

2019 IEEE International Conference on Mechatronics and Automation

August 4 - 7, 2019 Tianjin, China

Additional copies of Conference Proceedings of 2019 IEEE International Conference

on Mechatronics and Automation (ICMA) may be ordered from:

IEEE Service Center 445 Hoes Lane Piscataway, NJ 08854 U.S.A.

Copyright and Reprint Permission:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2019 by IEEE.

IEEE Catalog Number (XPLORE):	CFP19839-ART
ISBN (XPLORE):	978-1-7281-1699-0
Online ISSN (XPLORE):	2152-744X
IEEE Catalog Number (CD-ROM):	CFP19839-CDR
ISBN (CD-ROM):	978-1-7281-1697-6
IEEE Catalog Number (PRINT):	CFP19839-PRT
ISBN (PRINT):	978-1-7281-1698-3

Foreword

On behalf of the IEEE ICMA 2019 Conference Organizing Committee, it is our great pleasure, an honor, and a privilege to welcome you to Tianjin for the 2019 IEEE International Conference on Mechatronics and Automation. This conference reflects the growing interests in the broad research areas of mechatronics, robotics, sensors and automation.

ICMA 2019 marks the 16th edition of the IEEE ICMA annual conference series. We are proud to announce that a high number of **682** papers were submitted from **28** countries and regions, including **658** contributed papers, **24** papers for organized sessions, and **449** papers were accepted for oral or poster presentation at the conference after a rigorous full-paper review process, achieving an acceptance rate of less than **66%**. Presentations at ICMA 2019 are organized in 7 parallel tracks, for a total of **61** sessions, including **1** poster session, taking place during the three conference days. We are fortunate to be able to invite four distinguished speakers to deliver Keynote Speech and plenary talks.

We are very glad that you are joining us at IEEE ICMA 2019 in Tianjin to live this unique experience. The main objective of IEEE ICMA 2019 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of mechatronics, robotics, sensors and automation to disseminate their latest research results and exchange views on the future research directions of the related fields. IEEE ICMA 2019 promises to be a great experience for participants from all over the world, with an excellent technical program as well as social activities.

We would like to express our most sincere appreciation and thanks to all of our sponsoring societies and organizations and to all the individuals who have contributed to the organization of this conference. Our special thanks are extended to our colleagues in the Program Committee for their thorough review of all the submitted papers, which is vital to the success of this conference. We must also extend our thanks to our Organizing Committee and our volunteers who have dedicated their time toward ensuring the success of this conference. Last but not least, we thank all the contributors for their support and participation in making this conference a great success. Finally, we wish you a great conference and enjoyable stay in Tianjin, China.

Baofeng Zhang General Chair

Kazuhiro Kosuge General Chair

Jian Guo Program Chair

Shuxiang Guo Organizing Chair

International Scientific Advisory Board

Advisory Council Honorary Chairs

T. J. 7	Гarn	Washington	University,	USA

Toshio Fukuda BIT and Nagoya University

Advisory Council Chairs

Qingxin Yang	Tianjin University of Tech., China
Tianyou Chai	Northeastern University, China
Hegao Cai	Harbin Institute of Technology, China
Liding Wang	Dalian University of Tech., China
A.A. Goldenberg	University of Toronto, Canada
Kazuhiro Kosuge	Tohoku University, Japan
Paolo Dario	Scuola Superiore Sant'Anna, Italy
Masayoshi Tomizuka	UC Berkeley, USA
Mario A. Rotea	University of Massachusetts, USA
Ju-Jang Lee	KAIST, Korea
Ren C. Luo	National Taiwan University, Taiwan
Yu Yao	Harbin Engineering University, China
Yanrong Li	UESTC, China
Huadong Yu	Changchun University of Science and Technology, China
Zhongmin Su	CUST, China

Organizing Committees

General Chair

Kazuhiro Kosuge	Tohoku University, Japan
Baofeng Zhang	Tianjin University of Technology, China
	General Co-Chairs
Qingchun Zheng	Tianjin University of Technology, China
William R. Hamel	University of Tennessee, USA
James K. Mills	University of Toronto, Canada
Darwin G. Caldwell	Italian Institute of Technology, Italy
Makoto Kaneko	Osaka University, Japan
Lixin Dong	Michigan State University, USA
Zhan Yang	Suzhou University, China
Yuxin Zhao	Harbin Engineering Uviversity, China
Yunliang Wang	Tianjin University of Technology, China
Jianda Han	Nankai University, China
Tiejun Li	Hebei University of Technology, China
Shuxin Wang	Tianjin University, China
Yo-Ping Huang	National Taipei University of Technology
Guangtian Shi	Lanzhou Jiaotong University, China

Organizing Committee Chairs

Shuxiang Guo	Kagawa University, Japan
Li Chen	Tianjin University of Technology, China
Fei Chen	Italian Institute of Technology, Italy

Organizing Committee Co-Chairs

Minfang Chen Tianjin University of Technology, China

Enzeng Dong	Tianjin	University	of Technolo	ogy, China

Hideyuki Hirata Kagawa University, Japan

Tutorial/Workshop Chairs

Guangjun Liu	Ryerson University, Canada
Tao Yue	Shanghai University, China
Weimin Ge	Tianjin University of Technology, China
Wei Wei	Suzhou University, China
Chengzhi Hu	Southern University of Science and Technology, China

Invited/Organized Session Chairs

Yangmin Li	The Hong Kong Polytechnic University, China
Kazuhito Yokoi	AIST, Japan
Chaoyang Shi	Tianjin University, China
Paul Wen	University of Southern Queensland, Australia
Jun Liu	Tianjin University of Technology, China

Awards Committee Co-Chairs

Aiguo Ming	The University of Electro-Communications, Japan
Hong Zhang	University of Alberta, Canada

- Hong Zhang
- Tianjin University of Technology, China Shougen Yin

Publications Chairs

Liwei Shi Beijing Institute of Technology, China

Publicity Chairs

- Xiufen Ye Harbin Engineering University, China
- Bin Liu Tianjin University of Technology, China

Finance Chair

Libao Cheng Tianjin University of Technology, China Hidenori Ishihara Kagawa University, Japan

Local Arrangement Chairs

- Qiang Fu Tianjin University of Technology, China
- Yu Song Tianjin University of Technology, China

