Contents

Part I Invited Speaker

1 Computational Intelligence Based Regulation of the DC Bus in the On-grid Photovoltaic System .. 3
Mauridhi Hery Purnomo, Iwan Setiawan and Ardyono Priyadi

2 Virtual Prototyping of a Compliant Spindle for Robotic Deburring ... 17
Giovanni Berselli, Marcello Pellicciari, Gabriele Bigi and Angelo O. Andrisano

3 A Concept of Multi Rough Sets Defined on Multi-contextual Information Systems .. 31
Rolly Intan

Part II Technology Innovation in Robotics Image Recognition and Computational Intelligence Applications

4 Coordinates Modelling of the Discrete Hexapod Manipulator via Artificial Intelligence .. 47
Felix Pasila and Roche Alimin

5 An Object Recognition in Video Image Using Computer Vision ... 55
Sang-gu Kim, Seung-hoon Kang, Joung Gyu Lee and Hoon Jae Lee

6 Comparative Study on Mammogram Image Enhancement Methods According to the Determinant of Radiography Image Quality .. 65
Erna Alimudin, Hanung Adi Nugroho and Teguh Bharata Adji
7 Clustering and Principal Feature Selection Impact for Internet Traffic Classification Using K-NN

Trianggoro Wiradinata and P. Adi Suryaputra

8 Altitude Lock Capability Benchmarking: Type 2 Fuzzy, Type 1 Fuzzy, and Fuzzy-PID with Extreme Altitude Change as a Disturbance

Hendi Wicaksono, Yohanes Gunawan, Cornelius Kristanto and Leonardie Haryanto

9 Indonesian Dynamic Sign Language Recognition at Complex Background with 2D Convolutional Neural Networks

Nehemia Sugianto and Elizabeth Irenne Yuwono

10 Image-Based Distance Change Identification by Segment Correlation

Nemuel Daniel Pah

11 Situation Awareness Assessment Mechanism for a Telepresence Robot

Petrus Santoso and Handry Khoswanto

12 Relevant Features for Classification of Digital Mammogram Images

Erna Alimudin, Hanung Adi Nugroho and Teguh Bharata Adji

13 Multi-objective Using NSGA-2 for Enhancing the Consistency-Matrix

Abba Suganda Girsang, Sfenrianto and Jarot S. Suroso

14 Optimization of AI Tactic in Action-RPG Game

Kristo Radion Purba

15 Direction and Semantic Features for Handwritten Balinese Character Recognition System

Luh Putu Ayu Prapitasari and Komang Budiarta

16 Energy Decomposition Model Using Takagi-Sugeno Neuro Fuzzy

Yusak Tanoto and Felix Pasila

17 Odometry Algorithm with Obstacle Avoidance on Mobile Robot Navigation

Handry Khoswanto, Petrus Santoso and Resmana Lim
Part III Technology Innovation in Electrical Engineering, Electric Vehicle and Energy Management

18 Vision-Based Human Position Estimation and Following Using an Unmanned Hexarotor Helicopter ... Jung Hyun Lee and Taeseok Jin 165

19 The Role of Renewable Energy: Sumba Iconic Island, an Implementation of 100 Percent Renewable Energy by 2020 Abraham Lomi 173

20 Electromechanical Characterization of Bucky Gel Actuator Based on Polymer Composite PCL-PU-CNT for Artificial Muscle .. Yudan Whulanza, Andika Praditya Hadiputra, Felix Pasila and Sugeng Supriadi 185

21 A Single-Phase Twin-Buck Inverter .. Hanny H. Tumbelaka 193

22 Performance Comparison of Intelligent Control of Maximum Power Point Tracking in Photovoltaic System ... Daniel Martomanggolo Wonohadidjojo 203

23 Vehicle Security and Management System on GPS Assisted Vehicle Using Geofence and Google Map .. Lanny Agustine, Egber Pangaliela and Hartono Pranjoto 215

24 Security and Stability Improvement of Power System Due to Interconnection of DG to the Grid .. Ni Putu Agustini, Lauhil Mahfudz Hayusman, Taufik Hidayat and I. Made Wartana 227

