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Abstract: This paper presents a hardware testbed for testing the building energy management
system (BEMS) based-on the multi agent system (MAS). The objective of BEMS is to maximize user
comfort while minimizing the energy extracted from the grid. The proposed system implements a
multi-objective optimization technique using a genetic algorithm (GA) and the fuzzy logic controller
(FLC) to control the room temperature and illumination setpoints. The agents are implemented on the
low cost embedded systems equipped with the WiFi communication for communicating between the
agents. The photovoltaic (PV)-battery system, the air conditioning system, the lighting system, and the
electrical loads are modeled and simulated on the embedded hardware. The popular communication
protocols such as Message Queuing Telemetry Transport (MQTT) and Modbus TCP/IP are adopted
for integrating the proposed MAS with the existing infrastructures and devices. The experimental
results show that the sampling time of the proposed system is 16.50 s. Therefore it is suitable for
implementing the BEMS in a real-time where the data are updated in an hourly or minutely basis.
Further, the proposed optimization technique shows better results in optimizing the comfort index
and the energy extracted from the grid compared to the existing methods.

Keywords: BEMS; MAS; embedded system; multi-objective optimization; genetic algorithm

1. Introduction

An energy management system is one of the popular and challenging topics in the electrical
power system. In recent modern Smart Grid technology, the research topics in the energy management
system field have increased significantly, especially in the areas of home energy management systems
(HEMSs) and building energy management systems (BEMSs). The authors in [1] propose a method
to reduce the energy consumption by switching on/off the air conditioning (AC) and adjusting the
temperature setpoint. The objectives are to reduce the electricity consumption of the AC unit in a way
that the users do not feel any changes in temperature comfort. In the experiments, they change the
temperature setpoint of the AC during a certain time interval and observe whether the comfort changes
are felt or not by the users. The temperature setpoints are changed remotely using a centralized server.

The fuzzy logic controller (FLC) is employed in [2] to adjust the temperature setpoint of the AC
units for energy management in residential buildings. The temperature setpoint is adjusted by a fuzzy
inference system that considers four parameter inputs, i.e., (a) initial temperature setpoint; (b) outdoor
temperature; (c) home occupancy; (d) electricity price. The system consists of two optimization units
for handling the hot temperature setpoint and the cold temperature setpoint.

An energy management system to control the AC unit and the electrical loads using control logic
is proposed in [3]. The control logic covers six functions i.e., (a) comfort, (b) economy, (c) emergency,
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(d) energy, (e) power, (f) thermal storage. The comfort function is used to ensure that the AC units and the
electrical loads can be supplied with maximum comfort. The economy function optimizes the configuration
of the AC unit and the electrical loads to minimize the cost. The emergency function is used during grid
failures and allows the priority loads to be supplied by a battery system. The energy function is used to
allocate energy consumption at a predefined time. The power function is used to ensure that the active
power consumption does not exceed a fixed threshold. The thermal storage function is used to change the
temperature setpoint of AC unit when the generated PV energy is greater than the consumption.

The authors in [4] employed a fuzzy system in their BEMS as the control strategy and prediction tool.
In the control strategy, the FLC is used to control the solar thermal air system and the window-related
use such as controlling the indoor temperature and light. The fuzzy prediction system is used to
predict the energy demand and solar energy. The prediction system improves the energy efficiency due
to the ability to predict the behavior of building in advance. A system to predict the energy demand of
the building using the Artificial Neural Network (ANN) is proposed in [5]. The ANN model is trained
using the dataset of monthly historical energy consumption of the building.

Due to the distributed components (sensors, actuators, generators, loads) of the HEMS/BEMS,
an intelligent multi-agent system (MAS) is widely adopted [6–23]. The MAS is a distributed control
system where each agent works autonomously and coordinates with each other to achieve the global
goal. The implementation of MAS in the HEMS is proposed in [6–8]. The MAS in [6] consists of the
permanent agent, the temporary agent and the coordinator agent. The permanent agent is used to
control the permanent loads, i.e., the appliances which run in a whole-time such as the refrigerator the
air conditioner, the water heater. The temporary agent controls the temporary loads, which are divided
into two categories: (a) the must run loads such as the lighting, the television, the cooking appliances,
etc.; (b) the shiftable loads such as the washing machine, the dishwasher, etc. The coordinator agent is
used for the message coordination, controlling and the decision making among the agents. The fuzzy
logic controller (FLC) is employed by each agent to manage energy consumption.

The agents in [7] are grouped into three main agents, i.e., management agents, electrical supply
system agents, and home appliance agents. The management agents consist of a supply side
management (SSM) agent, which manages the electrical flow from the generator system, a demand
side management (DSM) agent, which manages the electrical flow to the appliances, and the HEMS
agent, which manages both SSM and DSM agents. The electrical supply system agents consist of a
solar panel and storage system agent, main grid agent, and electric vehicle agent. The electric vehicle
agent controls the charging/discharging of the battery of electric vehicle. Under normal conditions, the
battery of electric vehicles will be charged. However under power shortage conditions, the battery
may be discharged to supply the energy. The home appliance agents consist of the standing fan agent,
rice cooker agent, air condition agent, television agent, etc.

A different MAS architecture of the HEMS is proposed in [8], where the agents are divided into
four categories: (a) control and monitoring agents (CMAs), which are used to control and monitor the
actuators and sensors; (b) information agents (IAs), which is used to handle the data related to the
home devices; (c) application agents (AAs), which are used for prediction, scheduling and feedback
functions; (d) management and optimization agents (MOAs), which are used for the optimization
tasks. To manage the energy, the HEMS adopts four optimization strategies consisting of the comfort
for user satisfaction, the reduction costs, the green energy efficiency, and the smart demand response.

The agents of the MAS employed in the BEMS [9–23] can be classified into four main agents, i.e.,
load agents, generator agents, central agents, and other agents as given in Table 1. The load agent handles
the electrical loads in the buildings. The generator agent controls the generation system which supplies
the electrical energy to the building. The central agent controls or coordinates the load and the generator
agents. The MASs in [9,10,20] do not have a control agent, thus in [9], the load agent and the storage
agent coordinate with the generator agent directly. Similarly, the heating agent and the cooling agent are
connected to the electricity agent directly [10], while in [20], each local agent such as the local temperature
agent is controlled by a load agent, then the load agents were connected to an intelligent coordinator.
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Table 1. Typical agents of MAS in BEMS.