Conference Secretariats

Y. Liu, Z. Wang, S. Gu, L. Zheng	Kagawa University, Japan

Xujie Yang, Zihong Bao, Qi Zhan Tianjin University of Technology, China

Conference Web System Administrator

Yi Liu Kagawa University, Japan

Program Committees

Program Chair

Jian Guo	Tianjin University of Technology, China
	Program Co-Chairs
Kevin Lynch	Northwestern University, USA
Stefan Byttner	Halmstad University, Sweden
Wan Kyun Chung	POSTEC, Korea
Dongbing Gu	University of Essex, U.K.
Jinjun Shan	York University, Canada
Issam Bahadur	Sultan Qaboos University, Canada
Qing Zhao	University of Alberta, Canada
Dapeng Tian	CIOMP, CAS, China
Hideyuki Sawada	Waseda University, Japan
Koichi Hashimoto	Tohoku University, Japan
Aiqi Qiu	National University of Singapor, Singapore

Yili Fu	Harbin Institute of Technology, China
Yajing Shen	City University of Hong Kong, China
Yizhong Wang	Tianjin University of Science & Technology, China
Limei Song	Tianjin Polytechnic University, China
Shijie Guo	Hebei University of Tech., China
Jingtai Liu	Nankai University, China

International Program Committee

Adachi, Fumiyuki	Addie, Ron	Aiyama, Yasumichi	Althoefer, Kaspar		
Ando, Kazuaki	Ang, Wei Tech	Aoyama, Hisayuki	Arai, Fumihito		
Arai, Tamio	Arai, Tatsuo	Araki, Kiyomichi	Arzanpour, Siamak		
Asada, Minoru	Asama, Hajime	Asano, Toshio	Baeg, Sang Hyeon		
Bai, Ou	Ben, Ridha	Ben-Tzvi, Pinhas	Bi, Shusheng		
Bi, Zhuming	Bian, Hongyu	Bidaud, Philippe	Bolon, Philippe		
Boustany, Nada	Brown, Martin	Byung, Min	Cai, Lilong		
Caldwell, Darwin G.	Cao, Maoyong	Ceccarelli, Marco	Chen, Chun-Ta		
Chen, Deyun	Chen, Feng	Chen, Guanlong	Chen, I-Ming		
Chen, Ken	Chen, Liguo	Chen, Ting	Chen, Weidong		
Chen, Weihai	Chen, Wenhua	Chen, Xin	Chen, Xinkai		
Chen, Yangquan	Chen, Zhangwei	Cheng, Allen	Cheng, Jianhua		
Cheng, Ji-Xin	Cheol, Min	Cheong, Joono	Cho, Young-Jo		
Choi, Hyouk Ryeol	Choi, Hyun-Taek	Choi, Junho	Choi, Youngjin		
Chou, Wusheng	Chu, Jinkui	Chugo, Daisuke	Chui, Dehua		
Chung, Woojin	Cui, Jianwen	Dai, Jiansheng	Dai, Xuefeng		
Dailey, Matthew	Damaren, Chris	Dario, Paolo	Davis, Steve		
Dechev, Nick	Deco, Gustavo	Deguang, Shang	Demiris, Yiannis		
Deng, Yulin	Dillmann, Ruediger	Ding, Jiexiong	Ding, Xilun		
Do, Hyun Min	Dodd, Tony	Doh, Nakju	Dohta, Shujiro		

\mathbf{D} : \mathbf{C} : 1 :			D D'		
Doi, Shunichi	Dong, Hongbin	Dong, Zaili	Du, Pingan		
Du, Xiliang	Du, Zhijiang	Duan, Haibin	Dubay, Rickey		
Dufosse, Michel	Fan, Jinwei	Fang, Yongchun	Fei, Qin		
Feng, Gary	Feng, Weixing	Fiorini, Paolo	Foulloy, Laurent		
Fu, Bin	Fu, Jiacai	Fu, Mingyu	Fu, Sheng		
Fu, Shuigen	Fu, Yili	FUH, Ying-His	Fujino, Tadashi		
Fujisaki, Kiyotaka	Fujisawa, Shoichiro	Fujiwara, Takayuki	Fujiwara, Yoshitaka		
Fukuyama, Hidenao	Fung, Wai-Keung	Furusho, Junji	Furuta, Katsuhisa		
Furutani, Eiko	Furutani, Katsushi	Furuya, Nobuyuki	Gang, Tong		
Gao, baofeng	Gao, Guohua	Gao, Hongtao	Gao, Lin		
Gao, Shesheng	Gao, Wei	Gao, Xueshan	Ge, Sam		
Ge, Sam Shuzhi	Ge, Yunjian	Gofuku, Akio	Gong, Haixia		
Gong, Yadong	Gong, Zhiguo	Graefe, Volker	Gu, Dongbing		
Gu, Jason	Gu, Xingzhong	Guan, Yisheng	Guang, Zu Guang		
Guglielmelli, Eugenio	Guo, Jian	Guo, Jin	Guo, Maozu		
Guo, Mingliang	Guo, Peng	Guo, Shuxiang	Guo, Yi		
Habibi, Saeid	Haga, Yoichi	Hamaguchi, Tetsuya	Hamel, William R.		
Han, Hongbin	Han, Jiqing	Han, Min	Han, Yujie		
Hane, Kazuhiro	Hao, Gang	Harada, Kensuke	Hariri, Alireza		
Hasegawa, Osamu	Hasegawa, Tadahiro	Hasegawa, Yasuhisa	Hashimoto, Hiroshi		
Hashimoto, Koichi	Hashimoto, Minoru	Hashimoto, Shuji	Hata, Seiji		
Hattori, Tetsuo	Hayashi, Jun-ichiro	He, Cunfu	He, Jia		
He, Jiping	Hino, Junichi	Hirai, Shigeoki	Hirata, Hideyuki		
Hirata, Koichi	Hirata, Yasuhisa	Hirose, Akira	Hong, Keum-Shik		
Hong, Seung Ho	Hori, Toshio	Hosoda, Kou	Hou, Mingshan		
Hou, Shuping	Hou, Zhenguang	Hu, Chao	Hu, Huosheng		
Hu, Jiquan	Hu, Jun	Hu, Jwu-Sheng	Hua, Jun		
Huang, Dagui	Huang, Hongzhong	Huang, Ping	Huang, Qiang		
Huang, Qingjiu	Huang, Tian	Huang, Yalou	Huasong, Min		

