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Abstract: This paper presents a harmonics extraction algorithm using artificial 
neural network methods. The neural network algorithm was used due to the 
simpler calculation process compared with conventional method such as fast 
Fourier transform (FFT). Two types of neural network, i.e., multi-layer 
perceptron (MLP) and radial basis function (RBF) were employed to extract 
harmonics current component from its distorted wave current. Further, the 
extracted harmonics current was used as reference current for shunt active 
power filter (APF) control. This paper compared the performance of MLP and 
RBF for harmonics extraction. The advantages of RBF are simpler shape of the 
network and faster learning speed. Unfortunately, the RBF need to be trained 
recursively for various harmonics component. MLP can be used to extract 
various harmonics component in specific data range but need large number of 
data training hence slower training process. 
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1 Introduction 

The significant increase of non-linear load usage such as power electronic equipment for 
voltage and current conversion, motor drives, switching power supplies and other 
electronics devices caused undesired impact to the power quality. The main effect of  
non-linear load usage is development of harmonics component contained in voltage and 
current waveform. The proliferation of harmonics causes voltage and current distortion, 
development of torque oscillation in electric machine, additional heating and losses in 
electrical equipment, malfunction of sensitive equipment and deteriorate power quality 
delivered to consumer in electrical power system (Chgangaroo et al., 1999). 

Various methods have been introduced to overcome harmonics. In electrical drive for 
instance, the multilevel inverter triggered by unipolar PWM strategies could reduce the 
harmonics (Shanthi and Natarajan, 2010). Reduction of low order input current 
harmonics is also possible to be achieved by using switching modulation strategies 
(Babaei and Hosseini, 2010). Many compensators have been proposed to overcome the 
harmonics problem. Conventional method proposed for harmonics mitigation was passive 
filter tuned for specific harmonics order. Unfortunately, passive filter has some 
drawbacks such as generate parallel resonance with network impedance, poor flexibility 
for dynamics compensation of different harmonics component, aging and tuning 
problems and need larger dimension. 

Active filters are proposed to overcome the disadvantages of passive filter and to 
improve the performance of harmonics mitigation process (Mithulananthan and  
Sode-Yome, 2004). As a compensator, active power filter has many advantages such as 
have higher flexibility to compensate various harmonics values, not affected by network 
parameter and impedances fluctuation and have smaller dimension compared with 
passive filter. Besides that, active filter can be functioned not only for harmonics 
compensation but also for several purposes; reactive power improvement, terminal 
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voltage regulation, voltage flicker reduction and voltage balanced improvement in  
three-phase system (Hassoun, 1995; Chen, 2003). Unfortunately, active filter have more 
complicated circuit and control algorithm. 

Performance of active filter determined by the accuracy and precision of harmonics 
component extraction from distorted voltage and current waveform. Active filter control 
algorithms have been developing in order to obtain best performance to eliminate 
harmonics component from voltage and current waveform. Generally, fast Fourier 
transform (FFT) method used for harmonics extraction but its need more than one cycle 
data hence delay time will appear and may cause frequency deviation (Tey and So, 2002). 
Instantaneous p-q theory method has good performance, unfortunately it only suitable for 
three-phase system under balanced condition. Synchronous reference frame reference 
also suitable only for three-phase system and cause delays in filtering the DC value. 
Artificial intelligent algorithm widely used for signal processing. In this paper, two types 
neural network structure would be compared to get better performance for active filter 
control algorithm. The comparison between multi-layer perceptron (MLP) and radial 
basis function (RBF) can be seen through, number of layer and neuron, number of data 
needed for training, sum square error (SSE) value and time of training process. 
MATLAB Simulink will be used to simulate the shunt active power filter (SAPF) control 
algorithm based on neural network. 

2 Multi-layer perceptron 

MLP type is the first type of artificial neural network (ANN). Basically, it consists of 
input layer, hidden layer and output layer. For simple problem, one hidden layer is 
enough but for more complex approximation problem, additional hidden layer can be 
implemented to the network. The basic configuration of MLP is shown in Figure 1. 

Figure 1 Architecture of MLPNN 
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MLP neural network is trained using Lavenberg-Marquardt back propagation (LMBP) 
algorithm. This algorithm used second order derivatives approximation without Hessian 
matrix calculation hence the training process become faster compared with conventional 
back propagation training algorithm in the way that it uses resulting derivatives for the 
weight updating. LMBP algorithm has forward and backward process. During the 
forward process it calculates the output error for the given dataset by fixing the weights. 
The weights are updated in backward process in order to obtain the desired output value. 