Reference Load Agent Generator Agent Central Agent Other Agent

[9] Load agent Generator agent - Storage agent

[10] Heating agent, Cooling
agent Electricity agent - -

[11] Consumption agent, Load
shifting agent Production agent Aggregation agent Storage agent

[12] Local control agent, Load
agent Switch agent Central coordinator agent -

[13] Local zone agents, Zone
agent

On-site generation
agent Building agent -

[14] - - Control agents, Data
processing agent

Sensing agents,
Prediction agent

[15] - - Room agent Personal agent,
Environment agent

[16] Local controller-agent,
Local agent Switch agent Central coordinator-agent -

[17] Load agent - Central agent -

[18] Peripheral coordinator
agents - Master coordinator agent -

[19] Local agent - Central agent -

[20] Local agents, Load agents - - -

[21] - Renewable energy
agent

Central coordinator agent,
Building management

agent

Battery bank agent,
Service agent

[22] Local controller agents - Central coordinator agent -

[23] Room agents - Coordinator agent -

In [11], the load agents are classified into consumption agents and load shifting agents.
The consumption agent is used to control the regular devices such as the lighting, while the load
shifting agent is used to control the intelligent devices which could be shifted the start and stop time.
Similar to [7], the storage agent is used to control the electricity storage such as the battery of electric
vehicle. In [12], the load control agent is used to control the critical loads such as the lighting and air
conditioning system, while the load agent is used to control the noncritical loads such as the fountain
and swimming pool pumps. In [13], the local zone agent controls the loads such as the heating systems,
the electrical systems on a local zone. The different local zone agents are aggregated by the zone agent.
The load agent in [16] is divided into two categories, i.e., the local controller agent and the load agent.
The local controller agent controls the loads that are related to the user comfort such as the lighting
(visual comfort), the air conditioning (thermal comfort), the air quality. The load agent controls the
loads that are not related to the comfort index.

The MAS in [14] is focused on measuring the environment variables, thus sensing agents are
employed. The prediction agent predicts the environment conditions such as the occupancy and the
weather information based-on the sensing agents. Meanwhile, the MAS in [15] is focused on detecting
the presence of occupant in a room using personal and environment agents.

The architectures listed in Table 1 are the common approaches used in energy management
systems. Meanwhile other approaches are proposed by [24–27]. The authors in [24] proposed an
energy router called the Duindam-Stramigioli Energy Router System that manages the electrical energy
from multiple sources. It works by controlling the direction and amplitude of the electrical flow in the
multiports system using the power electronic devices. In [25], an energy hub is used to convert and
store the various forms of energy resources such as electricity, natural gas, district heat, and wood chips.
The hub contains the heat exchanger, the power electronic devices, the compressors, the transformers,
the battery and the hot water storage. This approach may reduce the energy cost and air pollution.
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The energy management system proposed by [26] allows the users (Smarthome or Smartbuilding)
to exchange the local jointly renewable energy resources. This approach is based on the decentralized
algorithm to optimize the energy from the renewable resource, i.e., to be exchanged with the neighbors,
and to optimize the energy of the distribution network, i.e., to be delivered to the network or extracted
from the network. The similar approach is proposed by [27], in which renewable energy is shared
among the users. The users may lend/borrow the renewable energy to/from the neighbors.

The main objectives of the energy management systems [9–27] are usually to minimize the
energy cost and/or maximize user comfort. In addition to these two optimization objectives, the
objective function of maximizing the energy usage from the local renewable energy source is also
employed [28,29]. Since our proposed system deals with the MAS-based BEMS and without loss of
generality, we may classify the MAS implementation in BEMS as given in Table 2. The MAS-based
BEMS could be classified into three groups, i.e., based-on: the number of criteria to be optimized,
the optimization algorithm, and the implementation platform. In the first group, they are divided
into single-objective optimization [10–17] and multi-objectives optimization [18–23]. Based on the
optimization algorithm, they are divided into the conventional-based optimization techniques [10,
11,13,15,17,21,23] and the artificial intelligent (AI)-based optimization techniques [12,14,16,18–20,22].
Based-on the implementation platform, they are divided into the simulation-based implementation
and the hardware-based implementation.

Table 2. Classification of MAS implementation in BEMS.

Reference
Optimization Objective Optimization Technique Implementation Platform

Single
Objective

Multi
Objective Conventional AI Simulation Hardware

[10] Energy cost -
Sequential
quadratic

programming
- EnergyPlus [30],

AMPL [31] -

[11] Energy cost - ND * - Smart Grid
Simulator [32] -

[12] Energy cost - - Genetic
algorithm

Matlab
Simulink -

[13] Energy cost - ND * - Matlab
Simulink -

[14] Energy cost - - Fuzzy logic - Hardware

[15] Energy cost - ND * - - Hardware

[16] Comfort - - Particle Swarm
Optimization ND * -

[17] Comfort - Incremental
function - Matlab

Simulink -

[18] - Comfort and
Energy cost - Genetic

algorithm
Matlab

Simulink -

[19] - Comfort and
Energy cost - Genetic

algorithm ND * -

[20] - Comfort and
Energy cost - Genetic

algorithm ND * -

[21] - Comfort and
Energy cost

Mixed-integer
programing - Java, Matlab,

Gams -

[22] - Comfort and
Energy cost - Evolutionary

algorithm ND * -

[23] - Comfort and
Energy cost

Defeasible
logics - - Hardware

* ND = Not defined clearly in the paper.
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Most of the BEMSs described previously are simulated by software. The BEMS implementation
on the hardware testbed is developed in [14,15,23,33–35]. The Zigbee [36] networks are commonly
employed as the communication protocol in the lower layer (field layer) such as the sensors and
actuators [14,23,33–35]. While the upper layer (application layer) employs the TCP/IP protocol using the
WiFi network [15,23,33–35]. The main algorithms (optimization techniques) are usually implemented
on the computer server (web-server), equipped with web interfaces.

As discussed previously, the BEMS, especially MAS-based BEMSs, are still rarely implemented
on a hardware platform (more specifically an embedded platform), especially when AI techniques
are adopted for solving the optimization problems. In this paper, we propose a hardware testbed
implementation of the MAS-based BEMS. The novelty of our proposed system is the implementation
of a GA-based optimization technique on an embedded platform to optimize the energy cost and user
comfort in the building using only a few optimized parameters. Our proposed hardware testbed is
focused on the electronics and communication parts for the real-time implementation of the algorithm.
Our proposed MAS consists of the central control agent which is implemented on a Raspberry Pi
module [37], the generator agent and the load agents which are implemented on Wemos modules [38].
The main contributions of our hardware testbed system are fivefold: (a) It implements the genetic
algorithm (GA) technique on the embedded hardware for real-time optimization of the BEMS; (b) It
emulates the generator system and the loads on the embedded hardware; (c) It adjusts the room
temperature and illumination setpoints according to the optimized power; (d) It implements the
popular industrial communication protocol, i.e., Modbus protocol [39] for interfacing between the
agents and the devices; (e) It implements the state of the art communication protocol in the Internet
of Things (IoT) technology, i.e., the Message Queuing Telemetry Transport (MQTT) protocol [40] for
communicating between the agents.