Hwan, Chang	Hwan, Dong	IBA, Hitoshi	Ichikawa, Akihiko			
Ichiki, Masatoshi	Iguchi, Tetsuhiro	Ikehara, Masaaki	Ikeuchi, Masashi			
Ikuta, Koji	Inomo, Hitoshi	Ise, Toshifumi	ishiguro, Hiroshi			
Ishihara, Hidenori	Ishihara, Sunao	Ishii, Akira	Ishii, Chiharu			
Ishii, Kazuo	Ishii, Koji	Ishikawa, Junzo	Ito, Tomotaka			
Iwamura, Yoshiaki	Iwatsuki, Nobuyuki	Izuishi, Kunihiko	Janabi-Shari, Farrokh			
Ji, Ping	Ji, Yuehui	Jia, Kebin	Jia, Songmin			
Jia, Zhengyuan	Jiang, Pingyu	Jiang, Zhen	Jiao, Shuhong			
Jin, Hongzhang	Jin, Rencheng	Jing, Wuxing	Jo, Yongho			
Jr., Marcelo H.Ang,	Jung, Kwangmok	Jung, Seul	K.H.Pang, Grantham			
Kagami, Shingo	Kagawa, Koji	Kamata, Minoru	Kamiya, Yoshitsugu			
Kanamori, Chisato	Kaneko, Shunichi	Kang, Sung Chul	Kang, Taehun			
Karaki, Masayuki	Kato, Takahisa	Khajepour, Amir	Kiguchi, Kazuo			
Kim, Byeongho	Kim, Doik	Kim, Jinhyun	Kim, Jung			
Kim, Keehoon	Kim, Sungshin	Kim, Wheekuk	Kitajima, Hiroyuki			
Kitajima, Katsuhiro	Kobayashi, Tetsuo	Kobayashi, Toshihiro	Koh, Kyungchul			
Kojima, Masaru	Kok, Tan	Komeda, Takashi	Kometani, Reo			
Kong, Xiawen	Konyo, Masashi	Koo, Ja Choon	Koshimizu, Hiroyasu			
Kosuge, Kazuhiro	Kotiw, Mike	Kotosaka, Shinya	Kouzani, Abbas			
Koyanagi, Kenichi	Koyanagi, Mitsumasa	Kubota, Naoyuki	Kubota, Takashi			
Kulkarni, M. S.	Kuno, Yoshinori	Kurazuma, Ryo	Kurisu, Masamitsu			
Kuroki, Nobutaka	Kuwakado, Hidenori	Kuwano, Hiroki	Kyriakopou, Kostas J.			
Lai, Yongjun	Lan, Hai	Laschi, Cecilia	Laugier, Christian			
Lee, Jang Myung	Lee, Jihong	Lee, Songjun	Lee, Yikuen			
Li, Bin	Li, Bing	Li, Chunwen	Li, Desheng			
Li, Gang	Li, Haisen	Li, Hongsheng	Li, Howard			
Li, Jianfeng	Li, Jiangang	Li, Jin	Li, Li			
Li, Mantian	Li, Maoxun	Li, Qin	Li, Wenfeng			
Li, Xiaoshan	Li, Xiaoyang	Li, Xiukun	Li, Yangmin			

Li, Youfu	Li, Yuhua	Li, Yun	Li, Yunhua	
Li, Zhang	Li, Zhiyi	Li, Zhiyong	Li, Zhongjian	
Lian, Feng-Li	Liang, Guolong	Liang, Yan	Liao, Hongen	
Liao, Wei-Hsin	Lin, Chyi-Yeu	Lin, Ming-Tzong	Liu, Bo	
Lin, Hsiung-Cheng	Huang, Guo-Shing	Kimura, Kotaro	Tsumaki, Yuichi	
Liu, Da	Liu, Dikai	Liu, Fang	Liu, Fanming	
Liu, Guangyu	Liu, Haibo	Liu, Honghai	Liu, Hugh	
Liu, Jiming	Liu, Jindong	Liu, Jinguo	Liu, Liqiang	
Liu, Ming	Liu, Peter X.	Liu, Qing	Liu, Rong	
Liu, Xiangdong	Liu, Xiaoping	Liu, Xin-Jun	Liu, Yongguang	
Liu, Yugang	Liu, Yunhui	Liu, Zhen	Long, Guilu	
Lottin, Jacques	Lou, Yunjiang	Loureiro, Rui	Low, Kin-Huat	
Lu, BaoLiang	Lu, Shengfu	Lu, Tien-Fu	M.Chen, Ben	
M.Gupta, Madan	Ma, Chunguang	Ma, Shugen	Ma, Xu	
Ma, Xudong	Mae, Yasushi	Magnenat-Thalm, Nadia	Mao, Jianqin	
Maruyama, Hisataka	Masaki, Yamakita	Masek, Vlastimil	Mashatan, Vahid	
Mashec, Vlasitimi	Masuda, Tadashi	Matsuhisa, Hiroshi	Matsunaga, Saburo	
Matsuno, Fumitoshi	Matsuno, Takayuki	Matsushige, Kazumi	Maxwell, Andrew	
Melchiorri, Claudio	Meng, Max QH.	Meng, Yan	Mills, James K.	
Minami, Hirotsugu	Minato, Kotaro	Minemura, Kiyoshi	Ming, Aiguo	
Mitsuishi, Mamoru	Miyanaga, Yoshikazu	Miyauchi, Satoru	Mo, Hongwei	
Mo, Shuhua	Mochiyama, Hiromi	Morii, Masakatsu	Morikawa, Hiroyuki	
Morishige, Koichi	Morishima, Keisuke	Morita, Noboru	Morita, Yoshifumi	
Murakami, Toshiyuki	Muscato, Giovanni	Nagata, Fusaomi	Nagatani, Keiji	
Nagato, Keisuke	Nakajima, Masahiro	Nakamura, Akio	Nakamura, Hikaru	
Nakao, Masayuki	Nakatani, Akihiro	Nakauchi, Yasushi	Nanayakkara, Thrish	
Nefti-Meziani, Samia	Nelson, Bradley J.	Ni, Jinping	Ni, Zhonghua	
Ning, Hui	Nohmi, Masahiro	Nojima, Toshio	Oana, Hidehiro	
Obara, Minoru	Ogose, Shigeaki	Ohara, Kenichi	Ohsawa, Yasuharu	

