SKRIPSI

STUDI ALTERNATIF PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA TIPE PELENGKUNG DENGAN METODE LRFD PADA JEMBATAN SEACORM

DESA PERANCAK KABUPATEN JEMBRANA-BALI

Disusun oleh:

JIMY FERNANDO GHELLO

15.21.048

PROGRAM STUDI TEKNIK SIPIL S-1
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI NASIONAL MALANG

2019

LEMBAR PERSETUJUAN

"STUDI ALTERNATIF PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA TIPE PELENGKUNG DENGAN METODE LRFD PADA JEMBATAN SEACORM, JEMBRANA-BALI"

SKRIPSI

Diajukan Sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Sipil S-1
Institut Teknologi Nasional Malang

Disusun Oleh:

JIMY FERNANDO GHELLO

15.21.048

Disetujui Oleh:

Dosen Pembimbing I

Dosen Pembimbing II

Ir. Sudirman Indra, Msc

NIP.P.101 8300 054

Ir. A. Agus Santosa, MT

NIP.Y.101 8700 155

Mengetahui,

Kerua Program Studi Teknik Sipil S-1 Institut Teknologi Nasional MalanG

EKNIK OV Ir. I. Wayan Mundra, MT

NIP.Y.101 8700 150

PROGRAM STUDI TEKNIK SIPIL S-1
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI NASIONAL MALANG

2019

LEMBAR PENGESAHAN

"STUDI ALTERNATIF PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA TIPE PELENGKUNG DENGAN METODE LRFD PADA JEMBATAN SEACORM, JEMBRANA-BALI"

SKRIPSI

Dipertahankan Dihadapan Majelis Penguji Sidang Skripsi Jenjang Strata Satu (S-1)

Pada Hari : Jumat

Tanggal: 16 Agustus 2019

Dan Diterima Untuk Memenuhi Salah Satu Persyaratan Guna Memperoleh Gelar Sarjana Teknik Sipil S-1

Disusun Oleh:

JIMY FERNANDO GHELLO

15.21.048

Disetujui Oleh:

Ketua

Ir. I. Wayan Mundra, MT

NIP.Y.101 8700 150

Sekretaris

Ir. Munasih, MT NIP.Y.102 8800 187

Anggota Penguji:

Dosen Penguji I

Ir. Bambang Wedyantadji, MT

NIP.Y.101 8500 093

Dosen Penguji II

Muhammad Erfan, ST, MT

NIP.Y.102 8800 197

PROGRAM STUDI TEKNIK SIPIL S-1

FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

INSTITUT TEKNOLOGI NASIONAL MALANG

2019

LEMBAR KEASLIAN SKRIPSI

Saya yang bertanda tangan dibawah ini:

Nama

: Jimy Fernando Ghello

NIM

: 15.21.048

Program Studi: Teknik Sipil S-1

Fakultas

: Teknik Sipil dan Perencanaan

Menyatakan Bahwa Skripsi Saya Yang Berjudul:

"STUDI ALTERNATIF PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA TIPE PELENGKUNG DENGAN METODE LRFD PADA JEMBATAN SEACORM, JEMBRANA-BALI."

Adalah sebenar-benarnya bahwa sepanjang pengetahuan saya, di dalam Naskah SKRIPSI ini tidak terdapat karya ilmiah yang pernah diajukan oleh orang lain untuk memperoleh gelar akademik di suatu Perguruan Tinggi, dan tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis terkutip dalam naskah ini disebutkan dalam sumber kutipan dan daftar pustaka.

Apabila ternyata di dalam naskah SKRIPSI ini dapat dibuktikan terdapat unsur-unsur PLAGIASI, saya bersedia SKRIPSI ini digugurkan dan gelar akademik yang saya peroleh (SARJANA) dibatalkan, serta diproses sesuai dengan peraturan perundang-undangan yang berlaku (UU No. 20 Tahun 2003, pasal 25 ayat 2 dan pasal 70).