25 Solar Simulator Using Halogen Lamp for PV Research Aryuanto Soetedjo, Yusuf Ismail Nakhoda, Abraham Lomi and Teguh Adi Suryanto 239

26 Artificial Bee Colony Algorithm for Optimal Power Flow on Transient Stability of Java-Bali 500 KV Irrine Budi Sulistiaawati and M. Ibrahim Ashari 247

27 Sizing and Costs Implications of Long-Term Electricity Planning: A Case of Kupang City, Indonesia .. Daniel Rohi and Yusak Tanoto 257

28 Dynamic Simulation of Wheel Drive and Suspension System in a Through-the-Road Parallel Hybrid Electric Vehicle Mohamad Yamin, Cokorda P. Mahandari and Rasyid H. Sudono 263
29 A Reliable, Low-Cost, and Low-Power Base Platform for Energy Management System .. 271
Henry Hermawan, Edward Oesnawi and Albert Darmaliputra

30 Android Application for Distribution Switchboard Design 279
Julius Sentosa Setiadji, Kevin Budihargono and Petrus Santoso

Part IV Technology Innovation in Electronic, Manufacturing, Instrumentation and Material Engineering

31 Adaptive Bilateral Filter for Infrared Small Target Enhancement .. 289
Tae Wuk Bae and Hwi Gang Kim

32 Innovative Tester for Underwater Locator Beacon Used in Flight/Voyage Recorder (Black Box) 299
Hartono Pranjoto and Sutoyo

33 2D CFD Model of Blunt NACA 0018 at High Reynolds Number for Improving Vertical Axis Turbine Performance 309
Nu Rhahida Arini, Stephen R. Turnock and Mingyi Tan

34 Recycling of the Ash Waste by Electric Plasma Treatment to Produce Fibrous Materials 319
S.L. Buyantuev, A.S. Kondratenko, E.T. Bazarsadaev and A.B. Khmelev

35 Performance Evaluation of Welded Knitted E-Fabrics for Electrical Resistance Heating 327
Senem Kursun Bahadir, Ozgur Atalay, Fatma Kalaoglu, Savvas Vassiliadi and Stelios Potirakis

36 IP Based Module for Building Automation System 337
J.D. Irawan, S. Prasetio and S.A. Wibowo

37 Influence of CTAB and Sonication on Nickel Hydroxide Nanoparticles Synthesis by Electrolysis at High Voltage 345
Yanatra Budipramana, Suprapto, Taslim Ersam and Fredy Kurniawan

38 Waste Industrial Processing of Boron-Treated by Plasma Arc to Produce the Melt and Fiber Materials 353
S.L. Buyantuev, Ning Guiling, A.S. Kondratenko, Junwei Ye, E.T. Bazarsadaev, A.B. Khmelev and Shuhong Guo

39 Design of Arrhythmia Detection Device Based on Fingertip Pulse Sensor .. 363
R. Wahyu Kusuma, R. Al Aziz Abbie and Purnawarman Musa
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Analysis of Fundamental Frequency and Formant Frequency for Speaker ‘Makhraj’ Pronunciation with DTW Method</td>
<td>Muhammad Subali, Miftah Andriansyah and Christanto Sinambela</td>
</tr>
<tr>
<td>41</td>
<td>Design and Fabrication of “Ha (/if)” Shape-Slot Microstrip Antenna for WLAN 2.4 GHz</td>
<td>Srisanto Sotyohadi, Sholeh Hadi Pramono and Moechammad Sarosa</td>
</tr>
<tr>
<td>43</td>
<td>A River Water Level Monitoring System Using Android-Based Wireless Sensor Networks for a Flood Early Warning System</td>
<td>Riny Sulistiyowati, Hari Agus Sujono and Ahmad Khamdi Musthofa</td>
</tr>
<tr>
<td>44</td>
<td>The Influence of Depth of Cut, Feed Rate and Step-Over on Surface Roughness of Polycarbonate Material in Subtractive Rapid Prototyping</td>
<td>The Jaya Suteja</td>
</tr>
<tr>
<td>45</td>
<td>Adaptive Cars Headlamps System with Image Processing and Lighting Angle Control</td>
<td>William Tandy Prasetyo, Petrus Santoso and Resmana Lim</td>
</tr>
<tr>
<td>46</td>
<td>Changes in the Rheological Properties and the Selection of a Mathematical Model of the Behavior of Coal-Water Slurry During Transport and Storage</td>
<td>S.L. Buyantuev, A.B. Khmelev and A.S. Kondratenko</td>
</tr>
<tr>
<td>47</td>
<td>Design of a Fetal Heartbeat Detector</td>
<td>Nur Sultan Salahuddin, Sri Poernomo Sari, Paulus A. Jambormias and Johan Harlan</td>
</tr>
<tr>
<td></td>
<td>Part V Technology Innovation in Internet of Things and Its Applications</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Network Traffic and Security Event Collecting System</td>
<td>Hee-Seung Son, Jin-Heung Lee, Tae-Yong Kim and Sang-Gon Lee</td>
</tr>
<tr>
<td>49</td>
<td>Paper Prototyping for BatiKids: A Technique to Examine Children’s Interaction and Feedback in Designing a Game-Based Learning</td>
<td>Hestiasari Rante, Heidi Schelhowe and Michael Lund</td>
</tr>
</tbody>
</table>
50 Tracing Related Scientific Papers by a Given Seed Paper Using Parscit 457
Resmana Lim, Indra Ruslan, Hansin Susatya, Adi Wibowo,
Andreas Handojo and Raymond Sutjiadi

