PAPER • OPEN ACCESS

Shifting cropping shifts by efficient irrigation water to produce maximum rice productivity

To cite this article: S Azis 2019 IOP Conf. Ser.: Mater. Sci. Eng. 669 012017

View the article online for updates and enhancements.

Shifting cropping shifts by efficient irrigation water to produce maximum rice productivity

S Azis¹

¹ Civil Engineering Department, Nationale Institute of Technology Malang, East Java, Indonesia

cup.subandiyah@gmail.com

Abstract. Agriculture is the main support of the economy in Indonesia so that the sustainability of the productivity of paddy fields must be maintained properly. Rice fields rely heavily on irrigation water supplies from technical rigs. Continuity of water flow must be maintained in accordance with water requirements and cropping patterns in each paddy field. In connection with changes in conditions lately there has been a shift in the rainy season and the dry season which results in erratic discharge of surface water both in quantity and on time so that the use of irrigation water must be done wisely and efficiently to maintain the productivity of the yield of paddy fields. From the results of the implementation of the cropping pattern set by the relevant agency there has been a deviation of 13.81%, which means that it is necessary to improve the implementation of cropping patterns and adjust the time of rain so that rice productivity remains maximal.

1. Introduction

The provision of irrigation water for agriculture needs to be managed in a wise and sustainable manner so that its existence and functions are maintained, one of which is to provide benefits in agriculture. The Irrigation Area (DI) Molek is one of 44 Irrigation Areas in the Malang-Indonesia Regency area which has 3,983 hectares of paddy fields. Maintenance of irrigation network is also very important in order to ensure continuity of irrigation water allocation. [1]

Planting planning is outlined in the planting document called the Global Planting Plan (RTTG). From year to year, the method of preparing this Global Planting Plan has not changed even though the current situation and conditions are different.

The duration of the rainy and dry seasons is not fixed, sometimes the rainy season lasts less than 6 (six) months and sometimes more, as well as the dry season [2]. This condition causes the availability of surface water to become erratic and if the surface water is affected, the water discharge conditions are also affected so that it needs to be done by adjusting the surface water adaptation to climate change [3]. Climate change is projected to have a significant impact on conditions affecting agriculture [4].

From the results of the evaluation of the Global Planting Plan presented in Table 1 attached below, it can be concluded that there has been a deviation in the pattern of cropping arrangements of 13.81%, meaning that the implementation of the Global Planting Plan is not in accordance with the plan and needs to develop a new Global Planting Plan applicative and dynamic and keep up with the progress of the rain discharge conditions.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1 IOP Conf. Series: Materials Science and Engineering 669 (2019) 012017 doi:10.1088/1757-899X/669/1/012017

	Iubic	It D'uluulion of the groou	r pranting pran	
Irrigation /	RTTG	Realization of Planting	Compliance with	Deviation
Raw Rice		Patterns	RTTG	(%)
Field Area	(Ha)	Rice Special	(%)	
(Ha)		(Ha)		
DI Molek	3974	3425	86.11	13.81
3983				

Table 1. Evaluation of the global planting plan

From the problems that occur, make the background and rationale for doing research to produce an appropriate analysis of water needs as a basis for determining the Global Planting Plan.

All stakeholders involved in the planning and implementation of the allocation of irrigation water understand climate change situations and conditions that are very influential on surface water and irrigation water so they argue that the Global Planting Plan arrangement must be adapted to climate change conditions to avoid the possibility of crop failure. [5].

More and more research shows that the world is warming and will continue to warm up when greenhouse gas concentrations increase in the future [6]. Productivity is influenced by a number of climate change variables including rainfall patterns, temperature increases, changes in sowing and harvesting, water availability and land suitability [7]. One of the most important impacts of climate change is the change in water available at the regional and local levels [8].

