prosiding_artikel-4

by Abraham Lomi

Submission date: 23-Apr-2023 10:07PM (UTC+0700)

Submission ID: 2072746617

File name: C.2.a.2-4_artikel_LOMI.pdf (660.41K)

Word count: 3991

Character count: 20533

Power System Voltage Stability as Affected by Large-scale PV Penetration

Rakibuzzaman Shah, Student Member, IEEE, N.Mithulananthan, Senior Member, IEEE, R.C.Bansal, Senior Member, IEEE, K.Y.Lee, Fellow, IEEE and A.Lomi, Member, IEEE

Abstract-- Voltage instability is considered as one of the main threats to secure operation of power system networks around the world. Grid connected renewable energy-based generation are developing in recent years for many economic and environmental reasons. This type of generation could have significant impact on power system voltage stability given the nature of the primary source of generation and the technology used to energy conversion. This paper examines the impact of large-scale photovoltaic (PV) generation on power system voltage stability. A comprehensive model of large-scale PV generation in IEEE-14 bus test system has been used for the investigation. Various performance measures including critical eigenvalues of Q-V mod 13 matrix, bus participation factor and loading margin (LM), are used to analyze the impact of PV generator on power system static voltage stability.

Index Terms- Critical eigenvalue, Q-V modal analysis, realistic loading direction, PV integration, PV reactive power generation.

I. INTRODUCTION

Utilization of renewable energy comes from the perspective of environmental conservation and fossil fuel shortage. Recent studies suggest that 12 medium and long terms, photovoltaic (PV) generator will become commercially so attractive that large scale implementation of this type can be seen in many parts of the world [1], [2]. A large-scale PV generation system includes photovoltaic array, DC/AC converter and their controllers. It is a multivariable and nonlinear system and its operation depends on environmental conditions. Due to given nature of PV generator, one important issue related to PV is its impact on system stability. Hence, thorough investigation of power system stability with PV is an urgent task as repetited in [3], [4].

Among stability issues, voltage instability has been a major concern for power system. Several major power interruptions have been linked to power system voltage instability in recent

Rakibuzzaman Shah, N.Mithulananthan and R.C.Bansal are with the School of Information Technology and Electrical Engineering, the University of Queensland, Australia

(E-mail: md.shah@uq.edu.au; mithulan@itee.uq.edu.au; rcbansal@ieee.org).

K. Y. Lee is with Department of Electrical and Computer Engineering,
Baylor University, Waco, TX 76798-7356, USA
(E-mail: Kwang Y Lee@baylor.edu).

A.Lomi is with the Department of Electrical Engineering, INstutut Teknologi Nasional, Malang, Indonesia (E-mail: Abraham@itn.ac.id).

past [5], [6]. It has been proved that inadequate reactive power compensation during stressed operating condition can lead to voltage instability. Although large scale PV is capable of generating reactive power, but, still reactive power generation capability of PV is limited by grid code and normally works very close to the unity power factor (usually operate 0.95 lead lag power factor) [2], [7]. However, the size and position of large PV generator can introduce significant impact on power 11 tem voltage stability as the level of PV penetration become a relevant percentage of total installed power. Thus this paper assesses the impact of large-scale PV generation on power systim voltage stability.

The case studies are presented in the paper based on IEEE-14 bus test system. Several cases have been considered for the assessm25 of system voltage stability and these are:

Case-1: IEEE-14 bus system with PQ loads has been considered as base case.

Case-2: EEE-14 bus system with PV generator and different power factor operation.

Case-3:PV at different locations in IEEE-14 bus system.

Ca₂₂₂4: IEEE-14 bus system with different penetrations of PV.

The rest of the paper is organised as follows. Section II provides a brief description of Q-V modal analysis typically used for static voltage stability studies. Mc20 ling of PV generator for stability studied is elaborated in Section III. Section IV is a case study based on IEEE-14 bus test system. Section V gives the relevant conclusion.