To the best of our knowledge, there are no prior works related to the first and second contributions
or they are very rare. Furthermore, our proposed optimization technique, which is used to minimize the
energy cost while maximizing the user comfort, utilizes a few parameters for calculating the objective
function. Instead of using both the energy cost and the comfort parameters in the objective function
explicitly [18–23,28,29], our method uses the energy cost parameter only, since the comfort parameters
could be represented in the term of energy cost parameter as described in the following. The power
consumption in each room, which is calculated by the load agent, reflects the user comfort (the thermal
comfort and the illumination comfort) of the room, in the sense that high power consumption represents
high comfort, and low power consumption represents low comfort. Then the total power consumptions
of all rooms are considered as the energy cost that should be minimized. The advantage of using this
approach is that only the power consumption data should be sent to the central control agent for the
optimization calculation. The comfort data are handled by each load agent.

Related to the third contribution, compared to [2] where the method to adjust temperature setpoint
is used to minimize the energy cost only, our method considers both the energy cost and user comfort.
While the adoption of Modbus protocol provides a wide range implementation without replacing the
existing sensor and actuator devices.

The selection of the MQTT protocol rather than the Lightweight Machine to Machine (LWM2M)
protocol [41] is discussed as follows. Both the MQTT and the LWM2M protocols are lightweight
protocols, which are suitable for the IoT applications. While the LWM2M protocol has a well-defined
data and device management model, the communication data of the MQTT protocol must be developed
from scratch. However, in the case of our testbed, we may have more flexibility to define the structure
of communication data to fulfill the requirement of our proposed BEMS, when the MQTT protocol
is employed.

The rest of the paper is organized as follows: Section 2 describes our proposed system. Section 3
presents the experimental results and discussion. Conclusions are covered in Section 4.
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2. Proposed System

2.1. System Overview

The architecture of the proposed system is depicted in Figure 1. The proposed BEMS adopts the
MAS to manage the energy and user comfort in a building, more specifically a university building.
The testbed consists of the central control agent, the generator agent, and the load agents. In this
work, the load agents consist of three load agents which are located in the classroom, the laboratory
room, and the office room. Each load agent controls three kinds of loads, namely the lighting, the air
conditioning (AC), and the electrical load such as the computer and the printer. The generator agent
controls the utility grid, the photovoltaic (PV) and the battery systems. Meanwhile, the central control
agent is used to control all the agents.

As described in [8], the MAS-based BEMS can participate in a demand response program, i.e., the
user can change the power consumption to response the changes in the electrical price or the incentive
tariff introduced by the utility grid, due to the availability of the smart metering and intelligent
control system of the BEMS. As illustrated in Figure 1, the load agent, the generator agent, and the
central control agent provide the functionality of smart metering and intelligent control. Further, the
MAS-based BEMS could be extended to interact with the larger Smart Grid system [13]. In the case
of our proposed system, the integration with the Smart Grid could be done easily by extended the
functionality of the central control agent to exchange information with the Smart Grid system such as
the environment and the weather data, the generator, the storage, the loads, and the electrical networks.

In a more complex system such as the smart city [42,43], there are five energy-related activities, i.e.,
the generation, the storage, the infrastructure, the facilities and the transport [42]. In this context, our
proposed BEMS takes part in the facility activity that consumes the energy. The energy management of
smart city as proposed in [43] employs the hierarchical decision control where each subsystem may
have different control decision scheme. Due to the decentralized scheme of our proposed BEMS, it is
suitable to be adopted in such hierarchical decision control architecture.
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Figure 1. Architecture of the proposed system.

Since our proposed system divides a whole system into agents, it provides the flexibility to add
the new agents to fit the requirements, for instance, to be extended to multi-commodity smart energy
systems [44], where the hybrid energy systems (the heat and the electricity) are controlled. It is also
possible to extend the agents to form the group of interconnected users/buildings with the shared
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generator agents as proposed in [45]. It is worthy to note that several MAS-based BEMS as illustrated
in Figure 1 could be interconnected and coordinated in the energy district system as proposed in [46],
where the several central control agents appoint a coalition coordinator to manage the energy in
the district.

As shown in Figure 1, agents are implemented on the embedded systems in which the load
agents and the generator agent are implemented on Wemos modules, while the central control agent
is implemented on a Raspberry Pi module. A lighting simulator, AC simulator, and electrical load
simulator are used to simulate the lighting, the AC, and the electrical load in the classroom, respectively.
To provide a flexible implementation, a popular Modbus TCP/IP protocol is employed to communicate
between the load agent and the devices. Fortunately, the Wemos is equipped with a built-in WiFi
module, thus the Modbus TCP/IP protocol could be implemented easily via WiFi communication.
A PV-battery simulator is developed to simulate the PV-battery system. Similar to the classroom, the
simulator is implemented on Wemos modules and communicates with the generator agent using the
Modbus TCP/IP protocol. The simulators in the laboratory room and the office room are developed
in a rather different way. Instead of implementing the simulators on the separate modules, they are
implemented in the same Wemos module with the load agent.

The objective of our proposed BEMS is to minimize the energy extracted from the grid while
maximizing the user comforts. It deals with the multi-objective optimization problem. Instead of
using the scheduling techniques [47,48], that manages the operation time of the controllable loads, our
method controls the amount of power required by the loads. Thus it offers better control, in the sense
that rather than switching-on/off the loads in a specific time interval (one-hour [47,48]), our method
can adjust the power consumption of the loads in real-time, i.e., in one-minute intervals.

In this work, we propose a GA technique to solve the optimization problem and implement it
on the control central agent. To provide a real-time implementation of the BEMS, the control central
agent is implemented on a Raspberry Pi module. The Raspberry Pi communicates with the other
agents (Wemos) via WiFi communication. Further, the MQTT protocol, a lightweight IoT protocol,
is employed as the communication protocol. Compared to the method in [49] that combining the
SCADA system and the Matlab software for implementing the optimization technique, our proposed
method offers a simple and flexible approach due to the embedded hardware implementation. Thanks
to the Raspberry Pi module that provides a small and powerful embedded computer. Further, our
proposed testbed implements the Modbus protocol which is commonly used in the SCADA system.

2.2. Multi Agent Systen

To provide an easy explanation, the variables used in the proposed MAS-based BEMS are listed in
Table 3.

Table 3. Description of variables in the proposed MAS-based BEMS.

Variable Name Abbreviation Unit Type

Power consumption of the classroom p1 W Real

Power consumption of the office room p2 W Real

Power consumption of the laboratory room p3 W Real

Minimum power consumptions of the classroom p1min W Integer

Minimum power consumption of the office room p2min W Integer

Minimum power consumption of the laboratory room p3min W Integer

Maximum power consumptions of the classroom p1max W Integer

Maximum power consumption of the office room p2max W Integer

Maximum power consumption of the laboratory room p3max W Integer

PV power pPV W Integer

Battery power pBat W Real
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Table 3. Cont.