The LMBP algorithm is described in the following steps (Tey and So, 2002): 

1 Initialisation: all weight and biases are set to small random numbers that are 
uniformly distributed. 

2 Let the training set be {[p(1), t(1)], [p(2), t(2)], … [p(K), t(K)]}, where K represents 
the number of pattern in the training dataset, and p, t are input and desired output 
respectively. The input vector pattern p(n) is applied to input layer of sensory nodes 
and the desired output vector t(n) is presented to the output layer of computation 
nodes. The activation potentials vj(n) and function signals aj(n) of the network are 
calculated by proceeding forward through the network, layer by layer. 

0 ( ) ( ) for input layera k p k=  (1) 

( )1 1 1 1( ) ( )
0,1, , 1 and 1, 2, ,

l l l l la k f W a k b
l M k k

+ + + += +

= − =… …
 (2) 

( ) ( ) ( )Me k t k a k= −  (3) 

where ē is the error vector and k refers to training pattern presented to the network. 
Wl+1 is the weight matrix connecting lth and (l + 1)th layers and 1lb +  is the bias vector 
for (l + 1)th layers. 

3 The sum of squared error V over all the input is calculated using equation (4). 

2
,

1 1 1

1 1( ) ( )
2 2

MSK K
T

j k
k k j

V e k e k e
= = =

= =∑ ∑∑  (4) 

4 The error is passed in backward process and the weights are updated, layer by layer 
basis. In order to achieve this, the sensitivities or derivatives of the performance 
function with respect to weights are calculated. The gradient of V in terms of 
Jacobian can be presented by equation (5). 

( ) ( )TV J x e x
x

∂
=

∂
 (5) 

where x  is the vector of all the weights and biases and ( )J x  is the T × C Jacobian 
matrix, given by equation (6) 
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 (6) 

T in equation (6) is the product of number of the input/target pairs and the dimension 
of the neural network’s output vector SM and C is the total number of neural network 
coefficients (weights and biases). The output error vector ( )e x  can be represented as 
in equation (7). 

[ ]1 2( ) ( ) ( ) ( ) T
Te x e x e x e x=  (7) 

The calculation of the above Jacobian matrix is the key step in LMBP algorithm. The 
Jacobian is a matrix of first order partial derivatives of a vector-valued function. It 
can be created by taking the partial derivatives of each output in respect to the each 
weight. In Lavenberg -Marquardt implementations, the Jacobian is approximated by 
using finite differences. For the neural networks, it can be computed very efficiently 
by using the chain rules of calculus and the first derivatives of the activation 
function. Hence, the derivative of equation (7) with respect to variable, which is one 
element of the Jacobian matrix, can be shown in equation (8). 

( )
,

( ) ( )( )
( )

M M
T TT T

T C
C C C

t k a ke k a
J x

x x x
∂ −∂ ∂

= = = −
∂ ∂ ∂

 (8) 

Cx  can be 1
,
l
i jw +  or 1l

ib + , where T = 1,2,…,T, c = 1,2, …, C, and l = 1, 2,…SM  

(the number of neurons in input layer). For output neuron q, the net input ( )M
qv  to 

the transfer function could be written as equation (9). 

1
1

,
1

MS
M M M M
q q j j q

j

v w a b
−

−

=

= +∑  (9) 

with ( ),M M
q qa f v=  we take the partial derivative with respect to ,

M
q jw  and .M

qb  

( ) ( ) ( ) 1

, , ,

M MM M
q qq q M M

q jM M M M
q j q j q q j

f v f va v
f v a

w w v w
−

∂ ∂∂ ∂
= = ⋅ =

∂ ∂ ∂ ∂
 (10) 

( ) ( ) ( )
M MM M
q qq q M

qM M M M
q q q q

f v f va v
f v

b b v b

∂ ∂∂ ∂
= = ⋅ =

∂ ∂ ∂ ∂
 (11) 
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( )M
qf v  is the derivative of activation function of the output layer with respect to the 

net input. Let 1
, ( )l

i q kσ +  be defined as one element of the sensitivity matrix 1( )l kσ +  as 

shown in equation (12). 

( )1
, 1 1

( )( )

( ) ( )

MM
qql

i q l l
i i

f v ka k

v k v k
σ +

+ +

∂∂
= =
∂ ∂

 (12) 

In this algorithm, the sensitivity matrix is initialised at the output layer which given 
by first derivative of its transfer function. 