Ohtake, Hiroshi	Oka, Koichi	Okada, Eiji	Oki, Eiji	
Okuma, Masaaki	Omichi, Takeo	Oohira, Fumikazu	Osumi, Hisashi	
Otake, Mihoko	Otsuka, Akimasa	Ouezdou, Fathi Ben	Ouyang, Puren	
P.Miller, David	Pan, Yajun	Pang, Muye	Park, Jong Hyeon	
Park, Jooyoung	Park, Sangdok	Payande, Sharam	Perez, Ruben	
Pobil, Angel P. del	Prassler, Erwin	Qi, Guangyun	Qi, Hairong	
Qi, Naiming	Qiao, Gang	Qiao, Hong	Qiu, Anqi	
Qiu, Hua	Radermacher, Klaus	Rao, Wenbi	Ren, Carolyn	
Ren, Wei	Ren, Xiangshi	Rhim, Sungsoo	Roh, Segon	
Rong, Weibin	Ru, Changhai	Ryeol, Dong	Ryu, Jee-Hwan	
Sabatier, Jocelyn	Sabti, Ali	Saito, Takashi	Sakaguchi, Masamichi	
Sakai, Shuichi	Sakka, Sophie	Sakurai, Yoshio	Salman, Shaaban Ali	
Sampei, Seiichi	Sandini, Giulio	Sawada, Hideyuki	Sekiyama, Kousuke	
Semini, Claudio	Shan, Jinjun	Shao, Keyong	Shao, Xinjian	
Shen, Yantao	Shen, Yueshi	Sheng, Jie	Sheng, Weihua	
Shi, Guangfan	Shi, Haizhang	Shi, Jichuan	Shi, Liwei	
Shi, Zhen	Shibata, Takanori	Shimojo, Makoto	Shimotsu, Masateru	
Shoham, Moshe	Shriaki, Wataru	Singh, Akash	Soar, Jeffrey	
Son, Jaebum	Song, Jae-Bok	Song, Kai-Tai	Song, Quanjun	
Song, Zhibin	Stasse, Olivier	Stein, Cathryne	Su, Chanmin Q.	
Su, Chun-yi	Su, Liying	Sugar, Tom	Sugita, Naohiko	
Suh, Il Hong	Sun, Baoyuan	Sun, Daqian	Sun, Dong	
Sun, jinwei	Sun, Kangning	Sun, Xiaojun	Sun, Yong	
Sun, Yu	Sun, Zhaowei	Suzuki, Keisuke	Suzuki, Minoru	
Suzuki, Takahiro	Suzuki, Yuji	Tadakuma, Kenjiro	Takahashi, Ryoichi	
Takahashi, Satoru	Takahashi, Satoshi	Takahashi, Tatsuro	Takaiwa, Masahiro	
Takamasu, Kiyoshi	Takasaki, Masaya	Takeda, Takashi	Takeda, Yukio	
Takesue, Naoyuki	Takubo, Tomohito	Tan, Jeffrey	Tan, Jindong	
Tan, Lihai	Tan, Min	Tan, Zhenfan	Tanaka, Mami	

Tanaka, Takayuki	Tang, Mo	Tang, Yike	Tanikawa, Tamio		
Tanji, Yuichi	Tao, Nongjian	Tarumi, Hiroyuki	Terada, Hidetsugu		
Tian, Yantao	Tomita, Naohide	Tonet, Oliver	Torii, Akihio		
Touge, Tetsuo	Tsagarakis, Nikos	Tsai, Ching-Chih	Tsuji, Toshio		
Tsukada, Toshihiko	Tsukamoto, Hiroshi	Tsunoda, Okitoshi	Tung, Steve		
			-		
Ueno, Satoshi	Vachkov, Gancho	Vachkov, Gancho	Vai, Ming-I		
Vanderborght, Bram	Vernon, Brent	Vlacic, Ljubo	Voos, Holger		
Wada, Masayoshi	Wada, Osami	Wada, Takahiro	Wan, Feng		
Wan, Xinhua	Wang, Baikun	Wang, Cheng	Wang, DongMei		
Wang, Gang	Wang, Guoli	Wang, Hua	Wang, Joseph		
Wang, Keqi	Wang, Lizhen	Wang, Ludan	Wang, Michael Yu		
Wang, Peishan	Wang, Pu	Wang, Shuchen	Wang, Shuxing		
Wang, Tongyu	Wang, Wen	Wang, Xianghong	Wang, Xiaoyun		
Wang, Xin	Wang, Xinsong	Wang, Yafeng	Wang, Yuechao		
Wang, Yuezong	Wang, Zhidong	Wang, Zhuo	Wang, Zongyi		
Wang, Zuobin	Warisawa, Shin-ichi	Watanabe, Keigo	Watanabe, Mutsumi		
Wei, Wei	Wen, Bangchun	Wen, Paul	Wong, Pak-Kin		
Wu, Changhua	Wu, Gang	Wu, Jinglong	Wu, Lei		
Wu, Shijing	Wu, Xiaofeng	Wu, Xiaojun	X.Yang, Simon		
Xi, Jeff	Xi, Zhihong	Xiang, Zhengrong	Xiao, Jizhong		
Xiao, Lan	Xiao, Nan	Xie, Lihua	Xie, Ming		
Xie, Shane	Xie, Shaorong	Xin, Ming	Xiong, Caihua		
Xu, Bo	Xu, Chunquan	Xu, De	Xu, Dingjie		
Xu, Fen	Xu, Honghai	Xu, Jianan	Xu, Lixin		
Xu, Mengguo	Xu, Qingsong	Xu, Shijie	Xu, Yaoqun		
Xue, AnKe	Xue, Dingyu	Yakou, Takao	Yamada, Takayoshi		
Yamaguchi, Tomomi	Yamamoto, Manabu	Yamamoto, Motoji	Yamamoto, Yoshio		
Yamashita, Atsushi	Yamaura, Hiroshi	Yan, Shaoze	Yan, Shengyuan		
Yanagihara, Mamoru	Yang, Enxia	Yang, Erfu	Yang, Fang		