Variable Name Abbreviation Unit Type

Maximum power that could be supplied by the utility grid PGridmax W Integer

Power required by the classroom W Real

Power required by the office room W Real

Power required by the laboratory room W Real

Power supplied by the utility grid W Real

Outdoor temperature Outttemp
◦C Real

Room temperature Rtemp
◦C Real

Temperature setpoint ◦C Real

Cold air flow from the cooler into the room Qdot J/h Real

Temperature of cold air from the cooler TAC ◦C Real

Air mass flow rate through the cooler Mdot kg/h Real

Thermal capacity of air at constant pressure c J/kg
K Real

Mass of air inside the room Mair kg Real

Equivalent thermal resistance of the room Req K/W Real

AC power PowerAC W Real

A power constant Cpower Real

Sampling time ∆t s Integer

Outdoor illumination lx Integer

Room illumination lx Integer

Illumination setpoint % Integer

Lighting power PowerLight W Real

Luminous flux φ lm Real

Luminous efficacy η lm/W Real

Load power W Real

Number of PV cell in series NS Integer

Number of PV cell in parallel Np Integer

Solar irradiation irrad W/m2 Integer

Output current of the PV iout A Real

PV voltage VPV V Real

State of the charge SOC % Real

Charging/discharging current Ichg A Real

Capacity of battery CBat Ah Integer

2.2.1. Central Control Agent

The central control agent is the main agent that is responsible to manage the energy in the building
by solving the multi-objective optimization problem as described in the following. The objective is to
minimize power consumption, while maximizing the user comforts (temperature and lighting). Our
multi-objective optimization problem is formulated using four objective functions and four constraints.
The objective functions are expressed below

Minimize (p1 + p2 + p3) (1)

Maximize (p1) (2)
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Maximize (p2) (3)

Maximize (p3) (4)

subject to
p1min ≤ p1 ≤ p1max (5)

p2min ≤ p2 ≤ p2max (6)

p3min ≤ p3 ≤ p3max (7)

p1 + p2 + p3 − (pPV + pBat) ≤ pGridmax (8)

Equation (1) represents the objective for minimizing the total power consumed by the classroom,
the office room and the laboratory room, while Equations (2)–(4) represents the objective for maximizing
the user comfort in each room. It is noted here that instead of using the comfort index directly, we use
the power consumption to represent user comfort. Therefore maximizing the user comfort could be
defined by maximizing the power consumption of each room (Equations (2)–(4)). This approach could
be realized due to the fact that when the temperature and the illumination comforts to be increased, the
power consumption will increase. The lower user comfort requires lower power consumption. This
approach will reduce the number of parameters to be optimized. The objective functions in Equations
(1)–(4) only require three variables, i.e., p1, p2, p3 that should be provided in the central control agent.
Thus it offers an efficient data exchange between the agents.

The constraints are formulated using the inequalities as expressed by Equations (5)–(8).
The constraints in Equations (5)–(7) are the lower and upper bounds of the power consumptions which
are used to ensure that the optimized parameters p1, p2, p3 fall in the allowable range of the user
comfort. While the constraint in Equation (8) ensures that the power consumption of the building
could be supplied by the generator systems (the renewable energy resources and/or the utility grid).

To solve the above multi-objectives optimization problem, we adopt the Multi-Objective Genetic
Algorithm (MOGA), more specifically the NSGA-II as proposed by [50]. The MOGA is implemented
on the central control agent to find the optimal power required by the building based on the current
power consumptions and the generated power as illustrated in Figure 2. As shown in the figure,
the inputs of the central control agent are the minimum and maximum power consumptions of the
classroom, the office room, and the laboratory room, the power produced by the battery and the PV.
Then these values are used by the MOGA to solve the multi-objective optimization as expressed in
Equations (1)–(8). The outputs of the central control agent are the optimal values of power required by
the classroom, the office room, and the laboratory room which are sent to the respective agents.

The power required by the classroom, the office room, and the laboratory room are the optimal
values that should be consumed by the respective loads. Then the respective load agent control its
loads to satisfy the power requirement using the strategy as described in the following section.
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2.2.2. Load Agent

The load agents in the classroom, the office room and the laboratory room are similar, in the sense
of the control function. However in our testbed they have the different device protocols, where the
load agent in the classroom communicates with the load devices using the Modbus TCP/IP protocol
via the WiFi communication, while the data exchange between the load agents and the devices in the
office room and the laboratory room are performed directly in the Wemos module.

Figure 3 illustrates the input and output data of the load agent. As shown in the figure, the inputs
are the required power, the outdoor temperature, and the outdoor illumination. These data are used
by the fuzzy logic controllers (FLCs) to determine the optimal room temperature and illumination
setpoints. There are two FLCs, one for controlling the room temperature setpoint (called as FLC-T), and
another one for controlling the room illumination setpoint (called as FLC-I). The inputs of FLC-T are
the required power and the outdoor temperature, while the output is the room temperature setpoint.
The membership functions of the required power, the outdoor temperature, and the room temperature
setpoint are shown in Figure 4, where each variable has three linguistic values, i.e., Low (LOW),
Medium (MED), and High (HIGH). The values of the required power (658 W–1137 W), the outdoor
temperature (26 ◦C–30 ◦C), and the room temperature setpoint (20 ◦C–25 ◦C) are normalized to 0–1.
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The fuzzy rules of FLC-T are given in Table 4, where the rules are determined by considering the
objectives as follows. It is worthy to note that the AC system discussed here is applicable for the hot
season where the AC system is controlled to decrease the outdoor temperature (i.e., the cooling system)
to the desired comfortable room temperature. Therefore the consumed power of the AC system will
increase when the room temperature setpoint is decreased and vice versa.

- When the required power is low (LOW), then it is better to set the room temperature setpoint
follows to the level of the outdoor temperature to minimize the consumed power of the AC.
Thus the fuzzy rules given in Table 4 show that when the required power is LOW, the room
temperature setpoint is set to LOW when the outdoor temperature is LOW, it is set to MED when
the outdoor temperature is MED, and it is set to HIGH when the outdoor temperature is HIGH.

- When the required power is high (HIGH), it allows the AC to consume high power. Thus the
room temperature setpoint could be set to LOW for all outdoor temperature conditions.

- When the required power is medium (MED), it is better to set the room temperature setpoint to
the medium (MED) regardless of the outdoor temperature conditions.

Table 4. Fuzzy rules of FLC-T.

Outdoor Temperature

LOW MED HIGH

Required
Power

LOW LOW MED HIGH

MED MED MED MED

HIGH LOW LOW LOW

The inputs of FLC-I is the required power and the outdoor illumination, while the output is the
room illumination setpoint. The membership functions of the required power, the outdoor illumination,
and the room illumination setpoint are shown in Figure 5, where each variable has three linguistic
values, i.e., Low (LOW), Medium (MED), and High (HIGH). The values of the required power
(658 W–1137 W), the outdoor illumination (1000 lx–10,000 lx), and the room illumination setpoint
(300 lx–500 lx) are normalized to 0–1.