51 Factors Affecting Edmodo Adoption as Online Learning Medium 465
Iwa Sungkono Herlambangkoro and Trianggoro Wiradinata

52 Principal Feature Selection Impact for Internet Traffic Classification Using Naïve Bayes 475
Adi Suryaputra Paramita

53 Study on the Public Sector Information (PSI) Service Model for Science and Technology Domain in South Korea 481
Yong Ho Lee

54 Digital Natives: Its Characteristics and Challenge to the Library Service Quality 487
Siana Halim, Felecia, Inggrid, Dian Wulandari and Demmy Kasih

55 Web-Based Design of the Regional Health Service System in Bogor Regency 495
B. Sundari, Revida Iriana and Bertilia Lina Kusrina

56 Security Handwritten Documents Using Inner Product 501
Syafudin and Dian Pratiwi

57 Augmented Reality Technique for Climate Change Mitigation 511
Ruswandi Tahrir

58 Cyber Security for Website of Technology Policy Laboratory 521
Jarot S. Suroso

59 TAM-MOA Hybrid Model to Analyze the Acceptance of Smartphone for Pediatricians in Teaching Hospital in Indonesia 529
Oktri Mohammad Firdaus, Nanan Sekarwana, T.M.A. Ari Samadhi and Kah Hin Chai

60 Development of the Remote Instrumentation Systems Based on Embedded Web to Support Remote Laboratory 537
F. Yudi Limpraptono and Irmalia Suryani Faradisa

61 Enhancing University Library Services with Mobile Library Information System 545
Singgih Lukman Anggana and Stephanus Eko Wahyudi
62 Multi Level Filtering to Classify and Block Undesirable Explicit Material in Website 553
Mohammad Iqbal, Hifshan Riesvicky, Hasma Rasjid and Yulia Charli

63 Query Rewriting and Corpus of Semantic Similarity as Encryption Method for Documents in Indonesian Language ... 565
Detty Purnamasari, Rini Arianty, Diana Tri Susetianingtias and Reni Diah Kusumawati

64 Securing Client-Server Application Design for Information System Inventory 573
Ibnu Gunawan, Djoni Haryadi Setiabudi, Agustinus Noertjahyana and Yongky Hermawan

Part VI Technology Innovation in Information, Modelling and Mobile Applications

65 Analyzing Humanitarian Logistic Coordination for Disaster Relief in Indonesia 583
Tanti Octavia, I. Gede Agus Widyadana and Herry Christian Palit

66 Surakarta Cultural Heritage Management Based on Geographic Information Systems 589
Ery Dewayani and M. Viny Christanti

67 Gray Code of Generating Tree of n Permutation with m Cycles ... 599
Sulistyo Puspitodjati, Henny Widowati and Crispina Pardede

