International Journal of Civil Engineering and Technology (IJCIET)

Volume 9, Issue 7, July 2018, pp. 574–583, Article ID: IJCIET_09_07_060 Available online at http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=7 ISSN Print: 0976-6308 and ISSN Online: 0976-6316

© IAEME Publication

Scopus Indexed

THE ANALYSIS OF RISK MANAGEMENT IMPLEMENTATION ON HOSPITAL CONSTRUCTION PROJECT

Frans Himawan Tanojo, Sutanto Hidayat, Subandiyah Azis Magister of Civil Engineering Department,

National Institute of Technology Malang, Jln. Bendungan Sigura-gura No. 2, Malang, Indonesia

ABSTRACT

In every construction job there must be a risk, the risk is a consequence of an uncertain condition. In a construction work the uncertainty is substantial because it can't be predicted exactly how much profit or loss will be obtained. Because of this, there is a need for risk management analysis from early of a construction project to reduce the risk and impact of possible risks. The results of this study by using the method of principal component analysis based on the method of likelihood are aspect difficult locations, the bureaucracy of the necessary permits, condition of the land acquisition is difficult, the weather conditions, health and safety, payment is not on time, delays in delivery of materials, location and site conditions are bad, demonstration/despoliation on location of the project, policy of government's political, interest rates on bank loans and the quality of materials that are less good; based on the impact are aspect of order changes, human error, weather conditions, natural disasters, lack of timely payment, health and safety, communication and coordination, equipment, material prices, equipment is not feasible and the culture and customs. While the research results using measurement scale AS / NZS according the likelihood of events resulted in three aspects of risk is very high, 5 aspects of high risk and 4 aspects of intermediate risk, and based on the impact occurs produces one aspect of risk is very high, four aspects of high risk 5 aspects medium risk and one low risk aspect.

Key word: Risk Analysis, Risk Aspects, Levels of Risk.

Cite this Article: Frans Himawan Tanojo, Sutanto Hidayat and Subandiyah Azis, The Analysis of Risk Management Implementation on Hospital Construction Project, International Journal of Civil Engineering and Technology, 9(7), 2018, pp. 574–583. http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=9&IType=7

574

1. INTRODUCTION

Construction work is a combination of various disciplines of science, both in terms of technical construction and in terms of non-technical and including the element of human resources (man power). In construction work is always concerned with the organization of construction work and the community of the organizers of the construction work itself. Where the implementation of this construction work must meet the provisions on engineering, Occupational Safety and Health, labor protection, and local environmental order to ensure the realization of orderly construction of construction work. In Indonesia there are more than 300 thousand work accidents, 5000 deaths, 500 permanent disability and compensation of more than 550 billion rupiah. This compensation is part of direct losses. It is estimated that indirect losses from all formal sectors are more than 2 trillion rupiah, which is largely a loss to the business world [1]. By looking at the losses incurred both material and non-material related to accidents and occupational diseases, it is necessary to do an attempt to prevent and control the risks posed by a construction work. One form of commitment that can be done by a company, in an effort to reduce the number of accidents and occupational diseases is to apply the risk management system, therefore the need for a special review to assess each risk faced construction work. With a special study to identify the conditions of uncertainty that pose risks or sources of risk faced, it is expected to know what are the main factors that are the source of risk and determine the classification of risk levels based on the sources of risk factors. This study is conducted to know the classification of risk level in construction work, to know the main factors what is the source of risk in construction work, to know how to determine assessment process and possible risk which is identified at construction job.