Yang, Guiliin	Yang, Hyun Suck	Yang, Jianwu	Yang, Jing		
Yang, Kwangjin	Yang, Qingsheng	Yang, Wu	Yang, Xiukun		
Yang, Yong	Yang, Yousheng	Yang, Zhaojun	Yano, Masafumi		
Yao, Yiyu	Ye, Cang	Ye, Changlong	Ye, Shujiang		
Ye, Xiufen	Yi, Byung-Ju	Yi, Chuanyun	Yi, Jianqiang		
Yin, Guofu	Yin, Zhengsheng	Yin, Zhouping	Ying, Lixia		
Ying, Xianghua	Yokokohji, Yasuyoshi	Yokota, Sho	Yoshida, Shunichi		
You, Bo	Young, Nak	Yu, Dejie	Yu, Huadong		
Yu, Jie	Yu, Junzhi	Yu, Qiang	Yu, Shui		
Yu, Xiaoyang	Yu, Yong	Yu, Yueqing	Yuan, Jianjun		
Yuan, Juntang	Yuan, Libo	Yuan, Xiaobu	Yue, Chunfeng		
Yue, Dong	Yue, Yong	Yun, Chao	Yuta, Shinichu		
Zeng, Chunnian	Zha, Hongbin	Zhang, Baida	Zhang, Chengjin		
Zhang, Dan	Zhang, Dianlun	Zhang, Hong	Zhang, Jianpei		
Zhang, Jianwei	Zhang, Jinxiu	Zhang, Lei	Zhang, Lijun		
Zhang, Lixun	Zhang, Mingjun	Zhang, Rubo	Zhang, Songyuan		
Zhang, Xianmin	Zhang, Xiaolong	Zhang, Xiaoyu	Zhang, Xinming		
Zhang, Xuping	Zhang, Yanhua	Zhang, Yi	Zhang, Yimin		
Zhang, Yong	Zhang, Yongde	Zhang, Yonggang	Zhang, Youmin		
Zhang, Yunong	Zhang, Zhaohui	Zhang, Zhe	Zhao, Cangwen		
Zhao, Chunhui	Zhao, Lin	Zhao, Qing	Zhao, Xin		
Zhao, Xinhua	Zhao, Yuxin	Zhao, Zhijun	Zheng, Fei		
Zheng, Guibin	Zheng, Jinyang	Zheng, Yuanfang	Zhong, Ning		
Zhou, Xunyu	Zhu, Chi	Zhu, Chunbo	Zhu, George		
Zhu, Jianguo	Zhu, Qidan	Zhu, Xiangyang	Zhu, Xiaorui		
Zhu, Xilin	Zhu, Yu	Zu, Jean	Zyada, Zakarya		

Cosponsors

Cosponsored by

IEEE Robotics and Automation Society

Tianjin University of Technology, China

Kagawa University, Japan

Beijing Institute of Technology, China

Technically cosponsored by

National Natural Science Foundation of China Chinese Mechanical Engineering Society Chinese Association of Automation State Key Laboratory of Robotics and System (HIT) Beijing Institute of Technology The Institute of Advanced Biomedical Engineering System, BIT Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry and Information Technology, Beijing Institute of Technology

Kagawa University

Tianjin University of Technology

Tianjin Key Laboratory for Control Theory & Applications in Complicated Systems, Tianjin Key Laboratory for Advanced Mechatronics System Design and Intelligent Control, Tianjin University of Technology Tianjin International Joint Research and Development Center, Tianjin University of Technology **Engineering Research Center of Optoelectronic Devices & Communication** Technology, Ministry of Education, China Harbin Engineering University The Robotics Society of Japan The Japan Society of Mechanical Engineers Japan Society for Precision Engineering The Society of Instrument and Control Engineers **University of Electro-Communications** University of Electronic Science and Technology of China Changchun University of Science and Technology Hebei University of Technology Heilongjiang Society of Biomedical Engineering Changchun Institute of Optics, Fine Mechanics and Physics **Optics and Precision Engineering**

General Information

Tianjin

Tianjin is one of China's four municipalities under the direct administration of central government. It is an international port city and the largest seaside city in the North of China, 137 km away from Beijing, the capital of China. Tianjin is a birthplace of modern industry of China: the first wrist watch, bicycle and television in New China were all made here. Since 1980s, Tianjin has turned itself into an important industrial base in North China. Tianjin is also a transportation hub with railway, waterway, highway and airway connecting other major cities in China and outside the country.

The name of Tianjin, which means "Emperor's port", was adopted in the first year of Yongle Reign in Ming Dynasty. In the second year of Yongle Reign(1404), Tianjin became a walled garrison and began to be known as "Tianjin Wei". In 1860 Tianjin was opened as a trading port. In the 1930s, it became the largest industrial and commercial city and financial center in the north of China. After the founding of the People's Republic of China in 1949, Tianjin became a municipality directly under the central government. After China adopted the policy of reform and opening up in 1978, Tianjin became one of the first coastal cities that are open to the outside world. Today, the city function according to the central government has been designated as becoming an international harbor city, economic center in north China, and an ecological city.

As one of the first cities open to the outside world, Tianjin has an excellent environment for business and investment. Up till now, among the top 500 world leading enterprises, more than 120 have invested in Tianjin. With the involvement of Binhai New Area in the national development strategy, Tianjin has become an area with the greatest attraction for investors and the highest investment profit rates in China.

Tianjin is a well known city with a long history and abundant resources. Panshan Mountain, the No. 1 Mountain in Capital's East; Dule Temple, one of the oldest wooden structures in China; Ancient Culture Street, full of ancient Chinese culture and Tianjin custom. More surprises are waiting for your exploration.

Attractions

Dule Temple

Dule Temple is a Buddhist temple located in the town of Jixian, in Ji County, under the administration of the city of Tianjin, China. The temple is of historical as well as architectural significance. Its oldest surviving buildings are two timber-frame structures, the front gate and the central hall that houses a colossal clay statue of the goddess Guanyin. Both structures date

back to the Liao Dynasty and are among the oldest surviving wooden buildings in China.

Shi Family Grand Courtyard

Shi Family Grand Courtyardis situated in Yangliuqing Town of Xiqing District, which is the former residence of wealthy merchant Shi Yuanshi – the 4th son of Shi Wancheng, one of the eight great masters in Tianjin. First built in 1875, it covers over 6,000 square meters, including large and small yards and over 200 folk houses, a theater and over 275 rooms that served as apartments and places of business and worship for this powerful family. Shifu Garden, which finished its expansion in October 2003, covers 1,200 square meters, incorporates the elegance of imperial garden and delicacy of south garden. Now the courtyard of Shi family covers about 10,000 square meters, which is called

the first mansion in North China. Now it serves as the folk custom museum in Yangliuqing, which has a large collection of folk custom museum in Yanliuqing, which has a large collection of folk art pieces like Yanliuqing New Year pictures, brick sculpture.