2. Materials and methode

Administratively, Molek Irrigation Area is located in Malang Regency. The average annual rainfall is 1,500 mm. Water sources Molek Irrigation Area originates from Mount Arjuno which flows through Brantas River which is channeled through the 12.44 Km Molek canal. The research framework is as in Table 2.

No	Stages of Calculation / Analysis	Data source	Calculation / analysis method	Results
1	Data Quality Test	Historical rainfall and discharge data	Rescaled Adjusted Partial Sums Method	Analysis requirements are accepted (still within consistent limits) if the values of Q / (n0.5) and R / (n0.5) count smaller than the values of Q / (n0.5) and R / (n0.5)
3	Mainstay Debit	Debit Data	Weibull Method Pr = $m / (n+1) * 100 \%$	Debit of Wet Season , Normal Season, Dry Season
4	Mainstay Rainfall	Historical rainfall data	$R_{80} = \frac{n}{5} + 1$ (reliability 80 %) $R_{50} = \frac{n}{2} + 1$ (reliability 50 %)	Mainstay Rain Pattern
5	Effective Rainfall	Historical rainfall data	Frequency Analysis Formula	rice : $R_e = (0,70 \text{ x } R_{80})/\text{day}$ secondary crops : $R_e = R_{50}/\text{day}$
6	Evapotranspirati on	Climatology Data	Modified Penman	Eto, mm/day
7	Water Needs for Soil Processing and Nursery	The duration of the tillage	Determined	Land preparation = 30 days Soil processing + Nursery = 250 mm/day

 Table 2. Study framework

	Stages of			
No	Calculation /	Data source	Calculation / analysis	Results
	Analysis		method	
8	Percolation	Soil sample data and	Soil Test in the	Percolation Numbers
		map of soil type distribution	Laboratory to determine permeability numbers	
9	Water	Potential	Suyono + Takeda	IR, mm/day
	Requirements	Evapotranspiration of	$C_{PL} =$, <u>,</u>
	for Land	the Penmann	Cland preparation x	
	Preparation	Modification Method.	Extensive planting ratio	
		Percolation Calculation	8	
10	Water Level	Estimated soil	Determined	Change of Water Laver =
10	Requirement	fertility	2	50 mm/month
	110 1 m 0 0	1010000		
11	Irrigation	Debit Intake	Water loss in Primary,	Irrigation Efficiency Rainy
	Efficiency		Secondary and Tertiary	Season
	2		channels	Irrigation EfficiencyDry
				Season 1
				Irrigation EfficiencyDry
				Season 2
12	Balance sheet	Regional Irrigation of	Water balance concept	Comparison of the value of
	needs and	Irrigation Water		the amount of availability to
	availability of	Needs Molek		needs
	water			
13	Planting Pattern	Data and Simulation	Relative Crops Factor -	Irrigation Water Needs and
	Simulation		Area of Relative	Extensive Planting Area are
			Palawija	optimal for Wet Season Year,
				Normal Season Year and Dry
				Season Year.
14	Preparation of a	Simulation Results	Rainy Season Early	Wet Season Year
	Global Planting		Planting	Dry Season Year
	Plan		Dry Season 1 Early	Normal Season Year
			Planting	
			Dry Season 2 Early	
			Planting	

 Table 2. Study framework (cont.)

3. Results and discussion

The results of the analysis of the data and observations can produce the following result as shown in Table 3, Table 4, Table 5 and Table 6.

	Nu	Coefficient	
Station Name	Station	Stasiun Uji	Determination (%)
Sumber Pucung	36	Station 1	99.89
Kepanjen	39	Station 2	99.59
Kali Pare	40	Station 3	99.80
Pagak	64	Station 4	99.21

Table 3. Rainfall data consistency results

_

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 669 (2019) 012017 doi:10.1088/1757-899X/669/1/012017