The fuzzy rules of FLC-I are given in Table 5, where the rules are determined by considering
the objectives as follows. It is noted that the property of the comfort value of the illumination is the
opposite from the one of the temperature, in the sense that the temperature comfort increases when
the room temperature setpoint is decreased, while the illumination comfort increases when the room
illumination setpoint is increased. Therefore the fuzzy rules of the FLC-I are defined below:

- When the required power is low (LOW), then it is better to set the room illumination setpoint
follows to the level of the outdoor illumination to minimize the consumed power of the lighting.
Thus the fuzzy rules given in Table 5 show that when the required power is LOW, the room
illumination setpoint is set to LOW when the outdoor illumination is LOW, it is set to MED when
the outdoor illumination is MED, and it is set to HIGH when the outdoor illumination is HIGH.

- When the required power is high (HIGH), it allows the lighting to consume high power. It means
that the room illumination setpoint could be set to the HIGH for all outdoor temperature conditions.

- When the required power is medium (MED), it is better to set the room illumination setpoint to
the medium (MED) regardless of the outdoor illumination condition.



Energies 2019, 12, 3655 12 of 29

Table 5. Fuzzy rules of FLC-I.

Outdoor Illumination

LOW MED HIGH

Required
Power

LOW LOW MED HIGH

MED MED MED MED

HIGH HIGH HIGH HIGH
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2.2.3. Generator Agent

The generator agent is used to manage the battery charging/discharging according to the state of
charge (SOC) of the battery as illustrated in Figure 6. Besides controlling the battery, the generator
agent receives the generated power from the PV-battery system and sends the data to the central
control agent as shown in Figure 1.
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The battery charging/discharging is controlled using the simple strategy as expressed by Equations
(9)–(11). Using these rules, the battery could be effectively operated to supply the load (discharging)
and/or saving the PV power based-on the SOC of the battery. Equation (9) is used to prevent the
over-discharge, while Equation (11) is used to prevent the over-charge. Equation (10) is used to operate
the battery in both charging and discharging modes

IF SOC < 0.3 THEN Charging is ON and Discharging is OFF (9)

IF 0.3 ≤ SOC ≤ 0.7 THEN Charging is ON and Discharging is ON (10)

IF SOC > 0.7 THEN Charging is OFF and Discharging is ON (11)
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2.3. Load and Generator Simulators

2.3.1. AC Simulator

The model of an air conditioning (AC) system is a modified version of the model in [51]. Since the
model in [51] is the heater system, we modify it to become the cooling system to fulfill with our proposed
system. The important contribution of our work is that the model is simulated in the embedded system
(Wemos module) for real-time implementation, especially for the electronic/communication aspects.
The AC simulator consists of two models: the AC (cooling system) and the thermodynamic model of
a room. The AC system is expressed by Equation (12), while the thermodynamic model of a room
is expressed by Equation (13). The electrical power consumed by the room is simplified by a linear
function of the difference between the outdoor temperature and the room temperature as expressed by
Equation (14):

Qdot(k) = (Rtemp(k) − TAC)Mdot c (12)

Rtemp(k + 1) = Rtemp(k) +
∆t

Mairc

(
Outtemp(k) −Rtemp(k)

Req
−Qdot(k)

)
(13)

PowerAC(k) = Cpower(Outtemp(k) −Rtemp(k)) (14)

The block diagram of AC simulator is illustrated in Figure 7, where it has two inputs, i.e., the
outdoor temperature which is predefined data stored in the Wemos module, and the room temperature
setpoint which is received from the load agent (see Figure 1). The AC simulator sends the power
consumption, the room temperature and the outdoor temperature to the load agent.
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To provide real-time implementation, we adopt the Modbus TCP/IP protocol for interfacing
between the AC simulator and the load agent, where the load agent acts as the master device and the
AC simulator is the slave device. The Modbus data such as the register address and the command
type are listed in Table 6. To show that the adopted devices are available commercially, the name of
the manufacturer is given in the table. As shown in the table, the Modbus data for the AC power
consumption is provided by the power meter [52], while Modbus data for the room temperature, the
temperature setpoint and the outdoor temperature are provided by the Modbus thermostat device [53].

Table 6. Modbus data of the AC simulator.

IP
Address

Register
Address

Modbus
Command Variable Factor

(Unit)
Device (Manufacturer

Name)

192.168.3.2

06H
03H

AC power (LOW)
× 0.1 W Power meter (Pilot meter

SPM91 [52])07H AC power (HIGH)

04H 03H Room temperature × 0.01 ◦C
Thermostat (Neptronic

Modbus Thermostat [53])05H 06H Temperature setpoint × 0.1 ◦C

0CH 03H Outdoor temperature × 0.01 ◦C

2.3.2. Lighting Simulator

The power consumption of the lighting in the room is calculated by dividing the luminous flux to
the luminous efficacy as given in Equation (15):

PowerLight = φ/ηpower (15)

In the experiment, the LED lamp is used, where the luminous efficacy is 100 lm/W, while
the daylight factor (DF) of the room is 2%, which means that the room illumination is 2% of the
outdoor illumination.

The block diagram of lighting simulator is illustrated in Figure 8. It has two inputs: the outdoor
illumination which is a predefined data stored in the Wemos module, and the room illumination
setpoint which is received from the load agent. The lighting simulator sends the data of the power
consumption, the room illumination and the outdoor illumination to the load agent.
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The Modbus data of the simulator is given in Table 7. Similar to the AC simulator, the Modbus
data for the lighting power consumption is provided by the power meter [52]. The Modbus data for
the room illumination is provided by the daylight sensor [54]. The LED dimmer [55] provides the
Modbus data for the room illumination setpoint. The outdoor light sensor [56] provides the Modbus
data for outdoor illumination.
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Table 7. Modbus data of lighting simulator.

IP
Address

Register
Address

Modbus
Command Variable Factor

(Unit)
Device (Manufacturer

Name)

192.168.3.3

06H
03H

Lighting power (LOW)
× 0.1 W

Power meter (Pilot meter
SPM91 [52])07H Lighting power (HIGH)

08H 03H Room illumination × 1.0 lx
Daylight sensor

(TRANS-MRB-510
series [54])

10H 06H Room illumination
setpoint

× 1.0 (% LED
brightness)

LED Dimmer (OPTO 22
NETWORK LED
DIMMER [55])

3CH
03H

Outdoor illumination
(LOW) × 1.0 lx

Outdoor light sensor
(Li65 + RS485 Modbus

Thermokon [56])
3DH Outdoor illumination

(HIGH)

2.3.3. Electrical Load Simulator

The block diagram of electrical load simulator is illustrated in Figure 9. The electrical load is
modeled with the load profile stored in the Wemos module. The simulator sends the data of power
consumption to the load agent using the Modbus data as given in Table 8, where it only contains the
power consumption data provided by the power meter [52].
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Table 8. Modbus data of the electrical load simulator.