Shi's ancestor came from Dong'e County in Shandong Province, engaged in water transport of grain. As the wealth gradually accumulated, the Shi Family moved to Yangliuqing and bought large tracts of land and set up their residence. Shi Yuanshi came from the fourth generation of the family, who was a successful businessman and a good household manager, and the residence was thus enlarged for several times until it acquired the present scale. It is believed to be the first mansion in the west of Tianjin.

Today, the Shi mansion, located in the township of Yangliuqing to the west of central Tianjin, stands as a surprisingly well-preserved monument to China's pre-revolution mercantile spirit. It also serves as an on-location shoot for many of China's popular historical dramas. Many of the rooms feature period furniture, paintings and calligraphy, and the extensive Shifu Garden.

Ancient Cultural Street

Tianjin Ancient Culture Street with 600 years history, standing in the area of key section in upstream of the Haihe River, is located in Nankai district of Tianjin. Covering an area of 224,200 sq meters, it used to be one of earliest water transport docklands in Tianjin where is one of the busiest cities of commerce and trade in history. As a cultural precinct, Tianjin Ancient Culture Street is well known by the local and overseas tourists. The two attractions, Yuan Huang Ge and Tian Hou Temple are two historic cultural relics in the list of city level ones reversed.

Tianjin Ancient Cultural Street rebuilt in 1980's is one of the great successes in the renovation and redevelopment. The

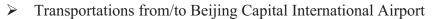
whole block is still conserved the existing urban pattern and tissue of traditional Chinese layout. The lanes and houses in the Street are almost preserved in a good condition with Tianjin local feathers. In past time, whenever the day of 23th of March in lunar calendar was coming, a great ceremony would be held here, which it is said that it is the birthday of heaven Mother.

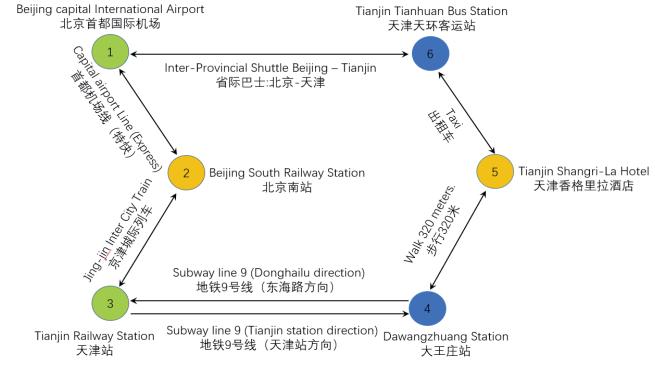
Goubuli

Goubuli, also sometimes translated as Go Believe, is a brand of stuffed baozi from Tianjin, China. Founded in 1858, it is one of China's longest established brands. Each Goubuli bun has eighteen wrinkles. There are many explanations for the name Goubuli. The oft-quoted one relates to a poor village boy nicknamed Gouzhai. At 14, he became an apprentice at a food store. Thereafter, he set up his own shop specialising in selling steamed, stuffed baozi. His supposedly very delicious baozi

soon gained immense popularity in a short period of time. As a result, Gouzhai got too occupied with his business to converse with his customers. So, they started to complain, "Gouzhai does not talk to people".

Weather


Tianjin features a four season, monsoon-influenced climate, typical of East Asia, with cold, windy, very dry winters reflecting the influence of the vast Siberian anticyclone, and hot, humid summers, due to the monsoon.


Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
° F	26.8	23.2	43.7	68.9	79.0	86.2	87.8	86.4	79.3	67.5	51.1	39.0
° C	-2.8	-4.9	6.5	20.5	26.1	30.1	31.0	30.2	26.3	19.7	10.6	3.9

Transportation

All the registrants should make their own local transportation in the city. Travel by taxi is the most convenient and faster option for the journey. Tianjin is not only famous for charming natural scenery but also for large numbers of taxis and cheapest taxis cost: RMB 2.00 per km with base price RMB 8.00 ! Please prepare some changes in advance for taxi fee or subway in the staying in Tianjin. We suggest you wait for taxi at the airport designated taxi station. Please ask for a receipt with the taxi.

Transportations from/to Airport

Route 1: Traffic information about the Beijing Capital International Airport (北京首都国际机场) – Tianjin Shangri-La Hotel (天津香格里拉酒店) (1->2->3->4->5)

<u>1st Step</u>: Between Beijing Capital International Airport (北京首都国际机场) and Beijing South Railway Station (北京南站), you can take Capital Airport Line (Express) (机场线) or Taxi.

PS 1: If you take Capital Airport Line (Express) (机场线) for Beijing South Railway Station (北京南站), You will need to change Line2 (2 号线) at Dongzhi Men (东直门) and then change Line 4 (4 号线) at Xizhi Men (西直门). From Beijing South Railway Station(北京南站) to Beijing Capital International Airport (北京首都国际机场), you can take Line 4 (4 号线) and then change Line 2 (2 号线) at Xizhi Men (西直门), next change Capital Airport Line (机场线) at Dongzhi Men (东直门). The one-way fee is about 30 RMB.

PS 2: If you take taxi, the distance is about 37.2 km and you need to pay about 120 RMB.

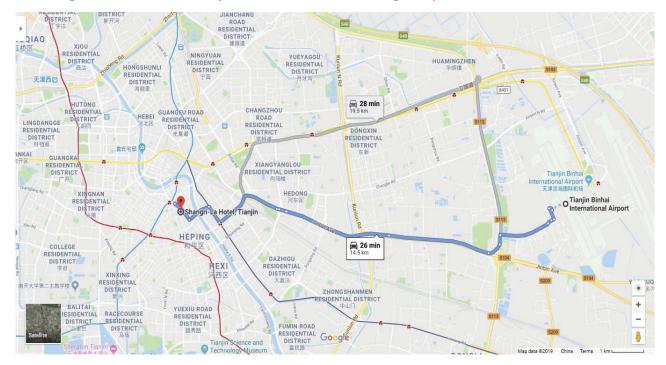
<u>2nd Step</u>: Between Beijing South Railway Station (北京南站) and Tianjin Railway Station (天津站), please take Jing-jin Inter city Train (京津城际列车).