II. METHODOLOGY

Conventional voltage stability assessment takes into account only the steady state analysis (algebraic equations of the system). However, steady state analysis investigates long term voltage stability by providing information like system loading margin, contributing factors to voltage instability, degree of stability [8]. Equation (1) represents the linearized model of the power system at any operating point [9];

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix} \Delta \theta$$
(1)

where, ΔP , ΔQ are mismatch power vectors. ΔV , $\Delta \theta$ are unknown voltage magnitude and angle correction vectors.

$$\begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix}$$
 (2)

is the Jacobian matrix of real and to ctive power flow equations, which is known as standard power flow Jacobian. For steady state analysis of voltage stability standard power flow Jacobian is used and active power is considered as constant. Thus, from (1) the standard power flow equation becomes

$$\begin{bmatrix} 0 \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \theta} & \frac{\partial Q}{\partial V} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$
 (3)

A. Q-V Modal Analysis

From (3) the following equation for modal voltage and small reactive power change can be derived as

$$\Delta Q = J_{\scriptscriptstyle D} \Delta V \tag{4}$$

where, ΔQ is small change of reactive power, ΔV is small change of bus voltage and J_R , known as power flow reduced Jacobian matrix, can be expressed as follows:

$$J_R = \left[J_{QV} - J_{Q\theta} J_{P\theta}^{-1} J_{PV} \right] \tag{5}$$

From J_R matrix following expression can be obtained,

$$J_R = \xi_{nxn} \Lambda_{nxn} \eta_{nxn} \tag{6}$$

where, $\xi = \text{matrix}$ of right eigenvectors corresponding to all eigenvalue of the system (nxn), $\Lambda = \text{diagonal matrix}$ of system eigenvalues (nxn) and $\eta = \text{matrix}$ of left eigenvectors corresponding to all eigenvalues of the system (nxn). Here, n is the number of buses. By using (6) expression for modal voltage and modal reactive power variations corresponding to i^{th} eigenvalue can be obtained,

$$v_i = \lambda_i^{-1} q_i \tag{7}$$

where, $v_i = \text{modal}$ voltage variation and $q_i = \text{modal}$ reactive power variation, $\lambda_i = \text{eigenvalue}$ of i^{th} mode obtained from J_R system matrix.

Magnitude and sign of the eigenvalues of Q-V modal matrix prozes the information about system static voltage stability. As the system becomes stressed, one of the eigenvalues of J_R becomes smaller and the modal voltage becomes weaker. If the magnitude of the eigenvalue is equal to zero, the corresponding modal voltage could be assured to be at the point of collapse. A system is called as voltage stable if all the eigenvalues of J_R system matrix are positive, if any of the eigenvalue is negative, the system is unstable [9], [10].

B. Bus Participation

The left and right eigenvectors corresponding to the smallest 7 genvalue (critical mode) of the system can confer information regarding the mechanism of voltage instability, by identif 7 ig the element participating in the corresponding mode. The bus participation factor measuring the participation of the k^{th} bus to the t^{th} mode can be given as

$$P_{ki} = \xi_{ki} \eta_{ik} \tag{8}$$

where, P_{ki} is the k^{th} bus participation factor of the i^{th} eigenvalue, ξ_{ki} right eigenvector (column vector) for the i^{th} eigenvalue, η_{ik} left eigenvector (row vector) for the i^{th} eigenvalue.

Bus participation factors corresponding to the critical modes can predict areas or nodes in the power system 18 ceptible to voltage instability. Buses with large participation factors to the critical mode correspond to the most critical system bus or the weakest bus of the system and the close proximity where the top ranked weak buses are located is known as weak area of the system.

III. PV GENERATOR MODEL

P30 pvoltaic generator is based on semiconductor device and solid-state synchronous voltage source converter that is 17 logous to a synchronous machine except the rotating part. It generates a balanced set of sinusoidal voltage at fundamental frequesy with rapidly controllable amplitude and phase angle. Voltage source converter converts a DC input voltage into AC output voltage and supply active and reactive power to the system. Fig.1 shows the schematic diagram of the grid connected PV generator.