2. LITERATURE STUDY

Risk management is the process of measuring or assessing risks and developing management strategies. The strategy starts from identifying risks, measuring and determining the magnitude of risk, then finding ways to handle those risks [2]. After the source of risk is obtained and continued with risk analysis using AS / NZS 4360: 2004 measurement scale to obtain the risk level classification. The level of risk based on events, are high risk, consisting of price and cost aspects. Significant Risk, which consists of material and equipment aspects, education and finance aspects, aspects of planning, weather aspects, supervision aspects, medium risk, consists of management and production management aspects, human resource management and socio-cultural aspects, health and safety aspects. The level of risk based on the consequences are high risk is the aspect of supervision, significant risk is the aspect of location, human resources and quality, socio-cultural aspects and health and safety, aspects of planning, weather aspects, and price aspects, medium risk is the material, equipment and time aspect, cost budget aspect [3]. Qualitative risk analysis and management have two objectives: risk identification and preliminary risk assessment, where the objective is to establish the main sources of risk and to illustrate the level of frequent consequences, including the most likely impact on cost and time estimates [4]. Based on the activity, risks can be sourced from the political, environmental, planning, marketing, economic, financial, natural, project, technical, human, criminal and safety [5]. Risks can be recognized from the source event, and consequences of these risks. Sources of risk are conditions that may increase the likelihood of occurrence of risk, event is an event that cause influence, effects that can be harmful and profitable [6]. Risk identification through factor analysis and major component analysis based on the event resulted in ten aspects of risk sources are planning and finance aspects, equipment aspects, location and environmental aspects, natural aspects, government policy aspects, material aspects, human and energy aspects work, control aspects, aspects of health and safety, aspects of human error. Level of risk from the most influential is the high risk consisting of aspects of health and safety, aspects of human error, and aspects of nature; significant risk for aspects of government policy; medium risk consisting of planning and finance aspect, equipment aspect, location and environment aspect, material aspect and human resource aspect and worker aspect; low risk for controlling aspects [7]

3. METHODOLOGY

a. Location of study

This study was conducted on a hospital construction project in Bogor District, Indonesia

b. Principal Component Analysis (Factor Analysis)

In this study factor analysis used is the principal component analysis, which serves to transform the original set of variables into a set of smaller linear combinations based on most of the original variables. The expected output from the analysis by SPSS is a rotated component matrix, which is the matrix principal component of extraction results rotated with varimax and the number of components taken is the component having eigenvalue ≥ 1 , where eigenvalue represents the value of information content obtained from certain factors of the variable in this research.

c. Risk Analysis Measurement Scale AS / NZS

The method of data analysis used in this risk assessment is the Australian semi-quantitative risk analysis method Standard / New Zealand Standard (AS / NZS 4360: 2004). Semi-quantitative analysis is used to see how much the level of likes and consequences by using a risk table, then multiplying those values to determine the level of risk.

Risk Index = Risk Probability (Frequency) x Risk Impact

Risk Level	Description
17 – 25	Extreme High Risk
10 – 16	High Risk
5 - 9	Medium Risk
1-4	Low Risk

Table 3.1. Risk Level

4. RESULTS AND DISCUSSION

a. Principal Component Analysis (Factor Analysis)

In the result of the analysis with SPSS based on the probability of occurrence (table 4.1), the main component having eigenvalue ≥ 1 is formed up to the 12 component. It is concluded that 12 main components have been able to explain the data diversity as cumulative percentage is 85,790%.

576

Total Variance Explained									
		Initial Eigenvalue	s	Extraction	n Sums of Square	ed Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %			
1	6.626	15.777	15.777	6.626	15.777	15.777			
2	6.125	14.582	30.359	6.125	14.582	30.359			
3	4.343	10.342	40.701	4.343	10.342	40.701			
4	3.890	9.262	49.963	3.890	9.262	49.963			
5	3.418	8.137	58.101	3.418	8.137	58.101			
6	2.557	6.088	64.189	2.557	6.088	64.189			
7	2.052	4.885	69.074	2.052	4.885	69.074			
8	1.717	4.087	73.161	1.717	4.087	73.161			
9	1.467	3.493	76.654	1.467	3.493	76.654			
10	1.442	3.433	80.086	1.442	3.433	80.086			
11	1.317	3.136	83.223	1.317	3.136	83.223			
12	1.078	2.567	85.790	1.078	2.567	85.790			
13	.973	2.317	88.107						
14	.891	2.121	90.229						
15	.845	2.013	92.242						
16	.677	1.613	93.855						
17	.602	1.434	95.289						
18	.480	1.144	96.433						
19	.368	.876	97.309						
20	.333	.792	98.100						
21	.248	.592	98.692						
22	.198	.472	99.164						
23	.118	.282	99.445						
24	.111	.265	99.711						
25	.062	.149	99.859						
26	.043	.102	99.961						
27	.016	.039	100.000						
28	9.039E-16	2.152E-15	100.000						
29	8.027E-16	1.911E-15	100.000						
30	7.695E-16	1.832E-15	100.000						
31	7.337E-16	1.747E-15	100.000						
32	3.785E-16	9.011E-16	100.000						
33	2.270E-16	5.406E-16	100.000						
34	7.294E-17	1.737E-16	100.000						
35	5.113E-17	1.217E-16	100.000						
36	-3.299E-17	-7.854E-17	100.000						
37	-1.097E-16	-2.613E-16	100.000						
38	-2.032E-16	-4.839E-16	100.000						
39	-3.283E-16	-7.817E-16	100.000						
40	-4.057E-16	-9.659E-16	100.000						
41	-5.748E-16	-1.369E-15	100.000						
42	-7.665E-16	-1.825E-15	100.000						