	1 a	DIC 4. 2	Anarys	15 01 av	anaonn	ly 01 III	igation	maxe	uisene	uge		
Opportunity (80%)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
80	4.80	5.97	6.47	6.47	6.42	6.15	5.85	5.04	4.89	4.54	5.69	5.69
90	3.52	3.63	5.00	3.65	3.49	3.22	3.09	2.98	2.88	2.91	4.35	3.14
25	7.26	7.38	7.43	7.38	7.40	7.46	7.42	7.37	7.16	6.99	6.71	7.35

Table 4. Analysis of availability of irrigation intake discharge

Month	Period	R 80 (mm)	R 50 (mm)	Month	Period	R 80 (mm)	R 50 (mm)
January	1	72.09	77.66	July	1	0.00	1.41
	2	29.32	55.80	-	2	0.00	0.00
	3	98.04	95.02		3	0.00	0.00
February	1	71.77	121.63	August	1	0.00	0.00
-	2	122.96	61.68	-	2	0.00	0.00
	3	71.19	102.42		3	0.00	0.00
March	1	123.02	37.64	September	1	0.00	0.00
	2	87.31	84.56		2	0.00	0.06
	3	26.13	192.76		3	0.00	2.94
April	1	82.52	119.91	October	1	0.00	20.56
	2	63.62	99.42		2	0.00	41.37
	3	46.64	0.01		3	24.31	43.02
May	1	24.43	47.22	November	1	11.54	73.98
	2	32.68	31.43		2	41.77	58.50
	3	0.00	0.49		3	72.52	73.59
June	1	0.00	5.39	December	1	30.26	210.53
	2	0.00	14.12		2	43.95	15.88
	3	0.00	0.49		3	122.86	92.94

Table 5. Mainstay rainfall 80% and 50%

I able 6. Effective rainfall analy	/sis
---	------

Month	Period	R 80		Re rice		Re	e Secondary Pl	ant
Wolldli	renou	(mm)	(mm)	(mm/day	(lt/sec/ha)	(mm)	(mm/day)	(lt/sec/ha)
January	1	72.09	50.47	5.05	0.59	77.66	7.77	0.90
	2	29.32	20.52	2.05	0.24	55.80	5.58	0.65
	3	98.04	68.63	6.86	0.80	95.02	9.50	1.10
February	1	71.77	50.24	5.02	0.58	121.63	12.16	1.41
	2	122.96	86.07	8.61	1.00	61.68	6.17	0.72
	3	71.19	49.83	4.98	0.58	102.42	10.24	1.19
March	1	123.02	86.11	8.61	1.00	37.64	3.76	0.44
	2	87.31	61.12	6.11	0.71	84.56	8.46	0.98
	3	26.13	18.29	1.83	0.21	192.76	19.28	2.24
April	1	82.52	57.77	5.78	0.67	119.91	11.99	1.39
	2	63.62	44.53	4.45	0.52	99.42	9.94	1.15
	3	46.64	32.65	3.26	0.38	0.01	0.00	0.00
May	1	24.43	17.10	1.71	0.20	47.22	4.72	0.55
	2	32.68	22.87	2.29	0.27	31.43	3.14	0.36
	3	0.00	0.00	0.00	0.00	0.49	0.05	0.01
June	1	0.00	0.00	0.00	0.00	5.39	0.54	0.06
	2	0.00	0.00	0.00	0.00	14.12	1.41	0.16
	3	0.00	0.00	0.00	0.00	0.49	0.05	0.01
July	1	0.00	0.00	0.00	0.00	1.41	0.14	0.02
	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00

IOP Conf. Series: Materials Science and Engineering 669 (2019) 012017 doi:10.1088/1757-899X/669/1/012017

