gy are a discrete first derivative (or a gradient) in 

the x-direction and in the y-direction, respectively. Values 

of gx and gy are evaluated as the slopes of the reflectance 

levels in the x and y directions across the initial matching 

patch before performing iteration, and across the 

transformed matching patch thereafter. Schenk [9] reported 

that even if the position and image shaping model of the 

projected patch are correctly determined in the acquired 

image to obtain g(x,y), the grey values of f(x,y) and g(x,y) 

are generally going to differ due to other factors such as 

temporal differences of illumination source radiance, 

different distance and viewing angles of the cameras to the 

object, lens distortion, and errors in image acquisition. To 

compensate for these errors and acquire a better match, a set 

of radiometric transformation parameters for g(x, y) is 

incorporated. Two radiometric parameters, ro (grey value 

shift) and r1 (grey value scale), are introduced into the 

system Equation 6 and it gives a result as follows 

  
 yx,grrdygdxg  y) (x,g  

 y) e(x,    y) f(x,

1oyx
 
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       (7) 

 

The radiometric transformation parameters introduced in Eq. 

(7) compensate for grey value differences in terms of 

brightness and contrast between the reference and matching 

patches. This transformation would perform a general 

brightness shift ro and contrast stretching r1 to perform a 



ELEKTRIKA – Volume 01, Nomor 01, September 2017                                                                                 ISSN: 2597-7296 

24 

 

radiometric adjustment of the image characterised by

 y x,g . And it gives the result: 
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Thus, an equation of the following form conforms to the 

standard indirect least squares adjustment and it can be 

written for each pixel as follows: 
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Combining the parameters in (9) in the parameter vector x 

gives: 

 1321321 rrdbdbdbdadadax o
T 

     
(10) 

their coefficients in the design matrix A, and the vector 

differencef(x,y) – g0(x,y) in ℓ, the observation equations are 

obtained in classical notation(with e = e(x,y)) as Axe  . 

In the standard indirect model for n x n pixels of a reference 

patch, the Equation (8) can be rewritten as: 
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The least squares estimation in model (9)-(11) leads to the 

unbiased, minimum variance estimators: 
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Here A is the matrix of coefficients, x is the vector of 

corrections to approximate parameters values; ℓ is the 

discrepancy vector of constants between the reference patch 

and the initial measured matching patch; and v is the vector 

of noise values. The vector v can also be regarded as a 

measure of the quality of the mathematical model ([10]). 

The least squares solution minimises the sum of squares of 

the elements of v, which leads to the unbiased minimum 

variance estimators. P is the weight matrix which is usually 

approximated by the identity matrix by assuming an 

identical precision of all pixels; n is the number of pixel in 

row or column direction; x̂  is the solution vector; x is the 

correction vector which is applied for the geometric 

transformation parameters only; roand r1 are linear apriori; 

and o̂  can be regarded as an a-posteriori estimator for the 

difference of the reference patch noise and the matching 

patch noise. xC is the variance-covariance matrix of the 

transformation parameters and it is used to judge the quality 

of parameter estimation. Since the function values of g(x, y) 

in Equation 3 are stochastic quantities, the design matrix A 

is not fixed. However Gruen[12] stated that ignoring the 

stochastic quantities does not significantly disturb the 

results. 

III. COMPUTATIONAL PROCEDURE 

  Schenk [9] observed that the adjustment procedure for 

least squares matching is somewhat different from the usual 

iteration cycle of a least squares adjustment. The first 

iteration commences with an approximate location of the 

matching patch. The coefficients of the design matrix A and 

discrepancy vector w are calculated using initial values of 

parameters to initiate the iteration. These initial values are 

often [12]: 1bar0;babar 32123110  . 

  Furthermore, since the matrix A includes digital numbers 

from the matching patch g(x,y), partial derivative terms 

must be obtained using discrete values to estimate the slope 

of the matching patch in both x and y directions. The slope 

gradients are calculated using the initial target patch 

 y x,g
 and formulated as follows:  
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The Eq. (12) computes the estimate values for slopes both in 

the x and y directions, by taking the difference between the 

digital numbers of pixels to right and left, and above and 

below. Next, the transformation correction parameters and 

their estimated values can be determined by from solving 

Eq. (9). Before commencing the second iteration, the grey 

values for all positions g1(x, y) must first be determined. 
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This resampling process amounts to interpolating the grey 

values from the neighbouring pixels of the initial matching 

patch  y x,g . According to the photogrammetric literature, 

it has been established that bi-linear interpolation is the best 

choice among the existing techniques available, such as the 

nearest-neighbour, bi-cubic, and distance weighted average 

interpolation methods [2][13]. In Wolf and Dewitt [11], the 

authors affirm that of the first three techniques, the simplest 

and fastest resampling method in terms of computation time 

is nearest-neighbour interpolation, which uses the value of 

the pixel closest to the transformed coordinates. However, 

since a continuous interpolation is not being performed, the 

resulting appearance can be very susceptible to aliasing. 