 Table 4.1 Eigenvalue Value Possible Occurrence

Extraction Method: Principal Component Analysis.

Then, the variables are grouped to form a factor, which is derived from the rotated component matrix, which is the matrix principal component of extraction which is rotated based on the varimax method and the number of components taken is the component having eigenvalue ≥ 1 (table 4.2).

577

					Con	nponent Ma	trix"					
			3	4		Comp 6	onent	8		10	11	13
	1	2		-	5	-	1	-	9			12
X.19	.709	605	157	078	.037	052	.073	101	008	060	.021	.140
X.35	.676	576	080	041	.071	130	.045	142	.008	080	.094	.044
X.21	.655	425	091	120	.104	097	132	.198	.165	053	295	.109
X.22	.652	402	095	102	.023	.063	.139	407	006	.013	.078	.246
X.42	.602	.442	349	061	104	.169	272	.103	114	.074	.127	.100
X.14	.601	.569	132	.083	234	.127	.164	214	264	152	080	.070
X.2	.601	.569	132	.083	234	.127	.164	214	264	152	080	.070
X.20	.565	264	.001	.377	308	.044	.220	.005	.232	.077	.081	237
X.24	.542	179	.187	.302	.301	319	319	.198	226	146	187	033
X.33	.525	.169	099	295	279	240	071	.091	.071	.488	.030	191
X.16	.475	.403	384	166	125	002	.046	.223	.223	.397	.035	.158
X.3	.555	712	148	226	.145	065	.092	144	066	025	.000	.138
X.26	.536	.673	006	.110	218	.047	.102	213	139	038	131	.099
X.32	118	.646	187	202	.151	384	.184	.141	114	251	.264	.016
X.23	.219	.635	.275	.306	219	079	189	170	.074	.216	038	.117
X.17	.064	630	302	353	.102	.235	.223	.210	080	009	026	.095
X.31	006	.625	031	365	.273	221	064	.207	106	107	.363	.05
X.40	.241	.483	.359	029	.093	028	.208	293	.241	212	.005	28
X.37	.404	.029	.793	067	109	181	.058	.218	156	007	.134	.01
X.41	404	029	793	.067	.109	.181	058	218	.156	.007	134	01
X.36	.383	032	.741	087	128	362	108	.052	.120	.069	.039	.02
X.39	327	312	.595	191	.092	067	.357	205	072	.126	.097	.26
X.18	174	.001	.586	.403	.048	.098	116	043	.327	.060	.085	.19
X.11	.196	345	506	.265	103	098	.124	.226	.123	184	.313	01
X.38	299	390	.488	319	.171	.043	.143	205	114	.095	.281	.19
X.5	.105	083	.109	.716	039	.354	.290	.264	047	.160	058	07
X.2	.085	.120	.184	640	062	.356	337	.094	330	.238	.079	.02
X.7	229	204	.016	.638	.130	.354	.191	.201	418	.105	.142	.069
X.4	.099	241	.116	.633	391	.298	122	.210	131	.088	.274	.04
X.27	.322	.229	.069	.172	.863	006	.015	002	.001	072	045	.02
X.29	.026	.411	125	087	.735	.143	.173	.047	.046	.134	.076	02
X.25	.266	.253	001	.291	.709	.187	056	.033	.253	177	.032	.19
X.15	237	.033	179	.458	161	583	.412	232	.099	.129	034	.07
X.13	.160	031	.293	081	242	.494	285	348	.263	076	.019	.01
X.30	.277	234	.165	.464	.286	482	442	.124	030	.025	141	02
X.10	.395	.273	.337	.192	.254	.422	.158	030	.135	118	.224	15
X.34	345	.195	187	.306	081	.097	538	099	.058	098	.015	.50
X.14	186	.318	.150	.103	221	189	.434	.221	177	091	415	.34
X.12	.131	.286	.023	277	126	.117	.296	.467	.533	.076	.003	.32
X.28	.471	.088	171	.160	.484	.025	.106	132	135	.502	.066	01
X.35	.399	096	036	078	406	.048	009	.224	.034	490	.258	.00
X.6	.179	041	.409	342	.116	.486	.112	.239	009	106	512	10

Table 4.2 Rotated Component Matrix Possible Occurrence

a. 12 components extracted.