		R 80	Re rice			Re Secondary Plant			
Month	Period	(mm)	(mm)	(mm/day	(lt/sec/ha)	(mm)	(mm/day)	(lt/sec/ha)	
August	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
-	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
September	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
-	2	0.00	0.00	0.00	0.00	0.06	0.01	0.00	
	3	0.00	0.00	0.00	0.00	2.94	0.29	0.03	
October	1	0.00	0.00	0.00	0.00	20.56	2.06	0.24	
	2	0.00	0.00	0.00	0.00	41.37	4.14	0.48	
	3	24.31	17.02	1.70	0.20	43.02	4.30	0.50	
November	1	11.54	8.08	0.81	0.09	73.98	7.40	0.86	
	2	41.77	29.24	2.92	0.34	58.50	5.85	0.68	
	3	72.52	50.76	5.08	0.59	73.59	7.36	0.85	
December	1	30.26	21.19	2.12	0.25	210.53	21.05	2.44	
	2	43.95	30.76	3.08	0.36	15.88	1.59	0.18	
	3	122.86	86.00	8.60	1.00	92.94	9.29	1.08	
Tota	ıl	1741.25	909.27	90.93	10.55	1782.42	178.24	20.68	

Table 6. Effective rainfall analysis (con	t.)
---	-----

Climatology data and Potential Evaporation for calculating irrigation water requirements is shown in Table 7.

Table 7. Climatology data and	ETo (Potential Evaporation)

Month	Average Temperature °C	Humidity%	Wind velocity km/day	Duration of solar radiation hour	Radiation MJ/m²/day	ETo (Potential Evaporationl) mm/day
January	22.9	76	95	6.1	19.3	3.81
February	23.2	76	94	5.5	18.5	3.73
March	23.2	76	76	6.3	19.3	3.77
April	23.4	71	83	6.6	18.5	3.66
May	23.1	68	91	7.8	18.6	3.58
June	23.3	69	98	7.8	17.7	3.42
July	22.4	69	102	7.9	18.2	3.46
August	22.2	70	102	8.3	20.2	3.78
September	22.7	72	102	8.6	22.3	4.20
October	23.0	70	94	8.2	22.5	4.34
November	23.4	68	91	8.2	22.5	4.43
December	22.8	73	89	7.0	20.5	4.02

The duration of land preparation is 30 days. Water requirements for tillage and nursery are 250 mm which consists of 200 mm used for saturation and 50 mm for nursery. To estimate the water requirements for land preparation, the percolation value in the study area must be known. The percolation value is shown in Table 8.

Table 8.	Magnitude	of Percolation	Value
----------	-----------	----------------	-------

No	Kinds of Land	Vertical percolation (mm/day)
1.	Sandy loam	3 - 6
2.	Loam	2 - 3
3.	Clay	1 - 2

Then the water requirements for land preparation can be calculated which the results which are shown in Table 9.

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 669 (2019) 012017 doi:10.1088/1757-899X/669/1/012017

	Eto	Eo	Р	Μ	S	Т	V	IR
Month	mmday	mm/day	mm/day	mm/day	mm	days	K	mm/day
January	3.810	4.191	4.5	8.691	250	30	1.0429	13.42
February	3.730	4.103	4.5	8.603	250	30	1.0324	13.36
March	3.770	4.147	4.5	8.647	250	30	1.0376	13.39
April	3.660	4.026	4.5	8.526	250	30	1.0231	13.31
May	3.580	3.938	4.5	8.438	250	30	1.0126	13.25
June	3.420	3.762	4.5	8.262	250	30	0.9914	13.14
July	3.460	3.806	4.5	8.306	250	30	0.9967	13.17
August	3.780	4.158	4.5	8.658	250	30	1.0390	13.40
September	4.200	4.620	4.5	9.120	250	30	1.0944	13.71
October	4.340	4.774	4.5	9.274	250	30	1.1129	13.81
November	4.430	4.873	4.5	9.373	250	30	1.1248	13.88
December	4.020	4.422	4.5	8.922	250	30	1.0706	13.58

Table 9. Water requirements for land preparation

Water Level Requirement is estimated at 50 mm. When using a 10 day period, the Water Level Requirement (WLR) of 50 mm is divided into 30 days, which is equal to 1.67 mm / day.