( )( )M M MF v kσ =  (13) 

( )Mv k  is the vector of the net input to the transfer function and 

( )( ) ( ) ( ) ( )1 2( ) ( ) ( )
M

M M M M M
SF v k diag f v k f v k f v k⎡ ⎤= ⎣ ⎦…  (14) 

After deriving all the above equations, the Jacobian matrix in (11) can be assembled 
using equations (10), (11), (13) and (14). 

5 Finally the weights and biases are updated using equation (15) 

1
( ) ( ) ( ) ( )T Tx J x J x I J x e xμ

−
⎡ ⎤Δ = +⎣ ⎦  (15) 

μ in equation (15) us the step multiplier and ( )e x  is the error vector. The equation 
approximates a gradient descent method if μ is very large. However, if μ is small, the 
equation becomes the Gauss-Newton method. As the second method is faster and 
more accurate near an error minimum, the aim is to shift toward the Gauss-Newton 
method as quickly as possible. Hence, μ is decreased after each successful step and 
increased only when a step increases the error. This means that if the sum of squared 
error is smaller than the previous step, μ is divided by a factor to decrease it, but it 
will be multiplied by a factor to increase if the sum of squared error is greater than 
that previous step. 

For SAPF control, the MLP controller designed here as one input and one output with 
several hidden layers. The activation function is log-sigmoid in the hidden layers. 

3 RBF neural network 

RBF neural network is an ANN model motivated by ‘locally-tuned’ response biological 
neurons. The origin formulation of the RBF neural network was developed in order to 
produce deterministic mapping of data by exploiting links with traditional function 
approximation. The RBF neural network may be employed in classification tasks, time 
series prediction, and both unordered and topographic feature extraction. Because of its 
computational tractability, the RBF has been applied to many diverse real-world 
problems. Its strength and utility derive from its simplicity and from a close relationship 
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with other areas of signal and pattern processing and other neural network architectures 
(Hassoun, 1995). 

The RBF neural network has a feed forward structure consisting of a single hidden 
layer of J locally tuned units which are fully interconnected to an output layer of L linear 
units, as shown in Figure 2. 

Figure 2 Typical structure of RBFNN 

  ( )2
11 σμ−xK

( )2
22 σμ−xK

( )2
nnxK σμ−

( )2
JJxK σμ−

1z

2z

jz

Jz

1Lw

2Lw

Ljw
LJw

Lyx

 

All hidden units simultaneously receive the n-dimensional real valued input vector x. The 
absence of hidden layer weights because the hidden unit outputs are not calculated using 
the weight-sum/sigmoid activation mechanism as MLP. 

Each hidden-unit output zj is obtained by calculating the ‘closeness’ of the input x to 
an n-dimensional parameter vector μj associated with the jth hidden unit. 

2( ) j
j

j

x
z x K

μ

σ

⎛ − ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (16) 

where K is a strictly positive radially-symmetric function (kernel) with a unique 
maximum at its ‘centre’ μj and which drops off rapidly to zero away from the centre. The 
parameter σj is the ‘width’ of the receptive field in the input space for unit j. This implies 
that zj has an appreciable value only when the ‘distance’ || x – μj || is smaller than the 
width of σj. In this research, Gaussian function used as activation function for the hidden 
units given as zj for j = 1,2,…,J, where 

2

2( ) exp
2

j
j

j

x
z x

μ

σ

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥⎣ ⎦

 (17) 

Given an input vector x, the output of the RBF network is the L-dimensional activity 
vector y whose Lth component is given by 
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1

( ) ( )
J

L Lj j
j

y x w z x
=

=∑  (18) 

RBF networks are best suited for approximating continuous or piecewise continuous real 
valued mapping f: Rn → RL, where n is sufficiently small; these approximation problems 
include classification problems as a special case. According to equations (17) and (18), 
the RBF network may be viewed as approximating a desired function f(x) by 
superposition of non-orthogonal bell-shaped basis functions. The degree of accuracy can 
be controlled by three parameters: the number of basis functions used, their location, and 
their width. In fact, like feed forward neural networks with a single hidden layer of 
sigmoid units, it can be shown that RBF networks are universal approximator. 