In the analysis with SPSS based on the impact (Table 4.9), the main components with eigenvalue ≥ 1 formed up to the 11th component are shown. It is concluded that 11 main components have been able to explain data diversity as cumulative percentage that is 88,282%.

Total Variance Explained									
		Initial Eigenvalue	s	Extraction	n Sums of Square	ed Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %			
1	9.691	23.075	23.075	9.691	23.075	23.075			
2	5.492	13.075	36.150	5.492	13.075	36.150			
3	4.701	11.194	47.344	4.701	11.194	47.344			
4	3.594	8.557	55.901	3.594	8.557	55.901			
5	3.446	8.206	64.107	3.446	8.206	64.107			
6	2.371	5.646	69.753	2.371	5.646	69.753			
7	1.921	4.573	74.326	1.921	4.573	74.326			
8	1.722	4.101	78.427	1.722	4.101	78.427			
9	1.482	3.528	81.955	1.482	3.528	81.955			
10	1.472	3.506	85.461	1.472	3.506	85.461			
11	1.185	2.821	88.282	1.185	2.821	88.282			
12	.957	2.280	90.561						
13	.727	1.730	92.292						
14	.571	1.360	93.652						
15	.536	1.276	94.929						
16	.511	1.216	96.145						
17	.375	.892	97.037						
18	.280	.666	97.703						
19	.230	.548	98.251						
20	.217	.516	98.767						
21	.159	.378	99,144						
22	.117	.278	99.422						
23	.099	.235	99.658						
24	.074	.177	99.835						
25	.049	.116	99.951						
26	.014	.034	99.985						
27	.006	.015	100.000						
28	6.533E-16	1.555E-15	100.000						
29	5.120E-16	1.219E-15	100.000						
30	3.755E-16	8.941E-16	100.000						
31	1.731E-16	4.122E-16	100.000						
32	1.064E-16	2.532E-16	100.000						
33	3.213E-17	7.651E-17	100.000						
34	2.301E-18	5.478E-18	100.000						
35	-1.542E-17	-3.672E-17	100.000						
36	-2.805E-17	-6.680E-17	100.000						
37	-5.298E-17	-1.261E-16	100.000						
38	-1.211E-16	-2.883E-16	100.000						
39	-3.959E-16	-9.425E-16	100.000						
40	-5.022E-16	-1.196E-15	100.000						
41	-6.759E-16	-1.609E-15	100.000						
42	-7.957E-16	-1.895E-15	100.000						

Table 4.3 Eigenvalue Value of Impact

Extraction Method: Principal Component Analysis.

Then we get the clustered variables to form a factor, which is derived from the rotated component matrix, which is the matrix principal component of the extracted result that is rotated based on the varimax method and the number of components taken is the component having eigenvalue ≥ 1 (table 4.4).