Irrigation efficiency is a comparison between the water discharge that arrives at the agricultural land and the water discharge coming out of the take-up gate. Before arriving at the paddy field, water must be flowed from the source through the main, secondary and tertiary canals Irrigation Efficiency.

Irrigation efficiency is calculated based on water loss during the drainage process along the channel. Irrigation efficiency can be shown in Table 10. Recapitulation of water balance conditions for existing planting can be shown in Table 11.

Table 10. Calculation of Irrigation Efficiency

Season	Month	Primary Loss (m3/sec)	Secondary Loss (m3/sec)	Irrigation Efficiency (%)	average (%)
	November	28.05	17.64	66.38	
Rainy	December	20.30	16.65	71.26	69 912
Season	January	20.82	21.33	68.22	08.815
	February	19.36	20.74	69.39	
	March	22.35	16.42	70.21	
Dry	April	22.42	16.64	70.03	60.057
Season 1	May	21.83	19.06	68.94	09.037
	June	25.28	19.05	67.05	
	July	25.74	19.29	66.67	
Drv	August	28.80	18.91	65.29	(1.275
Season 2	September	30.17	19.64	64.21	64.275
	October	33.35	23.08	60.93	

Table 11. Recapitulation of Water Balance Conditions for Existing Planting

		Irrigation	Dry Season		Normal		Wet	
Mandh Dania	Daniad	Needs	River	T., f.,	Season River	Information	Season River	Information
wonth	Period	Intake	Discharge	Information	Discharge	information	Discharge	
		(m3/sect)	(m3sect)		(m3/sec)		(m3sec)	
January	1	7.06	3.52	Not enough	4.80	Not enough	7.26	Enough
	2	7.93	3.52	Not enough	4.80	Not enough	7.26	Not enough
	3	5.35	3.52	Not enough	4.80	Not enough	7.26	Enough
February	1	5.32	3.63	Not enough	5.97	Enough	7.38	Enough
	2	3.30	3.63	Enough	5.97	Enough	7.38	Enough
	3	4.91	3.63	Not enough	5.97	Enough	7.38	Enough
March	1	3.41	5.00	Enough	6.47	Enough	7.43	Enough
	2	4.39	5.00	Enough	6.47	Enough	7.43	Enough
	3	6.31	5.00	Not enough	6.47	Enough	7.43	Enough

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 669 (2019) 012017 doi:10.1088/1757-899X/669/1/012017

		Irrigation	Dry Season		Normal		Wet	
Month	Period	Needs	River	Information	Season River	Information	Season River	Information
Wientin	1 errou	Intake	Discharge	momunon	Discharge	momuton	Discharge	mormunon
		(m3/sect)	(m3sect)		(m3/sec)		(m3sec)	
April	1	4.54	3.65	Not enough	6.47	Enough	7.38	Enough
	2	5.32	3.65	Not enough	6.47	Enough	7.38	Enough
	3	6.32	3.65	Not enough	6.47	Enough	7.38	Enough
May	1	6.39	3.49	Not enough	6.42	Enough	7.40	Enough
	2	6.08	3.49	Not enough	6.42	Enough	7.40	Enough
	3	6.61	3.49	Not enough	6.42	Not enough	7.40	Enough
June	1	5.98	3.22	Not enough	6.99	Enough	7.46	Enough
	2	5.58	3.22	Not enough	6.99	Enough	7.46	Enough
	3	5.77	3.22	Not enough	6.99	Enough	7.46	Enough
July	1	6.65	3.09	Not enough	5.85	Not enough	7.42	Enough
-	2	6.67	3.09	Not enough	5.85	Not enough	7.42	Enough
	3	6.67	3.09	Not enough	5.85	Not enough	7.42	Enough
August	1	6.60	2.98	Not enough	5.04	Not enough	7.37	Enough
-	2	7.04	2.98	Not enough	5.04	Not enough	7.37	Enough
	3	7.86	2.98	Not enough	5.04	Not enough	7.37	Not enough
September	1	8.61	2.88	Not enough	4.89	Not enough	7.16	Not enough
	2	8.48	2.88	Not enough	4.89	Not enough	7.16	Not enough
	3	7.66	2.88	Not enough	4.89	Not enough	7.16	Not enough
October	1	6.85	2.91	Not enough	4.54	Not enough	6.99	Enough
	2	6.22	2.91	Not enough	4.54	Not enough	6.99	Enough
	3	5.64	2.91	Not enough	4.54	Not enough	6.99	Enough
November	1	4.68	4.35	Not enough	5.69	Enough	6.71	Enough
	2	4.16	4.35	Enough	5.69	Enough	6.71	Enough
	3	3.56	4.35	Enough	5.69	Enough	6.71	Enough
December	1	4.52	3.14	Not enough	5.69	Enough	7.35	Enough
	2	5.32	3.14	Not enough	5.69	Enough	7.35	Enough
	3	4.37	3.14	Not enough	5.69	Enough	7.35	Enough