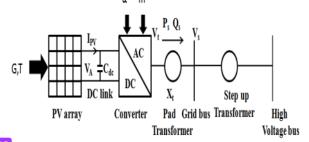


Fig. 1. Schematic diagram of single-stage PV.

A Photovoltaic Array

Solar cell is the basic building block of the photovoltaic array, which is a sen 19 nductor device capable of generating electric power from solar radiation. The performance of the solar cell strongly depends on the radiation and temperature [11], [12]. As the solar cell is only capable of generating very low terminal voltage and output current, so, for the working purposes many cells are connected in series to form higher voltage across the terminal and confected in parallel to form a module. For large scale operation of PV generator, modules are connected in series and parallel to form array. The array output current equation can be derived from basic solar cell output current equation and can be represented as

$$I_{PV} = I_{SCA}(G) - N_P \times I_0 \left[e^{\frac{(V_A + I_{PV} R_S)q}{nN_S kT}} - 1 \right]$$
(9)

where, I_{PV} = array current (A), V_A = array voltage (V), q = electron charge (1.6×10⁻¹⁹ C), k = Boltzmann's constant (1.38×10⁻¹⁹), n = ideal factor, T = ambient temperature, I_0 = reverse saturation current A), R_s = array series resistance (Ω), I_{SCA} (G) = N_pI_{SC} (G), N_S = $N_{CS}N_{SM}$, N_P = N_{SP} , N_{SM} and N_{SP} represent the number of modules connected in series and parallel in the photovoltaic array, respectively, N_{CS} = number

of series connected cells in a module, I_{SC} = cell short circuit current (A) and $G = \text{solar insolation at any instant } (W/m^2)$.

Temperature dependency of reverse saturation current of the cell can be expressed as follows,

$$I_{0} = I_{r} \left[\frac{T_{c}}{T_{r}} \right]^{3} \exp\left[\frac{qE_{G}}{nk} \left(\frac{1}{T_{r}} - \frac{1}{T_{c}} \right) \right]$$
 (10)

where, I_r = reverse saturation current at standard temperature (A), T_c = operating temperature (Kelvin), T_r = reference temperature at standard test condition (Kelvin), $E_G = \text{Energy}$ band gap of solar cell at operating temperature (V).

Temperature and radiation sensitiveness of the solar cell photocurrent can be expressed as follows:

$$I_{SC} = [I_{ph} + \alpha (T_c - T_r)G]$$
 (11)

where, I_{ph} = photocurrent at standard condition (A), α = cell temperature coefficient for short circuit current and G = solarinsolation (W/m²).

Now, the DC output power of the system can be represented by the following equations,

$$P_{dc} = V_A I_{PV} \tag{12}$$

where, $V_A = PV$ array terminal voltage, and $I_{PV} = PV$ array output current.

B. Power Conditioning Device

Power electronic devices are used for the efficient interfacing between PV array and grid. All the system dynamics of PV generator are related to power conditioning unit [13]. The state variables related to converters and their controllers are

$$[x] = \begin{bmatrix} V_{dc} & I_d & I_q & m & \alpha \end{bmatrix} \tag{13}$$

where, V_{dc} = DC link capacitor voltage, I_d and I_q represent dq current mponents of the voltage source inverter, m = voltagesource converter modulation index, and δ = phase angle control of the inverter.

DC power generated from the PV array is considered to be the real power injected in the network. Real and reactive power generation of the system is controlled by voltage source converter. For proper analysis, three-phase inverter terminal voltage is converted into d-q axis voltage component (Park's voltages). Park's voltages are related to the PV array terminal voltage by the following relationship [14]:

$$\begin{cases} V_d = \frac{\sqrt{3}mV_A}{2\sqrt{2}}\cos\delta \\ V_q = -\frac{\sqrt{3}mV_A}{2\sqrt{2}}\sin\delta \end{cases}$$
 (14)

where, \overline{m} is modulation index (0,1), δ is the phase angle $(\pm \pi/2,0)$ and V_A represents PV array terminal voltage.