PS: The train runs from AM 6:13 to PM 10:56 with interval of 20 minutes every day and the one-way time is about 33 minutes. The fee is about 66 RMB.

<u>3rd Step</u>: Between Tianjin Railway Station (天津站) and Tianjin Shangri-La Hotel (天津香格里 拉酒店), you can take Subway line 9 or Taxi.

PS 1: If you take taxi, the distance is about 2.4 km and you need to pay about 9 RMB.

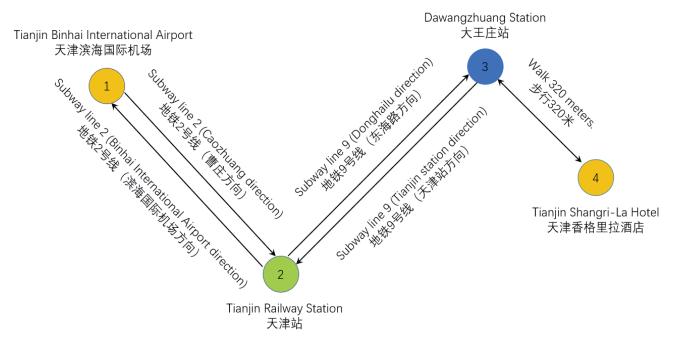
PS 2: If you take Subway line 9, from/to Tianjin Railway Station (天津站) to/from Dawangzhuang Ave station (大王 庄站), you need to pay about 2 RMB and you can take the Exit C. You can walk to Tianjin Shangri-La Hotel (天津香格里 拉酒店) with 320m.


Route 2: Traffic information about the Beijing Capital International Airport (北京首都国际机场) – Tianjin Shangri-La Hotel (天津香格里拉酒店) (1->5->5)

<u>1st Step</u>: From/to Beijing Capital International Airport (北京首都国际机场), you can take Inter-Provincial Shuttle Beijing – Tianjin (省际巴士:北京-天津) to/from Tianjin Tianhuan Bus Station (天津天环客运站) which will take 2 hours and a half and 82 RMB.

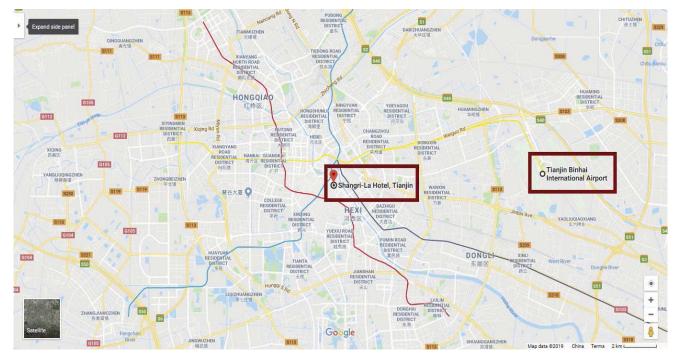
PS 1: Beijing departure point: T1/T2: In front of Gate 15 on the 1st Floor of T2; T3: In front of Gate 1 on the 1st Floor, departure time is from 8:00 to 23:00 with about 1 hour interval.

PS 2: Tianjin departure point : Starting from the northeast corner of the crossing of Hongqi Rd (红旗路) and Anshan West Avenue (鞍山西道), Tianjin departure time is from 4:00 to 18:00 with about 1 hour interval.

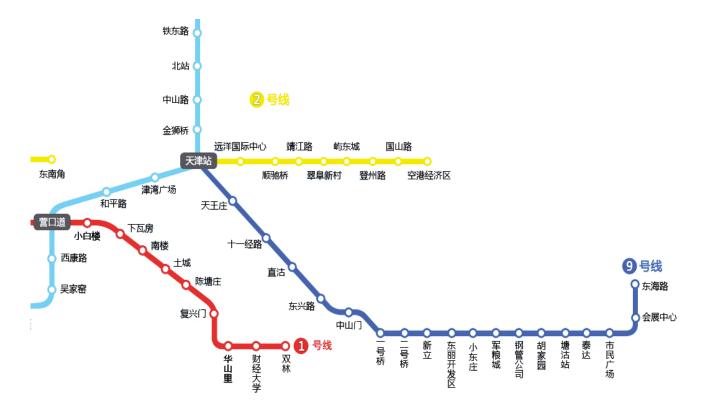

<u>2nd Step</u>: Between Tianjin Tianhuan Bus Station (天津天环客运站) with Tianjin Shangri-La Hotel (天津香格里拉酒店), you can take taxi with about 19 RMB and 30 minutes.

Transportations from/to Tianjin Binhai International Airport by taxi

PS: It will take about 26 minutes. The distance is about 14.5 km and you need to pay about RMB 42 Yuan.


Transportations from/to Tianjin Binhai International Airport by Bus

Route: Tianjin Binhai International Airport (天津滨海国际机场) – Tianjin Shangri-La Hotel (天津香 格里拉酒店) (1->4)


PS: It will take about 43 minutes. The distance is about 17.2 km and you need to pay about RMB 6 Yuan.

Appendix:

> The position of Tianjin Shangri-La Hotel

Part of Tianjin Metro

Useful Information

- Language: Official language is Mandarin and most people also use their local dialect. The native language in Tianjin is Tianjinese. The standard spoken Chinese is Putonghua. English can be understood by many young people and is used in hotels and big restaurants. In all tourist hotels, staff can speak in English, Japanese and other languages. They can also write down addresses or instructions in Chinese for taxi drivers or others. In addition, roads in major cities are signposted in Pinyin, the official Romanization system of the Chinese characters, which makes it quite easy to get around with the help of a map.
- **Currency:** Renminbi (RMB) is the only currency to be used in China. RMB is also called Chinese Yuan. The unit of Renminbi is yuan and with smaller denominations called jiao. The conversion among the two is : 1 yuan =10 jiao. Paper notes are issued in denominations Aof 1, 5, 10, 20, 50 and 100 yuan. Coins are issued in denominations of 1 yuan; 5 jiao; 1 jiao.

Money exchanges by cash or travel's cheques can be made at the branches of Bank of China at Tianjin Binhai International Airport, hotels and tourist stores. Please remember to keep the receipt to exchange back to foreign currency when leaving China.