Table 11. Recapitulation of Water Balance Conditions for Existing Planting (cont.)

Considering that the planting in one year is divided into 3 (three) seasons, namely the Rainy Season (MH), Dry Season 1 (MK1) and Dry Season 2 (MK2), and based on the effective rainfall pattern, the rainy month is November to April. Good months of start the planting is as the follows.

- Schedule for early planting of November period I
- Schedule for early planting of November period II
- Schedule for early planting of November period II
- Schedule for early planting of December period I
- Schedule for early planting of December period II
- Schedule for early planting of December period III
- Schedule for early planting of January period I
- Schedule for early planting of January period II
- Schedule for early planting of January period III
- Schedule for early planting of February period I
- Schedule for early planting of February period II
- Schedule for early planting of February period III

4. Conclusion

This shift in planting time was generated from simulations of rise planting area and secondary crops which produced the most optimal planting area.

Based on the research, shifting planting schedule that produces maximum production is as follows.

IOP Publishing

IOP Conf. Series: Materials Science and Engineering **669** (2019) 012017 doi:10.1088/1757-899X/669/1/012017

Table 12. Conclusio	n			
	Global Planting	New Global	New Global	New Global
Saacan	Plan of	Planting Plan of	Planting Plan of	Planting Plan of
Season	Eksisting	Wet Season Year	Normal Season	Dry Season Year
	-		Year	-
Rainy Season				
Group I	10 December	1 December	20 February	20 February
Group II	15 December	10 December	1 March	1 March
Group III	20 December	20 December	10 March	10 March
Dry Season 1				
Group I	21 March	1 April	20 June	20 June
Group II	25 March	10 April	1 July	1 July
Group III	30 March	20 April	10 July	10 July
Dry Season 2				
Group I	20 August	1 August	20 October	20 October
Group II	25 August	10 August	1 November	1 November
Group III	30 August	20 August	10 November	10 November

References

- [1] Azis S and Widodo H 2016 International Journal of Agricultural Research, Innovation and Technology (IJARIT) 6(2) .61-68
- [2] Azis S 2011 Journal of Basic and Applied Scientific Research (JBASR). Text Road Journals Publications. www.textroad.com 1(10) 1709-1714
- [3] Azis S 2016 Australian Journal of Basic and Applied Sciences (AJBAS) 10(14) 207-216.
- [4] Ziad A M and Sireen 2011 African Journal of Environmental Science and Technology 4(3) 183-192
- [5] Azis S 2018 International Journal of Civil Engineering and Technology (IJCIET) 9(10) 1371– 1381
- [6] Seo S N, et al 2008 Journal of Agricultural Research 68(1) 69-79
- [7] Shakoor U, et al 2011 Journal of Agricultural and Sciences 4(2) 327-333
- [8] Kazem J 2013 American Journal of Climate Change 2(4) 296-305