The training of RBF neural network is radically different from the classical training 
of standard feed forward neural network. In this case, there is no changing of weights 
with the use of gradient method aimed at function minimisation. In RBF neural networks 
with the chosen type of RBF, training resolves itself into selecting the centres and 
dimension of the functions and calculating the weight of the output neuron. The centre, 
distance scale and precise shape of the radial function are parameters of the model, all 
fixed if it is linear. 

4 Shunt active power filter 

SAPF connected in parallel with the non-linear load which has to be compensated. 
Basically APF worked to inject compensation current which have same magnitude but 
opposite phase with harmonics current contained in original distorted current. With 
current injection from SAPF the harmonics current component flowing in the system will 
be eliminated. 

The operation of SAPF consists of two stages. First is detecting or sensing the 
harmonics current from the line and second is generating compensation current injecting 
to the line. The detected current used as input for ANN. The output of ANN is harmonics 
current component without fundamental component. The output of ANN will be used as 
reference signal compared with triangular signal to produce switching signal for voltage 
source inverter. Finally the current generated by inverter will be injected to the line as 
compensating current for harmonics mitigation. Control algorithm of SAPF based on 
ANN algorithm shown at Figure 3. 

The switch used in the SAPF is IGBT. DC capacitor and the IGBT with anti parallel 
diode are used to indicate a SAPF built up from a voltage source converter (VSC) due to 
its high efficiency, low initial cost, and smaller physical size. There is no power supply at 
DC side of VSC, only an energy storage element (capacitor) is connected at the DC side 
of the converter. The reason is that the principal function of SAPF is to behave as a 
compensator (Akagi et al., 2007). We assume that the DC side capacitor has a constant 
voltage hence the dc voltage controller was not needed. 

This ANN-based harmonics extraction method gave simpler and faster algorithm 
because there was no voltage and current calculation blocks to determine the harmonics 
current component from its distorted current signal. In order to reduce number of training 
data and to fasten training process, the normalised and de-normalised block were added 
before and after ANN harmonics current component extraction block respectively. 
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Figure 3 Control of SAPF-based on ANN algorithm (see online version for colours) 
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5 Simulation results 

This research compared two ANN configurations types, i.e., MLP and RBF neural 
network for harmonics approximation function. The performance of neural network 
would be analysed through time of training process, network complicity, and value of 
SSE. To verify performance of proposed control algorithm, MATLAB Simulink used for 
simulating neural network based control model proposed for SAPF. The system was 
three-phase balanced system, 220 V, 50 Hz. Controlled thyristor rectifier which supplies 
resistive (500 Ω) and inductive (100 Ω and 0,1 H) loads used as non-linear load that 
would be compensated. The detected distorted currents were sampled at 10 kHz sampling 
frequency and 200 data in one cycle were taken as training data for the ANN. The 
distorted current from rectifier with resistive and inductive load can be seen at Figures 4 
and 5. 

Before compensated by SAPF, non-linear load draw a highly distorted current from 
the source, hence the source current would contain high harmonics component. This is 
indicated by high total harmonics distortion (THD) value. For rectifier with resistive and 
inductive load, the THD values of source current were 25.6% and 27.74% respectively. 

Number of neuron and architecture of MLP were determined empirically using trail 
and error method. It is difficult to know beforehand which architecture that appropriate 
for a specific approximation problem. Various networks with different number of neurons 
and layer were trained with Lavenberg-Marquardt algorithm. Four layers structure of 
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MLP; 1 input neuron, 20 first hidden layer neurons, 30 second hidden layer neurons and 
one output neuron was chosen. The activation function using log sigmoid between input 
and first hidden layer, log sigmoid between first and second hidden layer and pure line 
between second hidden layer and output layer. 

Figure 4 Source current for rectifier with resistive load 
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Figure 5 Source current for rectifier with inductive load 
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One advantage of RBF neural network is that we do not have to determine the number of 
neuron using trial and error method. During training process, the number of neuron 
would be added one by one until the desired value of SSE obtained. In this research, the 
200 number of neuron at hidden layer used as the RBF architecture. From the simulation 
result using MATLAB Simulink, the performance of both ANN types for resistive and 
inductive load shown in Table 1. 
Table 1 Comparison performance between MLP and RBF neural network 

Performance MLP RBF 

Architecture Four layers (with two hidden layers) Three layers (with one hidden layer) 

Number of neuron 3-20-30-3 3-95-3 

Training time 11 seconds 2 seconds 

SSE 9.17809e-007 8.90903e-007 

For harmonics current approximation, RBF neural network showed better performance 
than MLP. From the network complicity, MLP has more complicated network with two 
hidden layers while RBF consist only one hidden layer however RBF need more number 
of neuron compared with MLP. With same number of training data (200 data per cycles 
waveform), RBF has faster training process compared with MLP. SSE values stated that 
for function approximation purpose such as harmonics current waveform approximation, 
RBF showed better result than MLP. This result justified by lower SSE value for RBF 
than MLP. The approximated harmonics current component using RBF and MLP neural 
network for two kinds of non-linear loads were shown at Figures 6 and 7. 