Malang ,..... Agustus 2019

Yang membuat pernyataan

Jimy Fernando Ghello

15.21.048

KATA PENGANTAR

Dengan memanjatkan puja dan puji syukur kehadirat Tuhan Yang Maha Esa, yang telah memberikan rahmat, karunia serta berkatNya sehingga penyusun dapat menyelesaikan Skripsi yang berjudul "Studi Alternatif Perencanaan Struktur Atas Jembatan Dengan Metode LRFD Pada Jembatan Seacorm, Desa Perancak Kab. Jembrana, Bali" ini dengan baik.

Tak lepas dari berbagai kesulitan yang muncul, namun berkat petunjuk dan bimbingan dari semua pihak yang telah membantu, penyusun dapat menyelesaikan Skripsi ini yang merupakan syarat untuk kelulusan Program Studi Teknik Sipil S-1 ITN Malang. Tak lupa penyusun menyampaikan rasa hormat dan terima kasih yang sebesar — besarnya karena telah membantu baik moril dan materi kepada:

- Bapak Dr. Ir. Kustamar , MT selaku Rektor Institut Teknologi Nasional Malang.
- 2. Bapak Dr. Ir. Hery Setyo Budiarso, M.sc selaku Dekan Fakultas Teknik Sipil dan Perencanaan (FTSP).
- 3. Bapak Ir. I. Wayan Mundra, MT selaku Ketua Program Studi Teknik Sipil S-1.
- 4. Bapak Ir. Sudirman Indra, M.Sc selaku Dosen Pembimbing I.
- 5. Bapak Ir.A. Agus Santosa, MT selaku Dosen Pembimbing II.

Penyusun menyadari bahwa dalam penyelesaian proposal skripsi ini masih ada kekurangan. Untuk itu penyusun mengharapkan kritik dan saran yang bersifat membangun dan semoga skripsi ini bermanfaat.

Malang, July 2019 Penyusun

Special Thanks To. . .

Yang Utama Dari Segalanya

Puji Syukur padamu Tuhan Yesus Kristus atas segala limpahan rahmat, cinta dan kasih saying Mu telah memberikan limpahan ilmu, memberikan kekuatan , karunia serta kemudahan hingga terselesaikannya skripsi ini.

Kupersembahkan Karya Sederhana ini kepada orang yang sangat kusayangi
Kedua orangtuaku tercinta.. Bapak , Mama, Istri dan Anakku serta seluruh
keluarga tercintaku yang telah memberikan segala perhatian, kasih sayang, cinta
dan, dukungan yang tak mungkin bisa aku balas dengan selembar kata-kata cinta
ini, Karena saya sadar belum bisa memberikan hal yang terbaik untuk kalian.

TerimaKasih Atas segala dukungan dengan segala nasehat , dan yang tak pernah
lupa mendoakanku.

Thanks To ...

Terima Kasih Kepada Seluruh Pengajar ITN Malang yang telah memberikan ilmu yang sangat bermanfaat bagi kami mahasiswa, walaupun dengan segala keterbatasan yang ada. Sahabat—sahabatku tersayang, Rey, Andika, Dion, Anggy, Adrian, Piter, Ako Frid, K Mea, K Ganda, K Vaka, Riko, Papa Eka, Bagus, Ronald, Rudy, Baiq Cahaya, Caesar, Sintu, Baiq Husnul, Sandy, Noken, Teman—teman Anak Rantau, Seperjuangan Sipil 2015 yang telah menemani kurang lebih 4 tahun, semoga pertemanan kita abadi, Serta Dosen—dosen yang telah mendukung dan membimbingku, Pak Erfan, Pak Agus, Pak Dirman, Pak Bambang yang telah membimbing dalam proses penyelesaian Skripsi ini.

Terimakasih kasih dan aku bersyukur menjadi bagian dari kalian.. Suatu kebanggaan bisa mengenal kalian.