					Compone	nt Matrix ^a					
						Component					
	1	2	3	4	5	6	7	8	9	10	11
Y.13	.727	140	247	.107	429	164	.008	.297	.042	.009	.114
Y.40	.685	207	132	.156	407	258	.079	.258	028	.170	.003
Y.22	.674	.461	.331	242	.117	212	016	.160	.033	020	140
Y.23	.671	.557	.148	026	053	.244	.218	.010	240	.031	009
Y.14	.668	.497	.292	183	.157	112	.176	.160	050	062	.004
Y.42	.668	.497	.292	183	.157	112	.176	.160	050	062	.004
Y.30	.662	.393	.208	383	.006	148	113	031	.131	012	279
Y.41	.661	100	574	128	.204	154	126	132	033	.130	089
Y.1	.656	.314	.184	405	.006	175	301	.010	.015	016	152
Y.8	.630	.369	.171	.194	.282	.049	.313	070	.172	292	.083
Y.26	.527	011	110	.446	.056	.367	.150	.306	.135	.313	.146
Y.6	.522	.283	041	.441	.085	.011	496	293	.081	173	.182
Y.2	.522	.283	041	.441	.085	.011	496	293	.081	173	.182
Y.4	.513	.364	.082	.173	.341	.072	325	.011	.335	074	.281
Y.27	.498	686	.292	102	.213	121	.109	089	.152	115	.051
Y.17	.417	675	.041	092	215	.218	069	270	015	145	235
Y.21	.589	660	.267	.073	080	.144	.059	023	160	188	091
Y.28	.589	660	.267	.073	080	.144	.059	023	160	188	091
Y.24	.397	579	.425	346	.071	035	009	151	.110	.040	.097
Y.35	.489	156	678	.014	.308	125	.162	187	106	.106	024
Y.37	.386	191	669	102	.325	093	.283	245	106	.028	.016
Y.36	.631	100	635	070	.234	065	.027	144	102	.100	.032
Y.34	.631	100	635	070	.234	065	.027	144	102	.100	.032
Y.39	135	.152	540	007	.090	.311	.292	.152	.495	.248	.007
Y.25	.342	410	.527	409	.152	.059	.177	110	.050	.023	.175
Y.20	.365	081	.514	053	.131	178	102	114	117	.404	.175
Y.16	.206	.394	410	196	.083	008	.361	.096	.077	309	181
Y.19	.220	386	.407	261	.295	016	.272	.116	.329	.081	.186
Y.9	.044	.064	334	670	283	.296	319	018	.032	.053	.105
Y.32	036	101	.355	.636	.240	262	.209	.047	158	.269	.108
Y.31	.445	166	.065	.570	.216	.222	083	.018	.175	.281	345
Y.33	242	.365	.147	.544	.056	531	.222	166	.136	108	043
Y.7	.406	378	.145	.450	.156	.280	217	.141	093	.183	243
Y.11	.294	.180	.203	.196	691	.230	.242	263	.049	011	.187
Y.18	.425	283	290	.048	629	242	156	.266	.216	094	044
Y.12	.365	.343	.148	.194	567	.295	.237	343	037	.128	036
Y.29 Y.10	.481	208	179	.148	545	311	083	.433	.144	103	.058
	.403	.444	.042	.013	477	.446	.202	272	052	.013	093
Y.38	.118	165	210	064	.278	.619	012	.320	047	315	.418
Y.15	.066	.355	.246	258	.245	.401	259	.252	.007	.348	241
Y.3 Y.5	.183	.149	019	.234	.203	.091	034	.388	681	236	.025
	.139 on Method: F	.205	028	318	325	220	043	068	308	.437	.411

Table 4.4 Rotated Component Matrix of Impact

Extraction Method: Principal Component Analysis.

a. 11 components extracted.

b. Risk Analysis Measurement Scale AS/NZS

The result of Risk Index Analysis based on probability of occurrence is as follows in table 4.5.

No.	Aspect	Risk Probability	Risk Impact	Rank	Remark
1	The project location is difficult reachable	5	5	25	Extreme High Risk
2	Bureaucracy of building permit management	5	5	25	Extreme High Risk
3	Difficulty of land acquisition	5	5	25	Extreme High Risk
4	Weather conditions	4	4	16	High Risk
5	Health and safety	4	4	16	High Risk
6	Not on time payment	4	4	16	High Risk
7	Delays of material delivery	2	2	4	Low Risk
8	Hard of project location	4	4	16	High Risk
9	Demonstration	4	4	16	High Risk
10	Government regulation	3	3	9	Medium Risk
11	Interest rates on bank loans	3	2	6	Medium Risk
12	Material quality not good	2	2	4	Low Risk

Table 4.5 Risk Index Based on Probability Occurrence

The results of Risk Index Analysis based on the current impact are as follows (table 4.6)

No.	Aspect	Risk Probability	Risk Impact	Rank	Remark
1	Change orders	5	1	5	Medium Risk
2	Human errors	5	3	15	High Risk
3	Weather conditions	3	4	12	High Risk
4	Natural disaster	3	2	6	Medium Risk
5	Not on time payment	1	4	4	Low Risk
6	Health and safety	5	4	20	Extreme High Risk
7	Communications and	3	3	9	Medium Risk
1	coordination				
8	Equipment	3	2	6	Medium Risk
9	Material cost	4	3	12	High Risk
10	Improper equipment	4	2	8	Medium Risk
11	Regional culture	4	4	16	High Risk

Table 4.6 Risk Index Analysis Based on Current Impact

5. CONCLUSIONS

Determining the classification of risk levels in the implementation of construction work based on the probability of occurrence using Principal Component Analysis resulted in aspects are:

- The project location is difficult reachable,
- Bureaucracy of building permit management,
- Difficulty of land acquisition,
- Weather conditions,
- Health and safety,
- Not on time payment,
- Delays of material delivery,
- Hard of project location,
- Demonstration,
- Government regulation,
- Interest rates on bank loans,
- Material quality not good.