Figure 6 Approximated harmonics current using MLP and RBF for rectifier with resistive load 
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Figure 7 Approximated harmonics current using MLP and RBF for rectifier with inductive load 
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The approximated harmonics current obtained from RBF and MLP used as reference 
signal for SAPF control. As mentioned before, the reference signal would be compared 
with carrier signal in PWM to generate switching signal. VSC-PWM would generate and 
inject compensation current to eliminate harmonics. The PWM should have a high 
switching frequency in order to reproduce accurately the compensating currents. In this 
research, 10 kHz switching frequency was used as PWM frequency. Interface low pass 
filter connected between VSC and the system to eliminate higher order harmonics around 
the switching frequency. 

From simulation with constant load, THD value decreased from 25.6% became 
around 4% after the compensation with the proposed SAPF. The result showed that SAPF 
could improve performance of the system by eliminating harmonics current component 
from the source current. This indicated by small THD value and shape of source current 
became more sinusoidal. Source current waveform after and before compensated and 
compensation current from SAPF for various non-linear loads were shown at Figures 8 
and 9. 

Variable load simulation implemented to the system to verify whether MLP and RBF 
neural network still had ability to follow the load changing. For this simulation, two cases 
load changing would be analysed. Non-linear load modelled by uncontrolled rectifier 
which supplied 100 Ω resistive loads and changing twice in magnitude at 0.15 s and the 
other is 100 Ω and 0.1 H inductive load and changing by twice also at 0.15 s. After 
proposed SAPF installed to the system, source current improved. 

Simulation result gave good performance of MLP and RBF neural network to follow 
the load changing. It is indicated by source current waveform that become more 
sinusoidal and THD decreased from 25.6% for resistive load and 26.6% for inductive 
load become small between 4% to 5%. The current waveform from resistive and 
inductive load shown in Figures 10 and 11 which contain of two ANN based reference 
current using MLP and RBF respectively. 
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Figure 8 Source current and compensation current for rectifier with resistive load, (a) based on 
MLPNN reference current (b) based on RBFNN reference current 
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Figure 9 Source current and compensation current for rectifier with resistive load, (a) based on 
MLPNN reference current (b) based on RBFNN reference current 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

time (s)

cu
rre

nt
 (A

)

Source Current Before Compensated

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

cu
rre

nt
 (A

)

Compensation Current from SAPF based on MLPNN ref. Current

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

time (s)

cu
rre

nt
 (A

)

Source Current After Compensated

 

(a) 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

time (s)

cu
rre

nt
 (A

)

Source Current Before Compensated

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

time (s)

cu
rre

nt
 (A

)

Compensation Current form SAPF based on RBFNN ref. Current

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

time (s)

cu
rre

nt
 (A

)

Source Current After Compensated

 

(b) 



   

 

   

   
 

   

   

 

   

    ANN-based harmonics extraction algorithm for SAPF control 287    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 10 Source current and compensation current for rectifier with variable resistive load, 
(a) based on MLPNN reference current (b) based on RBFNN reference current 
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Figure 11 Source current and compensation current for rectifier with variable inductive load, 
(a) based on MLPNN reference current (b) based on RBFNN reference current 
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6 Conclusions 

ANN could be implemented for signal approximation purpose well. RBF showed better 
performance than MLP for extracted and approximated harmonics current component 
from its original distorted current. RBF has smaller SSE, simpler architecture and faster 
training process. Unfortunately RBF has larger number of neuron than MLP but for 
overall the RBF showed superior performance than MLP. 

The proposed method for SAPF control algorithm showed a good result. These 
methods could work properly not only for constant non-linear load but also for variable 
load changing in the system. THD value of source current decreased significantly from 
25.6% for resistive load and 26.6% for inductive load become small between 3% to 5%. 
Source current also improved, indicated by more sinusoidal waveform which means 
almost all of harmonics current components have been eliminated. 
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