Terimakasihku kepada Almamater tercinta ITN MALANG

Terimakasih...

"Struggle that you do today is the single way to build a better future"

STUDI ALTERNATIF PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA TIPE PELENGKUNG DENGAN METODE LRFD PADA JEMBATAN SEACORM, JEMBRANA-BALI

Jimy Fernando Ghello

Mahasiswa Program Sarjana Jurusan Teknik Sipil, ITN Malang, Jl.B.Sempor No.31, Malang Email : jimyghello@gmail.com Telp. : 081216824728

ABSTRACT

The bridge is a vital infrastructure in the transportation system that is as a medium for river crossings, as well as connecting between cliffs. Bridges have various shapes, one of which is a curved bridge with cables. The curved bridge is suitable for Seacorm bridges because it has a fairly long span. Through the preparation of this thesis, the writer tries to plan an alternative building on an existing bridge with a curved type. Preliminary planning data includes the length of the existing bridge 100 m wide by 7 m. The planning method used is LRFD (Load Resistance Factor Design) and using the Staad Pro v8i SS program. In this planning the authors plan floor plates, longitudinal girder, transverse girder, master girder, wind ties, cables, connections and elastomers. From the analysis results obtained the structure of the bridge for the floor plate using D16-200 principal reinforcement and reinforcement for D13-250, steel longitudinal girder profile WF 350 x 350 x 14 x 22, cross steel girder profile WF 700 x 400 x 14 x 32, steel main girder profile WF 800 x 400 x 40 x 40, double wind profile steel bond L 250 x 250 x 35, for the dimensions of the Dyform 6 cable, for laying using elastomers of length 110 cm, width 110 cm, height 32 cm.

Keywords: Bridge, Upper Structure, Steel Frame Bridge, Curved Type Bridge.

ABSTRAK

Jembatan merupakan infrastruktur vital dalam sistem transportasi yaitu sebagai media penyeberangan sungai, maupun penghubung antar tebing. Jembatan mempunyai macam-macam bentuk, salah satunya yaitu jembatan pelengkung dengan kabel. Jembatan pelengkung cocok digunakan untuk jembatan Seacorm karena mempunyai bentang yang lumayan panjang.Melalui peyusunan skripsi ini penulis mencoba merencanakan alternatif bangunan atas jembatan yang sudah ada dengan tipe pelengkung. Data awal perencanaan meliputi panjang jembatan yang sudah ada 100 m lebar 7 m. Metode perencanaan yang digunakan yaitu LRFD (Load Resistance Factor Design) dan menggunakan program bantu Staad Pro v8i SS. Dalam perencanaan ini penulis merencanaakan plat lantai, gelagar memanjang, gelagar melintang, gelagar induk, ikatan angin, kabel, sambungan dan elastomer. Dari hasil analisa diperoleh struktur bangunan atas jembatan untuk plat lantai menggunakan tulangan pokok D16-200 dan tulangan bagi D13-250, gelagar memanjang baja profil WF 350 x 350 x 14 x 22, gelagar melintang baja profil WF 700 x 400 x 14 x 32, gelagar induk baja profil WF 800 x 400 x 40, ikatan angin baja profil dobel L 250 x 250 x 35, untuk Dimensi kabel penggantung dyform 6, untuk peletakan menggunakan elastomer ukuran panjang 110 cm, lebar 110 cm, tinggi 32 cm.

Kata Kunci : Jembatan, Struktur Atas, Jembatan Rangka Baja, jembatan Rangka Type Pelengkung.