Bilinear interpolation, on the other hand, is slower than the 

nearest neighbour method, and has a smoother appearance 

effect due to partial elimination of high frequency detail. 

The bi-cubic technique is the slowest of the three with 

regard to computation time, but it is the most rigorous 

resampling method, and achieves a smooth appearance 

without sacrificing too much high frequency (edge) detail. 

IV. RESULT AND DISCUSSION 

  Two photographs are taken by using camera Nikon 

D100. The imageries have resolution of 3000x2000 pixels. 

The left image (DSC_0037.tif) is assumed to be the 

reference image, whilst the right one (DSC_0044.tif) is of 

the matching image. In seeking the most precise of the 

matched points, the LSM is conducted. Since the LSM 

requires very close approximate values (small pull in range), 

the utilized image pair needs to be normalized first [9, 14]. 

The normalized images for the left and right images are of 

NM_DSC_0037.jpg and NM_DSC_0044.jpg accordingly. 

Figure 2 depicts this image pair and their normalized images 

counterparts. 

 
 

Fig. 2. The Stereo images (top) and their normalized pair (below) 

 

  When any feature is clicked on the reference image, the 

location of the selected feature is transformed to the 

normalized reference image (NM_DSC_0037.jpg). Then, 

the NCC is performed to compute the conjugate point on the 

normalized matching image (NM_DSC_0044.jpg), before it 

is transformed to the matching image (DSC_0044.tif). This 

transformed conjugate point acts as an approximate point to 

perform the LSM. As a result, a sub pixel conjugate point 

(the matched point) is obtained as shown on Figure 3. 

 

 
 

Fig. 3. The Least Square Matching Process: a reference patch (top left), a 

normalized reference patch (bottom-left), a normalized matching patch 

(bottom-right), and a matching patch (top-right), as well as the matching 

result information (center window) 

  Fig. 3 depict a process of finding a matching entity in the 

stereo view using normalized images. The pixel in the center 

of the patch is transformed to the normalized counterpart 

(bottom-left). Then, the NCC process starts in seeking the 

best match on the normalized matching image along the 

epipolar line. Once found, the location of the best match is 

refined into the sub-pixel accuracy through the use of the 

LSM on the matching image. The LSM is an iterative 

process, during the iterations, the local patch is transformed 

into the reference patch. On the last iteration, therefore, the 

local patch resembles the reference patch; and its center 

pixel is to be the conjugate point of the center pixel of the 

matching patch, as shown in Fig. 4. 

 

 
 

Fig. 4. Iterative transformations of the initial matching patch into the 

reference patch. 

 

  The adjustment equation for the LSM is usually very 

over determined. For example, a patch size of 21x21 pixels 

generates n = 441 observations for only u = 6 unknowns. 

Grey level gradients are used in the linearized correction 

equations. A solution exists only if enough image structures 

are available in the matched patch (Fig. 5f); while for 

homogeneous image patches, the normal equation system is 

singular, which is the situation illustrated in Fig. 5.e. 

 

 
 

Fig. 5. The accuracies of the matched patches and the triangulated points 
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  The standard deviations of shift parameters a0 and b0 are 

assessed to judge the accuracy of the matched points and the 

highest possible accuracies have been reported to be in the 

range of 0.01-0.04 pixels [10]. High accuracy assumes good 

similarity between the reference and the matching patch. A 

typical result of standard deviations of the a0 and b0 

calculated by the software developed for this research is 

depicted in Figure 5(a)-(d). 

V. CONCLUSION 

  This paper has presented the semi-automatic method 

used to produce object point coordinates from the image 

matching and spatial intersection process. The process starts 

by selecting a pixel on the reference image. Then, the 

program can be used to automatically find its conjugate 

point on the matching image, as well as the corresponding 

point in the object space. The automatic searching of the 

matched point is done in two processes. The first process is 

performed on the normalized image pair to compute the 

matched point using cross correlation matching. Using the 

matched point on the normalized matching image as the 

approximate value, the second process is performed on the 

original image pair to refine the matched point position on 

the matching image to obtain sub-pixel accuracy of the 

matched point through the LSM method. 
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