Let us assume that the DC power generated by the PV array is delivered to the network, then

$$P_{dc} = P_{ac} = \frac{0.6128 \, mV_A V_s \sin \, \delta}{X_t} \tag{15}$$

and, the reactive power equation of the PV generator can be represented as

$$Q_{ac} = \frac{0.6128 \ mV_A \cos \delta}{X_t} - \frac{V_s}{X_t}$$
 (16)

where, $V_s = \text{grid}$ bus voltage (V), and $X_t = \text{impedance}$ between inverter terminal and grid bus (Ω) .

IV. SIMULATION RESULTS

Single line diagram of IEEE-14 bus test system which is used for the study is depicted in Fig. 2. In the system, there are five synchronous generators 27 ong which three of them are synchronous compensators. There are twenty branches and fourteen buses with eleven loads totalling 362.5 MW and 108.5 MVAr. A 10 MW_P [MW peak] size of PV generator has been collidered; while for the investigation of the penetration effect of the PV generator on static voltage stability, PV generator size was increased by 10 MW_P step size. Static data of PV generator for static voltage stability are taken from [15]. Results included in this paper were obtained using MATLAB and MATLAB based power system analysis software known as PSAT [16].

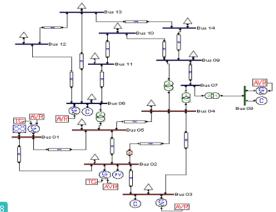


Fig. 2. Single line diagram of IEEE-14 bus test system.

A. Effect of PV Generator

First, Q-V modal analysis has been performed for the base case and then for system with PV. Table I illustrates the three lowest eigenvalues at the base case. The critical eigenvalue of the system at the base case is 2.4855, which implies system is voltage stable and the saddle-node bifurcation point is not yet reached.

TABLE I THREE LOWEST EIGENVALUES AT THE BASE CASE

Lowest eigenvalues		
Mode	Eigenvalue	
6	2.4855	
7	5.4293	
8	7.4796	

Fig. 3 illustrates the participation of different buses on the critical eigenvalue. From the figure it is clear that bus 14 is the most contributing bus in this mode, which implies the weakest bus of the system is bus 14. The weak area of the system is identified as the area which consists of buses 14, 11, 9 and 10, as buses 11, 9 and 10 are the weak buses next to bus 14.

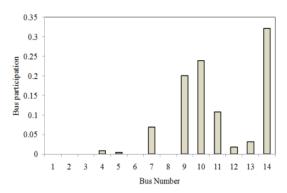


Fig. 3. Participation of system buses on the critical eigenvalue.

In order to see the impact, a PV generator of $10~MW_p$ is installed at the weak area which consists of buses 14, 10, 9 and 11. PV generator is installed at the midpoint of the line in between bus 14 and 9. Table II shows the critical eigenvalues of the system with PV installed in the line between bus 14 and 9. From the table, it is clear that the degree of system voltage stability has been increased after addition of a PV generator to the weak area of the system. The magnitude of the lowest eigenvalue which is indicative of the degree of voltage 12 pility has increased from 2.4855 to 3.6155. In this case, the PV generator is operating at 0.85 lead-lag power factor.

TABLE II
THREE LOWEST EIGENVALUES OF THE SYSTEM WITH PV

Lowest eigenvalues		
Mode	Eigenvalue	
3	3.6155	
5	10.033	
8	5.9246	

Now, a PV generator has been installed at bus 14 and different power factor operation of the PV generator has been considered. Fig. 4 depicts the effect of different power factor operation of the PV generator on the critical eigenvalue of the Q-V modal matrix.

From Fig. 4 it can be observed that PV integration to the system can increase the degree of voltage stability of the system. Here the power factor is varied from 0.7 (both leading and lagging) to unity. Different power factor operation of PV has significant impact on critical mode as expected, as with the varying power factor the PV generator is dispatching reactive power as well. When the PV generator operates at 0.70 lead-lag power factor, the degree of stability is high among others.