IP
Address

Register
Address

Modbus
Command Variable Factor

(Unit)
Device (Manufacturer

Name)

192.168.3.4
06H

03H
Electrical load power (LOW)

× 0.1 W Power meter (Pilot
meter SPM91 [52])07H Electrical load power (HIGH)

2.3.4. PV-Battery Simulator

The relationship between current and voltage (I-V) of the PV is expressed by Equations (16)–(18) [57],
where NS = 4, NP = 65 and VPV = 48 V. The battery is modeled by its SOC as expressed by
Equation (19) [58]:

ISC = irrad NP/1000 (16)

id = NPe−9(e((vPV/(36NS)+0.05iout/NP)/26e−3)−1)) (17)

iout = ISC − id − vPV(1/(432NS)) (18)

SOC(k) = SOC(k− 1) +
Ichg

CBat
(19)
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The block diagram of the PV-battery simulator is illustrated in Figure 10. The PV-battery simulator
receives the battery charging/discharging control signal from the generator agent. The predefined
data of the solar irradiation is stored in the Wemos module which used to produce the PV power as
defined by Equations (16)–(18). Then the PV power, the battery power, and the battery SOC are sent to
the generator agent using the Modbus data as given in Table 9. The Modbus data of the PV power
is provided by the Gridtie inverter device [59]. The battery power, the battery SOC and the battery
charging/discharging control are provided by the battery charger controller [60].Energies 2019, 12, x FOR PEER REVIEW 16 of 29 
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Table 9. Modbus data of the PV-battery simulator.

IP
Address

Register
Address

Modbus
Command Variable Factor

(Unit)
Device (Manufacturer

Name)

192.168.5.2

004CH
03H

PV power (LOW)
× 1 W Gridtie inverter (Schneider

Gridtie device [59])004DH PV power (HIGH)

310EH
04H

Battery power (LOW)
× 0.01 W

Battery charger controller
(EPEVER Battery Charger

[60])

310FH Battery power (HIGH)

311AH 04H SOC × 0.01%

00H
05H

Charging on/off
1 = on,
0 = off

02H Discharging on/off
1 = on,
0 = off

2.4. Communication Protocol

As described in the previous section, the MQTT protocol is adopted as the communication protocol
between the central control agent and the other agents (the load agents and the generator agent). MQTT
is lightweight messaging protocol that runs on the Transmission Control Protocol/Internet Protocol
(TCP/IP). It works based on the publish-subscribe mechanism, where the MQTT broker is required to
establish a connection between the publisher and the subscriber.

The configuration of MQTT protocol is illustrated in Figure 11. In the system, the MQTT broker
and the central control agent are installed on same Raspberry Pi module. Thus the central control
agent communicates with the broker via a localhost connection. As shown in the figure, each agent
publishes and subscribes the specific topics as described in the following.

In Figure 11, an arrow with “Publish-C2CC” means that the load agent in the classroom publishes
the “C2CC” topics, while an arrow with “Subscribe-CC2C” means the load agent subscribes the “CC2C”
topics. The list of the topics is given in Table 10. As shown in the table, all topics that are published by
the load agents and the generator agent are subscribed by the central control agent, thus all data sent
by the load agents and the generator agent will be received by the central control agent. Meanwhile,
the topics that are subscribed by load agents and the generator agent are published by the central
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control agent, thus the data that is required by the load agents and the generator agent will be provided
by the central control agent.
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Table 10. Published and subscribed topics by the agents.

Agent Name Topic
Remark

Publish Subscribe

Load Agent
(Classroom)

1. Classroom-Power

C2CC2. Min-Classroom-Power

3. Max-Classroom-Power

1. Classroom-Required-Power CC2C

Load Agent
(Office room)

1. Office-Power

O2CC2. Min-Office-Power

3. Max-Office -Power

1. Office-Required-Power CC2O
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Table 10. Cont.

Agent Name Topic
Remark

Publish Subscribe

Load Agent
(Laboratory room)

1. Laboratory-Power

L2CC2. Min-Laboratory-Power

3. Max-Laboratory-Power

1. Laboratory-Required-Power CC2L

Generator Agent
1. PV-Power

G2CC
2. Battery-Power

1. Grid-Required-Power CC2G

Central Control
Agent

1. Classroom-Required-Power

CC2A
2. Office-Required-Power

3. Laboratory-Required-Power

4. Grid-Required-Power

1. Classroom-Power

A2CC

2. Min-Classroom-Power

3. Max-Classroom-Power

4. Office-Power

5. Min-Office-Power

6. Max-Office-Power

7. Laboratory-Power

8. Min- Laboratory -Power

9. Max- Laboratory -Power

10. PV-Power

11. Battery-Power

3. Experimental Results and Discussion

3.1. Model Validation

To verify our proposed model, we evaluate the functionality of the proposed embedded simulators
and conduct the sensitivity analysis of the FLC model. To evaluate the AC simulator in the classroom,
we record the data of room temperature setpoint, the outdoor temperature, the room temperature,
and the power consumption during the simulation into the Wemos memory. The recorded data is
illustrated in Figure 12. The time sampling of the simulator is one second, and the hourly data is
simulated in one-minute interval. It is noted here that from 0 to 59 seconds and from 300 to 359 seconds,
the classroom is not occupied and the AC is switched off. Therefore during these time intervals, the
power consumptions are zero and the room temperature is the same as the outdoor temperature.
As shown in the figure, the AC simulator works properly, in the sense that the room temperature
follows the temperature setpoint, and the power consumption changes proportionally to the difference
between the outdoor temperature and the temperature setpoint. The power consumption increases
when the difference between the outdoor temperature and the temperature is increased.

The profile of illumination and power consumption of the lighting simulator is illustrated in
Figure 13. Similarly to the AC simulator, the lighting system is switched-off during 0 to 59 seconds and
300 to 359 seconds. In the figure, the natural illumination is the room illumination which is caused by
the outdoor lighting (sunshine). As shown in the figure, the room illumination is able to follow the
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illumination setpoint, except at the time during the previous periods. Further, the power consumption
shows the proper behavior, i.e., it increases when the difference between the illumination setpoint and
the natural illumination is increased.
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Figure 13. Profile of illumination and power consumption of the lighting simulator.

To assess the sensitivity of the parameters of our proposed FLC, we conduct the sensitivity
analysis as described in the following. Two sensitivity analysis methods, i.e., the elementary effect (EE)
method [61], and the Fourier Amplitude Sensitivity Testing (FAST) method [62] are employed. The EE
method is used to find the influential parameters of the model, while the FAST method is used to find
the sensitivity indices of the parameters. The EE and FAST methods are calculated using the SAFE, a
Matlab Toolbox for global sensitivity analysis provided by [63].