Frans Himawan Tanojo, Sutanto Hidayat and Subandiyah Azis

The impact, based risks of using Principal Component Analysis result in aspects are:

- Change orders,
- Human errors,
- Weather conditions,
- Natural disaster,
- Not on time payment,
- Health and safety,
- Communications and coordination,
- Equipment,
- Material cost,
- Improper equipment,
- Regional culture

The main factors that become the source of risk on the implementation of construction work can be classified as follows

Based on probability occurrence:

- Extreme High Risk :
 - The project location is difficult reachable,
 - Bureaucracy of building permit management,
 - Difficulty of land acquisition.
- High Risk :
 - Weather conditions,
 - Health and safety,
 - Not on time payment,
 - Hard of project location,
 - Demonstration.
- Medium Risk :
 - Government regulation,
 - Interest rates on bank loans.
- Low Risk :
 - Delays of material delivery,
 - Material quality not good.

Based on current impact:

- Extreme High Risk :
 - Health and safety
- High Risk :

The Analysis of Risk Management Implementation on Hospital Construction Project

- Human errors,
- Weather conditions,
- Material cost,
- Regional culture
- Medium Risk :
 - Change orders,
 - Natural disaster,
 - Communications and coordination,
 - Equipment,
 - Improper equipment.
- Low Risk :
 - Not on time payment.

REFERENCES

- Dewan Keselamatan dan Kesehatan Kerja Nasional (DK3N). 2007. Visi, Misi, Kebijakan, Strategi dan Program Kerja Keselamatan dan Kesehatan Kerja (K3) Nasional 2007 – 2010. Jakarta.
- [2] Darmawi, Herman. 2000. Manajemen Asuransi. Jakarta: Bumi Aksara.
- [3] Lokobal, Arif et al. 2014. *Manajemen Risiko Pada Perusahaan Jasa Pelaksana Konstruksi Di Propinsi Papua* (Study Kasus di Kabupaten Sarmi). Jurnal Ilmiah Media Engineering Vol.4 No.2. Universitas Sam Ratulangi.
- [4] Thompson, P. A., Perry, J. G. 1991. Engineering Construction Risk. London. Thomas Telford.
- [5] Godfrey, Patrick S. 1996. Control of Risk: A Guide to the Systematic Management of Risk from Construction. Westminster London, Construction Industry Research and Information Association (CIRIA).
- [6] Flanagan, R dan Norman, G. 1993. Risk Management and Construction. Blackwell Science.
- [7] Rumimper, Reyner. 2015. Analisis Resiko Pada Proyek Konstruksi Perumahan di Kabupaten Minahasa Utara. Jurnal Ilmiah Media Engineering Vol.5 No.2, September 2015. Universitas Sam Ratulangi. Manado.
- [8] T.Baladhandayutham, Dr. Shanthi Venkatesh, "e-Procurement An Empirical Study on Construction Projects Supply Chain Kuwait" International Journal of Management (IJM), Volume 3, Issue 1, 2012, pp. 82 - 100, ISSN Print: 0976-6502, ISSN Online: 0976-6510.
- [9] Dr. Jaber, F. K. Establishing Risk Management Factors for Construction Projects in Iraq. International Journal of Advanced Research in Engineering and Technology, 6(1), 2015, pp. 36-50.
- [10] Reepu, Financial Risk Management. International Journal of Management, 9 (1), 2018, pp. 6–9.
- [11] Dr. Shivakumar Deene. An Empirical Examination of Liquidity Risk Management with Special Reference to Vijaya Bank. International Journal of Management, 6(11), 2015, pp. 01-18
- [12] AS/NZS 4360. 2004. 3rd Edition the Australian and New Zealand Standard on Risk.