B. Effect of PV Location

Integration of PV generator to the grid depends on various factors like solar radiation; land availability, transmission line right-of-way, etc. So, it may not be possible to integrate the PV generator at the weakest bus or the weak area of the system. However, the loading of the system is not constant at all time. Therefore, the effect of load increase and PV location on system voltage stability has been analyzed next.

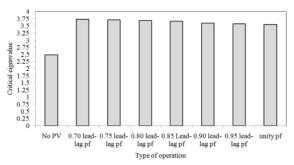


Fig. 4. Comparison of system critical eigenvalues at different operation scenarios.

But, it is difficult to predict loading pattern of the system as it is very complex. In conventional voltage stability analysis the load of each bus is increased at the same rate, as mentioned for conventional loading direction in this paper. But in reality load at the different bus can be changed in different direction, at specific time load of some buses may increase while load in other buses remain unchanged or decreased. For this study we have considered both the conventional loading direction and realistic loading direction proposed in the literature [5] to find the loading margin of the system with PV generator. For realistic load direction, IEEE-14 bus system is split into two areas, namely area-1 and area-2. Buses 1-3, 5 and 6 are in area-1 and buses 4, 7-14 are in area-2. Table III illustrates the percentage of load increase and the area factor for realistic loading direction. PV has been placed at different system buses based on bus weakness. For this analysis 10 MW_p size of PV generator and 0.95 lead-lag power factor operation of PV is considered. Fig. 5 shows the system loading margin for two different loading directions and PV generator location on P-V curve. From the figure it is clear that PV location and loading direction has significant impact on loading margin. System with PV generator at bus 12 (conventional loading direction) has less loading margin than system without PV (realistic loading direction).

TABLE III
THE PERCENT OF LOAD INCREASE AND AREA FACTOR FOR REALISTIC
LOADING DIRECTION

Area	% load change	Area factor
1	20.00	0.2944
2	80.00	1.0000

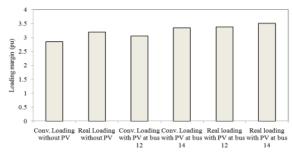


Fig. 5. Loading margins of IEEE-14 bus test system for different loading directions (with and without PV).

Table IV illustrates the effect of PV location on the system critical eigenvalue for normal and N-1 contingency. For this analysis 0.95 lead-lag power factor operation of PV is considered and fault on line 1-5 is considered for N-1 contingency analysis as the outage of this line has severe effect on system performance. Critical eigenvalue of the system at the base case for this particular N-1 contingency is 2.4436.

TABLE IV
IMPACT OF PV LOCATION ON CRITICAL EIGENVALUES

IMPACT OF TV ESCATION ON CRITICAL EIGENVALUES			
PV location	Critical eigenvalues		
bus	Normal	N-1	
12	2.6697	2.4025	
13	2.6898	2.6091	
14	3.9398	3.6791	
10,12	4.5266	4.4966	
9,13	6.4356	6.4346	
5,14	3.9046	3.8876	

From the Table IV it can be observed that in all cases the critical eigenvalue is higher than the case without PV for normal operating condition, while during N-1 contingency PV location at bus 12 reduced the degree of stability then the base case for that particular N-1 contingency. From the table, it is worthwhile to note that in most of the cases scattered PV location improves the degree of voltage stability.

C. Effect of PV Penetration

The effect of an increased PV penetration on power system voltage stability has been studied in IEEE-14 bus test system. The following scenarios are considered for the analysis,

- · PV generator at a single location.
- · Scattered PV generator location.

For both single and scattered PV penetration, $10~MW_P$ to $40~MW_P$ with $10~MW_P$ step size has been considered for the analysis.