The mean and standard deviation of EEs of the FLC inputs of the FLC-T and the FLC-I are
illustrated in Figure 14a,b respectively. In Figure 14a, the red dot and the blue dot represent the
normalized required power and the normalized outdoor temperature respectively. As shown in
the figure, the mean and the standard deviation of the required power are higher than the outdoor
temperature. Thus it could be concluded that the required power input is more influential than the
outdoor temperature input. This result could be understood from the observation of the fuzzy rules of
FLC-T shown in Table 4, where the changes of linguistic values (LOW, MED, HIGH) of the outdoor
temperature do not change the output when the linguistic values of required power is MED or HIGH.
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The changes of the outdoor temperature affect the output, only when the value of required power is
LOW. Therefore it is clearly shown that the influential effect of the required power is higher than the
outdoor illumination. In Figure 14b, the red dot and the blue dot represent the normalized required
power and the normalized outdoor illumination respectively. As shown in the figure, the mean and
the standard deviation of the required power are higher than the illumination. Thus the required
power input is more influential than the outdoor illumination input. Similar to the FLC-T discussed
previously, the result could understood from the examination of fuzzy rules of FLC-I shown in Table 5.
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Figure 14. Mean and standard deviation of EEs of FLC inputs: (a) Normalized required power and
outdoor temperature of FLC-T; (b) Normalized required power and outdoor illumination of FLC-I.

The sensitivity indices calculated using the FAST method are shown in Figure 15, where Figure 15a
shows the sensitivity indices of the FLC-T inputs, i.e., the normalized required power and the
normalized outdoor temperature, while Figure 15b shows the sensitivity indices of the FLC-I inputs,
i.e., the normalized required power and the normalized outdoor illumination.
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Figure 15. Sensitivity index of FLC inputs: (a) Normalized required power and outdoor temperature
of FLC-T; (b) Normalized required power and outdoor illumination of FLC-I.

Both figures show that the sensitivity index of the required power input is higher than the outdoor
temperature input and the outdoor illumination input. These results conform to the previous EE
analysis. The sensitivity analysis results show that it is reasonable to select the required power, the
outdoor temperature, and the outdoor illumination as the inputs of the proposed FLCs, even though
the last two inputs have a less influential effect compared to the required power input.
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3.2. Performance of Real-Time Implementation

Since the objective of the proposed testbed is for testing the real-time implementation of the
building energy management system, we conduct several experiments to verify our method in the
term of the real-time implementation such as the execution time of the algorithm, the sampling time of
the agents, and the efficiency of the optimization technique.

The execution times of FLCs which are implemented on the Wemos modules are given in Table 11.
As shown in the table, the execution time of FLC is about 10 to 12 ms. Thus to execute both FLC-T and
FLC-I on a Wemos module, it requires about 22 ms. The results verify that the proposed embedded
agent using Wemos is suitable for a real-time implementation of the FLC algorithm. Since the sampling
time of an agent is determined by the execution time of the algorithm and the transmission time of the
communication protocol employed, we examine the sampling time of each agent as given in Table 11.
Since the data communication between the load agents in the office room and the laboratory room with
the simulators are performed directly, the sampling times of these load agents are quite fast, i.e., about
1.25 ms. Meanwhile, the sampling times of the agents with the Modbus protocol, i.e., the load agent in
the classroom and the generator agent are 6.59 s and 2.63 s respectively. These results indicate that the
sampling time is very affected by the transmission time of the Modbus protocol. Further, since the
number of the Modbus slave devices in the classroom is higher than the generator agent, the sampling
time is longer due to the fact that the master must poll the slaves.

The sampling times of the load agent in the classroom and the load agent in the office room are
illustrated in Figures 16 and 17, respectively. In the figures, the profiles of room temperature setpoints
against time are shown, where the updated data are indicated with the marks on the graphs. Figure 16
shows that the room temperature setpoints in the classroom are updated in an average time of 6 s,
while Figure 17 shows that the room temperature setpoints in the office room are updated in an average
time of 1 s.

Table 11. Execution time and sampling time.

Location Parameter Average Value

Classroom
Execution time of FLC-T 12.13 ms

Execution time of FLC-I 12.02 ms

Sampling time of Load Agent 6.59 s

Office room
Execution time of FLC-T 11.01 ms

Execution time of FLC-I 10.99 ms

Sampling time of Load Agent 1.25 s

Laboratory room
Execution time of FLC-T 12.10 ms

Execution time of FLC-I 12.01 ms

Sampling time of Load Agent 1.25 s

Generator Agent Sampling time of Generator Agent 2.63 s

Central Control Agent Execution time of GA 14.25 s

Sampling time of Central Control Agent 16.60 s

The main contribution of our proposed system in the real-time implementation of the optimization
technique using GA is shown in Table 11, where the execution time of GA on the Raspberry Pi module
is 14.25 s (the number of population is 100 and the number of iteration is 30). While the sampling time
of the central control agent is 16.60 s. The result implies that the communication task performed by
the MQTT protocol only contributes a small portion of the time. Most of the time is consumed by
the GA. It also suggests that the lightweight protocols such as the MQTT and the LWM2M protocols
are the effective communication protocols between the agents in the MAS. Relying on the sampling
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time of the central control agent which is lower than one minute, we may conclude that our proposed
testbed is suitable for implementing the BEMS, where the updating process is done in hourly basis
even every minute.
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Figure 17. Sampling time of the load agent in the office room.

3.3. Effectiveness of Optimization Technique

To verify the effectiveness of the proposed optimization technique, we evaluate the comfort index
and the energy extracted from the grid. The objective is to maximize the comfort index while minimizing
the energy extracted from the grid. The temperature comfort index (CIT) and the illumination comfort
index (CII) are defined based on [64] as follows:

CIT = 1−
(

Tempopt − Tempmin

Tempmax − Tempmin

)2

(20)

CII = 1−
(

Illummax − Illumopt

Illummax − Illummin

)2

(21)

where Tempopt, Tempmin, Tempmax is the optimized room temperature, the allowed minimum and
maximum room temperatures respectively, Illumopt, Illummin, Illummax is the optimized room
illumination, the allowed minimum and maximum room illuminations respectively. From Equations
(20) and (21), the maximum comfort is achieved when the value of CIT or CII is 1, and the minimum
comfort is achieved when the value is 0.

In the experiments, we compare our proposed method that adjusts the temperature and the
illumination setpoints to the existing method proposed by [2] (called as EXT), the fixed setpoint
methods, i.e., the setpoint is set to the minimum comfort (called as Min-comfort), the setpoint is set to
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the middle comfort (called as Mid-comfort), and the setpoint is set to the maximum comfort (called
as Max-comfort). The EXT [2] employs the FLC to adjust the temperature. The difference with our
approach is described briefly in the following. Instead of using the required power and the outdoor
temperature as the fuzzy inputs, the EXT uses the electricity price and the outdoor temperature. In this
case, the electricity price has two linguistic values (PEAK, MD), whose membership functions are
shown in Figure 18. As shown in the figure, the electricity price is expressed in respect to the time of
use, which is adopted from [2]. While the membership function of the outdoor temperature and the
temperature setpoint are the same with our proposed method. The fuzzy rules are given in Table 12.
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Table 12. Fuzzy rules of EXT.