DAFTAR ISI

HALAMAN JUDUL
LEMBAR PERSETUJUAN
KATA PENGANTARi
ABSTRAKiii
DAFTAR ISIiv
DAFTAR GAMBARvii
DAFTAR TABELxii
BAB I PENDAHULUAN
1.1 Latar Belakang1
1.2 Identifikasi Masalah2
1.3 Rumusan Masalah2
1.4 Tujuan Penelitian3
1.5 BatasanPembahasan3
BAB II TINJAUAN PUSTAKA
2.1 Definisi Jembatan Rangka Pelengkung5
2.1.1 Jembatan Baja Pelengkung5
2.1.2 Keuntungan Jembatan Baja Pelengkung7
2.1.3 Bagian-bagian Jembatan Tipe Pelengkung7
2.2 Metode LRFD10
<u>2.2.1 Ketentutan LRFD - AISC 2010</u>
2.3 Pembebanan13
<u>2.3.1 Beban Tetap</u>
2.3.2 Faktor Beban Dinamis17

<u>2</u>	2.3.3 Pembebanan Pejalan Kaki18
<u>2</u>	2.3.4 Gaya Rem18
<u>2</u>	2.3.5 Beban Angin
<u>2</u>	2.3.6 Pengaruh Terhadap Gempa21
<u>2.4</u>	Struktur Jembatan Pelengkung23
<u>2</u>	2.4.1 Perencanaan Plat Lantai23
<u>2</u>	2.4.2 Perencanaan Gelagar Melintang dan Memanjang25
<u>2</u>	2.4.3 Perencanaan Gelagar Induk31
<u>2.5</u>	Sambungan32
<u>2</u>	2.5.1 Sambungan Baut32
<u>2</u>	2.5.2 Sambungan Gelagar Melintang dan Memanjang32
<u>2.6</u>	Ikatan Angin34
<u>2.7</u>	Kabel35
<u>2</u>	2.7.1 Wire Ropes
<u>2</u>	2.7.2 Parallel Wire Cable36
<u>2</u>	2.7.3 Kontrol Kabel dan Dimensi Kabel36
<u>2.8</u>	Konstruksi Perletakan39
<u>2.9</u>	Teori Desain Struktur Baja42
<u>2</u>	2.9.1 Stabilitas Batang Tarik42
<u>2</u>	2.9.2 Stabilitas Batang Tekan43
<u>2</u>	2.9.3 Kuat Tekan Nominal Akibat Tekuk Lentur45
2	9 4 Stabilitas Batano Lentur 46

BAB III METODELOGI PERENCANAAN

3.1 Data Perencanaan	48
3.2 Metodologi Perencanaan	48
3.2.1 Data Existing Jembatan	48
3.2.2 Lokasi Perencanaan	49
3.2.3 Data Struktur Jembatan	50
3.2.4 Data Pembebanan	50
3.3 Diagram Alir	52
BAB IV PERENCANAAN	
4.1 Data Perencanaan	<u>57</u>
4.2 Perhitungan Plat Lantai Kendaraa	58
4.2.1 Perhitungan Pembebanan	58
4.2.2 Perhitungan Statika	60
4.2.2.1 Skema Pembebanan	60
4.2.2.2 Hasil Perhitungan Pembebanan	61
4.2.3 Perhitungan Penulangan Plat.	63
4.3 Perhitungan Perataan beban Gelagar	72
4.3.1 Perencanaan Gelagar Memanjang	<u>77</u>
4.3.1.1 Perhitungan dimensi Gelagar Memanjang	83
4.3.2 Perencanaan Gelagar Melintang	96
4.3.2.1 Perhitungan Dimensi Gelagar Melintang	104
4.3.3 Perencanaan Gelagar Induk	116
4.3.3.1 Perhitungan Pembebanan	116
4.3.3.2 Perhitungan Statika.	123
4.3.3.3 Pendimensian Batang.	123

4.4 Perhitungan Sambungan162
4.4.1 Sambungan Gelagar Melintang dan Memanjang162
4.4.2 Sambungan Gelagar Induk ke Melintang167
4.4.3 Perhitungan Sambungan Socket Kabel171
4.4.4 Sambungan Batang Pada Gelagar Induk177
4.5 Perencanaan Perketakan Bantalan Elastomer205
BAB V PENUTUP
5.1 Kesimpulan210
<u>5.2 Saran</u>
DAFTAR PUSTAKA
LAMPIRAN 213