Fig. 6 shows the effect of single location PV penetration on the degree of system stability. From the figure it can be noted that for all buses increase in penetration does not have the positive impact on the system stability. At some location (e.g., bus 12), penetration of PV does not appear to contribute to the voltage stability of the system, meanwhile other position (Bus 9) has both positive and negative impact on voltage stability with incremental penetration. It can be noted that at bus 9, size up to 20 MWp improves the degree of voltage stability, and beyond 20 MWp the degree of voltage stability has been reduced.

Fig.7 shows the impact of scattered PV penetration on the degree of system stability. For scattered penetration, PV generators are placed in three different ways:

- · All PVs are in the weak area of the system.
- · All PVs are in the strong area of the system.
- · PV penetration both in weak and strong area.

From the figure it can be observed that scattered PV penetration enhances the degree of stability. However, the degree of stability enhancement strongly depends on the location of PV.

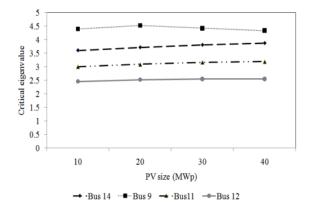


Fig. 6. Effect of PV penetration on the degree of stability for single location.

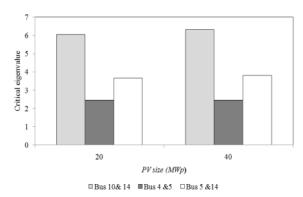


Fig. 7. Effect of PV penetration on the degree of stability for scattered location.

P-V curves of the system with concentrated and scattered PV generator penetration are plotted in Fig. 8. From the figure it can be noted that during higher penetration level, concentrated penetration at bus 14 provides higher loading margin than the scattered penetration at buses 5 and 14 for the same PV size.

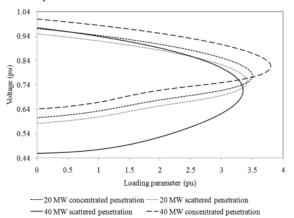


Fig. 8. P-V curve for different PV penetration.

V. Coclusions

The paper examines the impact of large-scale PV penetration on static voltage stability of power system 12 ased on simulation results, it appears that PV location, sizes and the way they are integrated, i.e., as concentrated or scattered, have profound impact on static voltage stability of the system. Moreover, power factor of PV generators also influences the degree of voltage stability as well. Lead-lag power factor operation of PV generator is better compared to unity power factor, while current grid code requirement for distributed generators less than 30 MW strictly stipulate unity power factor operation. The results suggest that there are possibilities for considering some PV generators as ancillary service providers for static voltage stability enhancement of power systems.