Outdoor Illumination

LOW MED HIGH

Electricity
Price

PEAK HIGH HIGH HIGH

MD LOW MED HIGH

The room temperature setpoints for Min-comfort, Mid-comfort, and Max-comfort are set to 25 ◦C,
22.5 ◦C, and 20 ◦C respectively. The room illumination setpoints for Min-comfort, Mid-comfort, and
Max-comfort are set to 300, 400 and 500 lx, respectively. The data of solar irradiation, the outdoor
temperature, the outdoor illumination, and the electrical load from 7 h to 17 h given in Table 13 are
used during comparisons.

Table 13. Data inputs used in the experiments.

Time
(Hour)

Solar Irradiation
(W/m2)

Electrical Load Power (W) Outdoor
Temperature (◦C)

Outdoor
Illumination (lx)Classroom Office Room Laboratory

7 400 0.0 0.0 0.0 25.5 5000

8 500 350.0 400.0 2000.0 25.5 5000

9 700 350.0 400.0 2000.0 25.5 5000

10 900 350.0 400.0 2000.0 27.0 5000

11 1000 350.0 400.0 2000.0 27.0 10,000

12 800 0.0 400.0 2000.0 29.0 10,000

13 500 350.0 400.0 2000.0 30.0 10,000

14 300 350.0 400.0 2000.0 30.0 1000

15 0 350.0 400.0 2000.0 28.0 1000

16 0 350.0 400.0 2000.0 27.0 1000

17 0 0.0 0.0 2000.0 27.0 0
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The results of the comfort index and the energy extracted from the grid for five methods
(Min-comfort, Mid-comfort, Max-comfort, Proposed, EXT) are given in Table 14. It is clearly shown
that the Max-comfort achieves the highest comfort index, however the energy extracted from the grid
is also highest. The lowest energy extracted from the grid is achieved by the Min-comfort, however
the comfort index is also lowest. The energy extracted from the grid of the EXT is the second lowest,
but the comfort index is also the second lowest. Our proposed method optimizes both comfort index
and energy extracted from the grid, where it achieves the comfort index of 0.7866, while the energy
extracted from the grid is 21,773.06 Wh. These optimized values are better than the ones obtained by
setting the setpoint to the middle value (Mid-comfort).

Table 14. Comfort index and energy extracted from grid.

Parameter Min-Comfort Mid-Comfort Max-Comfort EXT Proposed

Classroom
CIT 0.0961 0.7325 0.7409 0.3144 0.7376

CII 0 0.7500 1 0.7780 0.7780

Laboratory
room

CIT 0.1720 0.7246 0.7340 0.3714 0.7279

CII 0 0.7500 1 0.8240 0.8240

Office room
CIT 0.1630 0.7638 0.9480 0.3614 0.8288

CII 0 0.7500 1 0.8230 0.8230

Average CIT 0.1437 0.7403 0.8076 0.3491 0.7648

Average CII 0 0.7500 1 0.8083 0.8083

Average Comfort index 0.0719 0.7452 0.9038 0.5787 0.7866

Energy extracted from
grid (Wh) 15,664.60 22,988.09 23,130.34 19,964.84 21,773.06

By comparing our proposed method with the EXT, we may examine that the since the EXT
adjusts the temperature setpoint according to the time of use (the electricity price) and the outdoor
temperature, and due to the fact that the electricity price only changes twice, i.e., in the morning and
the afternoon (see Figure 18), the EXT fails to adjust the temperature setpoint, where the outdoor
temperature fluctuates hourly. Furthermore, the FLC in the EXT tends to optimize the energy cost only
as shown with the lower energy extracted from the grid. Contrary, our proposed method considers the
required power to adjust the temperature setpoint. The required power is the power that should be
consumed to achieve the optimal values of the energy cost and the user comfort. Thus the resulted
temperature setpoint accommodates both parameters. Therefore the energy extracted from the grid
and the comfort index of our proposed method is the optimal values.

Figures 19–21 illustrate the comparison of temperature comfort index, the illumination comfort
index in the office room, and the energy extracted from the grid of five methods. Figure 19 shows
that during 8 h to 17 h, the temperature comfort indices of Min-comfort, Mid-comfort, and EXT
oscillate. The oscillation is caused by the thermostat control used for controlling the AC. Meanwhile,
the temperature comfort index of our proposed method varies to find the optimal value and at the same
time reduces the oscillation effect of the thermostat control. The figure also shows that the comfort
index of the EXT is in the middle between Mid-comfort and the Min-Comfort.

In Figure 20, the profiles of the illumination comfort index do not show the dynamic behavior
compared to Figure 19 due to fact the illumination model is simple. Since the EXT does not consider
the illumination comfort index, it is not shown in Figure 20. By observing Figures 19 and 20, the profile
of temperature comfort index of our proposed method is similar to the illumination comfort index of
or proposed method. This result could be understood from the fact that both FLC controller (FLC-T
and FLC-I) have similar membership functions and the fuzzy rules.
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Figure 21 shows that the energy extracted from the grid of Min-comfort is always the lowest one,
however since its comfort indices as shown in Figures 19 and 20 are also the lowest ones, we could not
adopt this method. The same results are also achieved by the EXT, where as shown in the Figure 21,
the energy extracted from the grid is lower than our proposed method, however the comfort index is
also lower.

It is worth noting that compared to Max-comfort and Mid-comfort, the energy profile extracted
from the grid of our proposed method is lower than both methods. Therefore the effectiveness of our
proposed in optimizing the comfort index and energy extracted from the grid is verified.

4. Conclusions

An embedded platform for implementing the multi agent system (MAS) in the building energy
management is proposed. The proposed MAS consists of the load agent, the generator agent, and the
central control agent. The genetic algorithm (GA) is implemented on the central control agent to find
the optimal power required by the load agents based on the availability of the PV-battery power and the
requirement of the user comforts. The proposed objective functions require a few parameters, thus the
data exchange between the agents could be performed efficiently. To provide a flexible implementation
in the existing building infrastructure and to integrate with the state of the art IoT technology, our
testbed employs the industrial Modbus protocol and the MQTT protocol, which are implemented on
the low cost embedded platform. In the experiments, the execution time, the communication protocols
and the sampling time of the embedded testbed are evaluated. The experiments results show that our
proposed testbed is able to maximize the temperature and illumination comforts while minimizing the
energy in a real-time manner. Further, the effectiveness of the optimization technique to optimize the
energy cost and the user comfort of the building is verified.

In future, the testbed system will be extended to cope with the complex building energy
management by employing the complex models and advanced optimization algorithms. Further, the
electrical system will be considered in the tested.
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