68 Android and iOS Hybrid Applications for Surabaya Public Transport Information 607
Djoni Haryadi Setiabudi and Lady Joanne Tjahyana

69 Games and Multimedia Implementation on Heroic Battle of Surabaya: An Android Based Mobile Device Application .. 619
Andreas Handojo, Resmana Lim, Justinus Andjarwirawan and Sandy Sunaryo

70 Streamlining Business Process: A Case Study of Optimizing a Business Process to Issue a Letter of Assignment for a Lecturer in the University of Surabaya 631
S.T. Jimmy

71 Design of Adventure Indonesian Folklore Game 639
Kartika Gunadi, Liliana and Harvey Tjahjono
72 Measuring the Usage Level of the IE Tools in SMEs
Using Malcolm Baldrige Scoring System 649
I. Nyoman Sutapa, Togas W.S. Panjaitan and Jani Rahardjo

73 Enumeration and Generation Aspects of Tribonacci Strings 659
Maukar, Asep Juarna and Djati Kerami

74 A Leukocyte Detection System Using Scale Invariant
Feature Transform Method ... 669
Lina and Budi Dharmawan

75 The Diameter of Enhanced Extended Fibonacci Cube
Interconnection Networks .. 675
Ernastuti, Mufid Nilmada and Ravi Salim

76 Prototype Design of a Realtime Monitoring System of a Fuel
Tank at a Gas Station Using an Android-Based Mobile
Application ... 685
Riny Sulityowati and Bayu Bhahtra Kurnia Rafik
Pasila, F.; Tanoto, Y.; Lim, R.; Santoso, M.; Pah, N.D. (Eds.)
2016, XIV, 692 p. 384 illus., 112 illus. in color., Hardcover
Chapter 36
IP Based Module for Building Automation System

J.D. Irawan, S. Prasetio and S.A. Wibowo

Abstract Embedded systems technology has a lot of applications in the various fields of life to bring ease and comfort for humans. One kind of applications is in the development of modern buildings, where embedded systems are applied to the control system. Building Automation Systems (BAS) are often encountered in modern buildings today. They are responsible to automatically control the building appliances such as electrical equipments, fire alarms, security systems, and others. Conventionally, a smart home that can be controlled by an embedded system is connected to a central monitoring unit such as a computer. The system commonly employs RS232 or RS485 serial communication, so that the control activities cannot be carried out from a long distance. With the rapid technology development in the field of communication, many recent communication devices are practical and have a good performance. One of them is a device with the Android operating system that can access the internet, thus it has a significant role in simplifying the management of smart homes. This research proposes the design of a smart home that can conserve energy by turning off unneeded electrical appliances, detect disorders such as flood, fire, and theft, and also serve as an early warning system through SMS Gateway. It can be monitored and controlled remotely over the Internet by an Android device.

Keywords Building automation system · IP based module · Smart house

36.1 Introduction

A lot of embedded systems technologies are applied in various fields of life to fulfill the human desire to live easily and comfortably. One example is the building of a house. Currently, building a house or modern building requires electronic control

J.D. Irawan (✉) · S. Prasetio · S.A. Wibowo
Informatics Engineering, National Institute of Technology, Malang, Indonesia
e-mail: joseph_dedy@yahoo.co.id

© Springer Science+Business Media Singapore 2016
tools. The Building Automation System (BAS) is often encountered in the construction of modern buildings [1].

BAS provides automatic control of the environmental conditions in buildings. BAS was begun from process automation to the heating, ventilation and air conditioning systems (HVAC) in large functional buildings. The ultimate goal is to save energy and reduce costs. However, this system can be developed and applied to a house to build a smart home that can monitor all conditions and manage all electrical appliances. Hence, even if the occupants are not in the house, they can still monitor and control it, and need not feel anxious.

This gave us the idea to design a smart home that can control the entire electrical loads inside the house; each point of loads can be monitored and even its activity scheduled. The system was designed based on TCP/IP and the main component is an embedded web server. The house is also equipped with an early warning system that will inform the occupants via SMS in case of fire or flood, as well as a theft detection system with cameras that can be monitored remotely over the internet using an Android device that can monitor and control all electrical appliances at home.