DAFTAR GAMBAR

Gambar 2.1 Potongan Memanjang Baja Tipe Pelengkung	8
Gambar 2.2 Potongan Melintang Jembatan Baja Tipe Pelengkung	<u>8</u>
Gambar 2.3 Kurva Hubungan Tegangan vs Regangan	10
Gambar 2.4 Beban Lajur "D"	15
Gambar 2.5 Beban Truck "T"	16
Gambar 2.6 Grafik Faktor Beban Dinamis untuk Beban Lajur "D"	<u>18</u>
Gambar 2.7 Peta Gempa Indonesia.	22
Gambar 2.8 Macam-macam Shear Connector	24
Gambar 2.9 Lebar Efektif Gelagar Baja Beton Komposit	27
Gambar 2.10 Distribusi Tegangan Plastis Pada Kekakuan Momen	28
Gambar 2.11 Perencanaan Shear Connector	30
Gambar 2.12 Wire Ropes	35
Gambar 2.13 Parallel Wire Cable	36
Gambar 2.14 Close Strand Socket.	38
Gambar 2.15 Open Strand Socket	38
Gambar 2.16 Perletakan Bantalan Elastomer Pada Jembatan	40
Gambar 2.17 Bantalan Elastomer	40
Gambar 2.18 Penampang Batang Lentur	<u>47</u>
Gambar 3.1 Detail Peta Lokasi Jembatan Seacorm	49

Gambar 3.2 Potongan Memanjang Pre Elemeniary Alternatif Design51
Gambar 3.3 Potongan Melintang Pre Elemeniary Alternatif Design51
Gambar 4.1 Kondisi Pembebanan 160
Gambar 4.2 Kondisi Pembebanan 1 Pada Staad Pro60
Gambar 4.3 Kondisi Pembebanan 2
Gambar 4.4 Kondisi Pembebanan 2 Pada Staad Pro
Gambar 4.5 Kondisi Pembebanan 3
Gambar 4.6 Kondisi Pembebanan 3 Pada Staad Pro61
Gambar 4.7 Hasil Momen Pembebanan Kondisi 1
Gambar 4.8 Hasil Momen Pembebanan Kondisi 2
Gambar 4.9 Hasil Momen Pembebanan Kondisi 3
Gambar 4.10 Penulangan Plat
Gambar 4.11 Denah Perataan Beban Lantai Kendaraan & Trotoar72
Gambar 4.12 Perataan Beban Tipe A73
Gambar 4.13 Perataan Beban Tipe B74
Gambar 4.14 Perataan Beban Tipe C
Gambar 4.15 Perataan Beban Tipe D76
Gambar 4.16 Perataan Beban Gelagar Tepi78
Gambar 4.17 Perataan Beban Gelagar Tengah78
Gambar 4.18 FBD Untuk Beban Lajur'D'

Gambar 4.19 Perataan Beban Gelagar Tepi	<u>79</u>
Gambar 4.20 Perataan Beban Gelagar Tengah	80
Gambar 4.21 Beban Gelagar Memanjang Tepi	.81
Gambar 4.22 Beban Gelagar Memanjang Tengah	82
Gambar 4.23 Penampang Gelagar Memanjang	83
Gambar 4.24 Momen Area	<u>92</u>
Gambar 4.25 Denah Perataan Beban Lantai Kendaraan & Trotoar	<u>.96</u>
Gambar 4.26 Perataan Beban Gelagar Tepi	<u>97</u>
Gambar 4.27 FBD Untuk Beban Lajur'D'	<u>98</u>
Gambar 4.28 Perataan Beban Gelagar Tengah	<u>99</u>
Gambar 4.29 Pembagian Beban Truck	<u>99</u>
Gambar 4.30 Penamapang Gelagar Melintang	105
Gambar 4.31 Momen Area	.113
Gambar 4.32 Skema Pembebanan Angin Pada Kendaraan	<u>.117</u>
Gambar 4.32 Skema Pembebanan Angin Pada Kabel	.118
Gambar 4.34 Penampang Kabel Penggantung	.119
Gambar 4.35 Luas Beban Yang Terkena Angin Pada Kabel	.119
Gambar 4.36 Skema Pembebanan Angin Pada Pelengkung Jemba	.120
Gambar 4.37 Luas Beban Angin Pada Struktur Pelengkung	.121
Gambar 4.38 Batang Atas	.123