REFERENCES

- M.R.Patel, Wind and solar power systems: Design, analysis and operation, CRC press, Boca Raton, USA, 2006.
- [2] M.A.Eltawil and Z.Zhao, "Grid connected photovoltaic power systems: Technical and potential problems – A review," *Renewable and Sustainable Energy Review*, Vol.14, No.1, pp.112-129, 2010.
- [3] Y.T.Tan, D.S.Kirschen, and N.Jenkins, "A model of PV generation suitable for stability analysis," *IEEE Trans. Energy Conversion*, Vol.19, No.4, pp.748-755, 2004.
- [4] Y.-B. Wang, C.-S.Wu, H.Liao, and H.-H.Xu, "Study on impacts of large-scale photovoltaic power station on power grid voltage profile," in Third International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, 2008.
- [5] A.Sode-Yome, N.Mithulananthan, and K.Y.Lee, "Effect of realistic load direction in static voltage stability study," in *IEEE/PES Transmission* and Distribution Conference & Exposition: Asia & Pacific, 2005.
- [6] N.Amjady and M.Esmaili, "Application of new sensitivity analysis framework for voltage contingency ranking," *IEEE Trans. Power Systems*, Vol.20, No.2, pp. 973-983, 2005.
- [7] X.Xu, Y.Huang, G.He, H.Zhao, and W.Wang, "Modeling of large-scale grid integrated PV station and analysis its impact on grid voltage," in International Conference on Sustainable Power Generation and supply, 2000
- [8] N.Amjady and M.R.Ansari, "Small disturbance voltage stability evaluation of power systems," in *IEEE/PES Transmission and Distribution Exposition*, 2008.
- [9] P.Kundur, N.J.Balu, and M.G.Lauby, Power system stability and control: McGraw – Hill: New York, 1994.
- [10] C.Sharma and M.G.Ganness, "Determination of the applicability of using modal analysis for the prediction of voltage stability," in IEEE/PES Transmission and Distribution Conference & Exposition: Asia & Pacific, 2008.
- [11] S.-K.Kim, J.-H.Jeon, C.-H.Cho, J.-B.Ahn, and S.-H.Kwon, "Dynamic Modelling and control of a grid connected hybrid generation system with versatile power transfer," *IEEE Trans. Industrial Electronics*, Vol.55, No.4,pp.1677-1688, 2008.
- [12] M.G.Molina and P.E.Mercado, "Modeling and control of grid connected photovoltaic energy conversion system used as dispersed generator," in *IEEE/PES Transmission and Distribution Conference & Exposition: Latin America*, 2008.
- [13] S.Alepuz, S. Busquets-Monge, J. Bordonau, J.Gago, D.Gonzalez, and J.Balcells, "Interfacing renewable energy to the utility grid using a threelevel inverter," *IEEE Trans. Industrial Electronics*, Vol.53, No.05, pp.1504-1511, 2006.
- [14] F.Delfino, R.Procopio, R.Rossi, and G.Ronda, "Integration of large-size photovoltaic system in to the distribution grids: a p-q chart approach to assess reactive support capability," *IET Renewable Power Generation*, Vol.4, No.4, pp.329-340, 2010.
- [15] K.Clark, N.W.Miller, and R.Walling, "Modeling of GE solar photovoltaic plants for grid studies," General Electric International .Inc, Schenectady, NY 12345, USA, Sep. 9, 2009.
- [16] F.Milano, "PSAT, MATLAB based power system analysis toolbox, documentation for version 2.00," Mar 24, 2007.

prosiding_artikel-4

ORIGINALITY REPORT

SIMILARITY INDEX

13% **INTERNET SOURCES**

12% **PUBLICATIONS**

STUDENT PAPERS

PRIMARY SOURCES

Sode-Yome, Arthit, and Kwang Y Lee. "Neural network based loading margin approximation for static voltage stability in power systems", IEEE PES General Meeting, 2010.

1 %

Publication

federation.edu.au Internet Source

eprints.kfupm.edu.sa

Internet Source

www.pdii.lipi.go.id Internet Source

www.researchgate.net

Internet Source

el.booksc.eu Internet Source

> S. Norris, S. Guo, J. Bialek. "Tracing of power flows applied to islanding", 2012 IEEE Power

and Energy Society General Meeting, 2012 Publication

Mitra Mirhosseini, Vassilios G. Agelidis,
Jayashri Ravishankar. "Modelling of largescale grid-connected photovoltaic systems:
Static grid support by reactive power control",
IEEE Power and Energy Society Conference
and Exposition in Africa: Intelligent Grid
Integration of Renewable Energy Resources