36.2 Related Works

36.2.1 Serial Communication

Serial data communication has the impression of being more complicated than parallel data communication, but serial data communication has a lot of advantages compared with parallel data communication, such as it requires only three wires (i.e., Tx, Rx, and Ground) to transmit information. In addition, the communication distance can also be increased further.

In the serial data communication, we can perform data communication using RS232 with a maximum distance of 10 meters, but data communication using RS485 can be carried out up to approximately 100 meters. Besides the advantage of a longer distance, communication using RS485 can be done with more than two terminals, in full duplex, and with high data accuracy [2]. Figure 36.1 below is an

![Fig. 36.1 Block diagram of building automation system using serial communication [2]](image-url)
example of serial data communication using RS485 for monitoring and controlling a Building Automation System [3].

36.2.2 Monitoring and Controlling via Internet

With the advancement of Internet technology, which is considered a reliable communication, it is obvious that the Internet can be used as a medium for long-distance monitoring and controlling. Internet is expected to be a good medium because there are many available communication protocols on it with the ability to reduce errors during transmission.

Communication over the Internet can be used to monitor as well as control equipment located far away from the user easily and quickly, as can be seen in Figs. 36.2 and 36.3 below.

Fig. 36.2 Block diagram of temperature monitoring via web [4]

![Block diagram of temperature monitoring via web](image)

Fig. 36.3 Block diagram of controlling lights via web [5]

![Block diagram of controlling lights via web](image)
However, when a Personal Computer (PC) is used as a Web Server connected to the appliance so that it can be controlled over the Internet, the solution becomes non portable and requires a lot of power because the PC must be running continuously and should never be turned off. Therefore, for the purpose of portability and power efficiency, a small device can be created to replace the PC as a Web Server; the device can be used to, in this case, monitor and control lights remotely. Microcontrollers are used as a Web Server and equipped with Ethernet Module for connection to the Internet. The advantage of this system, compared to Web servers on the market, is the TCP/IP (Ganesh, 2008) embedded in the microcontroller as software, so that it becomes much more efficient, more compact, and cheaper since it does not require a PC to work as the Web Server. The use of microcontroller can be replaced with other control equipment such as PLC.

36.3 System Model

The system discussed in the related works has some shortcomings, mainly to meet the demanding need of online access over computer networks and the Internet.

To improve the performance of the system, this study proposed the design of building automation system, which is implemented as a Smart House, with embedded web server application as the main component. The proposed system can be accessed over the Internet by means of a device with Android operating system.

The system block diagram, as shown in Fig. 36.4, consists of several parts: embedded web server and switching panel, monitor unit, LAN, and internet proxy server [6].

![Fig. 36.4 System block diagram of the IP based module for smart houses](image-url)
The embedded Web Server module and the switching panel are shown in Fig. 36.5. The embedded web server is built using the microcontroller as the main component and is equipped with supporting components such as RAM, I/O, and serial to Ethernet converter unit.

The switching panel is a functional unit for termination between power load and BAS module. The main components are the optocoupler as a signal isolator and switching components in the form of push buttons and sensors as input/output relays.

Figure 36.6 indicates that initially the system reads the temperature, light intensity of the sensor, and relay status; the data are published on the Web so that the user can monitor the status of electronic equipment in the house. After that, the user can switch the light of the house by pressing the ON or OFF so that the condition of the relay will change according to the user’s wish.

36.4 Results

As shown in Fig. 36.7, the temperatures of bedroom 1 and bedroom 2 can be monitored. The user can turn on or turn off the air conditioners by pressing the ON or OFF buttons on the application.

Other buttons can be used to turn on or turn off the lights in the house. When the button is pressed, the application will send the data to change the state of the lamp according to the user’s demand.
Fig. 36.6 System flowchart

Start

Read temperature, light intensity from sensor and relay status

Publish on Web

No

Input to Change status via

Yes

Change Relay Status, set temperature or set relay timer

End

Fig. 36.7 Smart house monitoring and controlling
36.5 Conclusion

The IP Based Module for Building Automation System is very easy to implement because, by using the IP based module controlling unit, installation can be done quickly. Also, with the IP based program module, data communication becomes easier to do.

References