Gambar 4.39 Dimensi Penampang WF124
Gambar 4.40 Batang Pelengkung Bawah
Gambar 4.41 Batang Vertikal136
Gambar 4.42 Batang Diagonal143
Gambar 4.43 Batang Penggantung147
Gambar 4.44 Penampang Kabel
Gambar 4.45 Batang Melintang148
Gambar 4.46 Dimensi Penampang WF
Gambar 4.47 Batang Ikatan Angin
Gambar 4.48 Dimensi Penampang 2L
Gambar 4.49 Sambungan Gelagar Melintang & Memanjang162
Gambar 4.50 Detail Sambungan Memanjang & Melintang166
Gambar 4.51 Sambungan Gelagar Melintang Ke Induk171
Gambar 4.52 Detail Sambungan Kabel Pada Gelagar Induk178
Gambar 4.53 Gaya Batang Node 28
Gambar 4.54 Potongan Analisa Plat Simpul Node 28
Gambar 4.55 Gaya Batang Node 2
Gambar 4.56 Potongan Analisa Plat Simpul Node 2192
Gambar 4.57 Penampang Profil 2L
Gambar 4.58 Gava Batang Node 348

Gambar 4.59 Potongan Analisa Plat Simpul Node 348203	<u>-</u>
Gambar 4.60 Bantalan Elastomer	<u>)</u>
Gambar 4.61 Detail Perhitungan Elastomer210	<u>)</u>

DAFTAR TABEL

Tabel 2.1 Faktor Beban untuk Berat Sendiri	13
Tabel 2.2 Berat Isi Untuk Beban Mati	14
Tabel 2.3 Faktor Beban untuk Beban Mati Tambahan	.14
Tabel 2.4 Faktor Beban Lajur "D"	16
Tabel 2.5 Faktor Beban Truck "T"	<u>17</u>
Tabel 2.6 Faktor Kepadatan Lajur	19
Tabel 2.7 Tekanan Angin Dasar	.20
Tabel 2.8 Tekanan Angin Dasar Untuk Berbagai Sudut Serang	.20
Tabel 2.9 Komponen Beban Angin Yang Bekerja Pada Kendaraan	.21
Tabel 2.10 Kombinasi Pembebanan.	.23
Tabel 2.11 Breaking Strength	.37
Tabel 4.1 Momen Maksimum Perhitungan Plat Lantai	.62
Tabel 4.2 Hasil Pembebanan Gelagar Memanjang	.80
Tabel 4.3 Hasil Pembebanan Gelagar Melintang.	100
Tabel 4.4 Perhitungan Titik Berat Momen Area Akibat Beban T	<u>113</u>
Tabel 4.5 Luas Beban Angin Pada Kabel dan Gelagar Induk	<u>120</u>
Tabel 4.6 Luas Beban Yang terkena Angin Pada Pelengkung	<u>121</u>
Tabel 4.7 Analisa Gaya Batang Atas	.123
Tabel 4.8 Analisa Batang Bawah	.130

Tabel 4.9 Analisa Gaya Batang Vertical	137
Tabel 4.10 Analisa Gaya Batang Diagonal	144
Tabel 4.11 Analisa Gaya Batang Penggantung	148
Tabel 4.12 Analisa Gaya Batang Melintang	150
Tabel 4 13 Analisa Gaya Batang Ikatan Angin Atas	158