1 %

Publication

(PowerAfrica), 2012

Submitted to University of Hong Kong
Student Paper

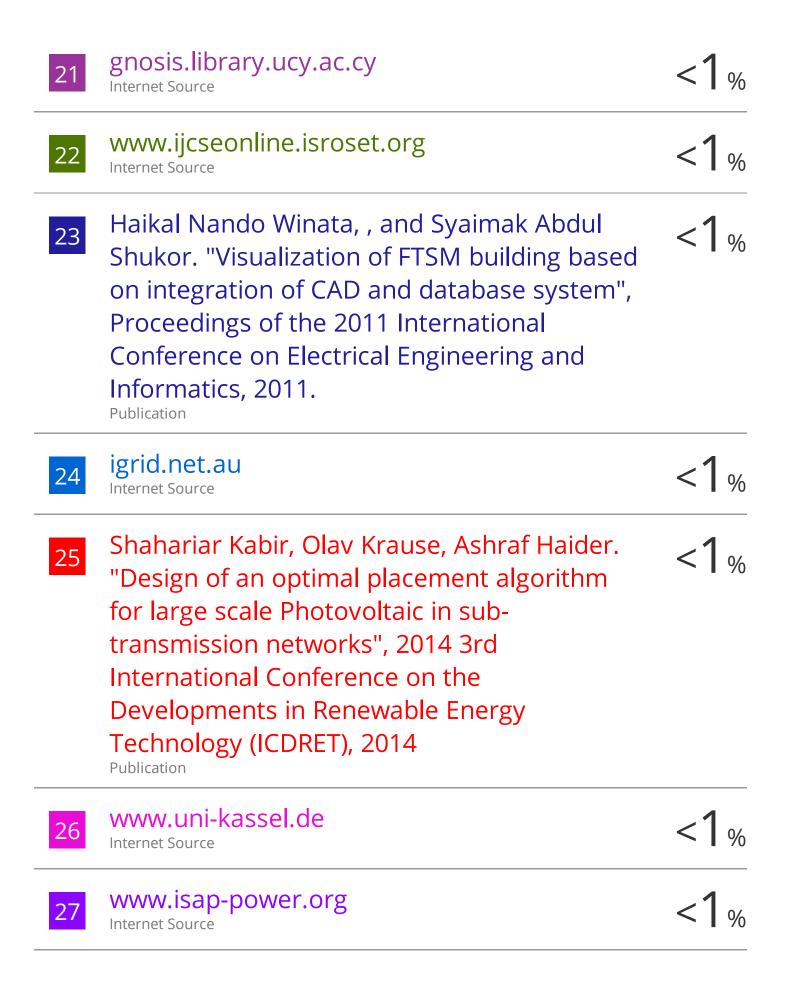
1 %

Aly, Mohamed M., Mamdouh Abdel-Akher, Zakaria Ziadi, and Tomonobu Senjyu.
"Assessment of reactive power contribution of photovoltaic energy systems on voltage profile and stability of distribution systems", International Journal of Electrical Power & Energy Systems, 2014.

<1%

Publication

Federico Milano. "Assessing adequate voltage stability analysis tools for networks with high wind power penetration", 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008


<1%

Publication

Yun Tiam Tan, Daniel S Kirschen. "Impact on the Power System of a Large Penetration of

Photovoltaic Generation", 2007 IEEE Power Engineering Society General Meeting, 2007 Publication

13	unsworks.unsw.edu.au Internet Source	<1%
14	www.iieta.org Internet Source	<1%
15	Dahal, S., N. Mithulananthan, and T. K. Saha. "Assessment and Enhancement of Small Signal Stability of a Renewable-Energy-Based Electricity Distribution System", IEEE Transactions on Sustainable Energy, 2012. Publication	<1%
16	Submitted to The University of Manchester Student Paper	<1%
17	asrjetsjournal.org Internet Source	<1%
18	krex.k-state.edu Internet Source	<1%
19	www.scribd.com Internet Source	<1%
20	Chi Su. "Optimal Placement of Phasor Measurement Units with New Considerations", 2010 Asia-Pacific Power and Energy Engineering Conference, 03/2010 Publication	<1%

28	Sode-Yome, A "An economical generation direction for power system static voltage stability", Electric Power Systems Research, 200608 Publication	<1%
29	coek.info Internet Source	<1%
30	Sharma, Pawan, Waldemar Sulkowski, and Bjarte Hoff. "Dynamic stability study of an isolated wind-diesel hybrid power system with wind power generation using IG, PMIG and PMSG: A comparison", International Journal of Electrical Power & Energy Systems, 2013. Publication	<1%
31	Peng Yonglong. "A Unity Power Factor Three- Phase Buck Type SVPWM Re", 2006 5th International Power Electronics and Motion Control Conference, 08/2006	<1%
32	docshare.tips Internet Source	<1%

Exclude quotes On Exclude bibliography On

Exclude matches

< 10 words