- **Credit Cards:** Visa, Master Card and American Express are the most commonly used in China. Cards can be used in most middle to top-range hotels, department stores, but they cannot be used to finance your transportation costs.
- **Time:** GMT + 8 hours (the whole of China is set to Beijing time)
- **Electricity:** Electricity is 220 Volts, 50 AC; plugs can be three-pronged angled, three-pronged round, two flat pins or two narrow round pins.
- **Water:** Bottled mineral water can easily be bought in all stores and street kiosks for RMB 3. And sometimes hotels provide it free of charge. Furthermore, potable water is only available in a few 4 to 5 star hotels, while water in thermos flasks in rooms is usually non-potable tap water.
- Measurement: In Metric system
- **Tipping:** Tipping is not customary outside of the foreign joint-venture hotels and is officially discouraged. But hotel bellboys usually expect RMB 2-5 per bag.
- Attention: Smoking is prohibited in public places in Tianjin, such as hospitals, office buildings, theatres, cinemas, museums, planes, and trains.
- Hotlines: 110 Police 119 Fire 120 Ambulance

Conference Information

Conference Venue

IEEE ICMA 2019 will be held in the city of Tianjin, at Shangri-La Hotel. Tianjin Shangri-La Hotel located within the fully-integrated Tianjin Kerry Centre, connected to the Riverview Place shopping mall, luxurious residences, and an array of dining and entertainment options. Take the subway to Dawangzhuang Station on line 9 and exit from entrance C or D, which are located in the Riverview Place shopping mall. The hotel is 25-minute drive from Tianjin Binhai International Airport, 5 minutes to Tianjin Railway Station by car and 2 hours' drive from Beijing.

Chinese Address Cards

Tianjin Shangri-La Hotel

天津香格里拉酒店

地址:中国天津市河东区海河东路 328 号 Tel: 86-22-8418-8888

Conference Registration

A conference registration desk will be set up and opened at the FUNCTION ROOM of 1st Floor of Tianjin Shangri-La Hotel from August 4 (13:30) to August 7 (11:00) as followings.

 August 4, 2019
 13:30~18:30 (near the escalator of 1st Floor)

 August 5, 2019
 07:30~12:00 (near the escalator of 1st Floor)

 August 5, 2019
 12:00~18:30 (near Room 6 of 1st Floor)

 August 6, 2019
 08:00~18:00 (near Room 6 of 1st Floor)

 August 7, 2019
 08:00~11:00 (near Room 6 of 1st Floor)

Internet Access

Free internet access will be provided during the conference period, to the IEEE ICMA 2019 participants at the Conference Room on 1st floor and 2nd floor of Tianjin Shangri-La Hotel (天津香 格里拉酒店). Broadband internet access services are also provided at the conference hotel for a fee. For the fee information, please contact the hotel you are staying directly.

Social Events

The social events organized by the IEEE ICMA 2019 include the conference reception, the awards banquet, the conference registration, the farewell party, etc.

Conference Reception

The Conference Reception will be held from 17:30 to 18:30 on August 4, 2019 in Conference Room 4 (DIAMOND 2), 1F of Tianjin Shangri-La Hotel (天津香格里拉酒店). All the conference participants are welcome to join this event.

Awards Banquet

The Awards Banquet will be held from 18:30 to 21:00 on August 6, 2019 in Conference GRAND BALLROM (BALLROM 2), 2F of Tianjin Shangri-La Hotel (天津香格里拉酒店). All the conference participants are welcome to join this event.

Farewell Party

The Farewell Party will be held from 12:00 to 13:00 on August 7, 2019 in Conference Room 4 (DIAMOND 2), 1F of Tianjin Shangri-La Hotel (天津香格里拉酒店). All the conference participants are welcome to join this event.

Plenary Talk 1

CPS Driven Control System

Tianyou Chai, Ph.D.

Director of National Research Center for Metallurgical Automation Technology, Professor

Department of Automatic Control

Northeastern University, P.R. China

Abstract:

China has abundance of mineral resources such as magnesite, hematite and bauxite, which constitute a key component of its economy. The relatively low grade, and the widely varying and complex compositions of the raw extracts, however, pose difficult processing challenges including specialized equipment with excessive energy demands. The energy intensive furnaces together with widely uncertain features of the extracts form hybrid complexities of the system, where the existing modeling, optimization and control methods have met only limited success. Currently, the mineral processing plants generally employ manual control and are known to impose greater demands on the energy, while yielding unreasonable waste and poor operational efficiency. The recently developed Cyber-Physical

System (CPS) provides a new key for us to address these challenges. The idea is to make the control system of energy intensive equipment into a CPS, which will lead to a CPS driven control system. This talk presents the syntheses and implementation of a CPS driven control system for energy-intensive equipment under the framework of CPS. The proposed CPS driven control system consists of four main functions: (I) setpoint control; (II) tracking control; (III) self-optimized tuning; and (IV) remote and mobile monitoring for operating condition. The key in realizing the above functions is the integrated optimal operational control methods to implement setpoint control, tracking control and self-optimized tuning together seamlessly. This talk introduces the integrated optimal operational control methods we proposed.

Hardware and software platform of CPS driven control system for energy-intensive equipment is then briefly introduced, which adopts embedded control system, wireless network and industrial cloud. It not only realizes the functions of computer control system using DCS (PLS), optimization computer and computer for abnormal condition identification and self-optimized tuning, but also achieves the functions of mobile and remote monitoring for industrial process.

Then, using fused magnesium furnace as an example, a hybrid simulation system for CPS driven control system for energy-intensive equipment developed by our team is introduced. The results of simulation experiments show the effectiveness of the proposed method that integrates the setpoint control, tracking control, self-optimized tuning and remote and mobile monitoring for operating condition in the framework of CPS.

The industrial application of the proposed CPS driven control system is also discussed. It has been successfully applied to the largest magnesia production enterprise in China, resulting in great returns. Finally, future research on the CPS driven control system is outlined.

Tianyou Chai received the Ph.D. degree in control theory and engineering in 1985 from Northeastern University, Shenyang, China, where he became a Professor in 1988. He is the founder and Director of the Center of Automation, which became a National Engineering and Technology Research Center and a State Key Laboratory. He is a member of Chinese Academy of Engineering, IFAC Fellow and IEEE Fellow. His current research interests include modeling, control, optimization and integrated automation of complex industrial processes.

He has published 200 peer reviewed international journal papers. His paper titled Hybrid intelligent control for optimal operation of shaft furnace roasting process was selected as one of three best papers for the Control Engineering Practice Paper Prize for 2011-2013. He has developed control technologies with applications to various industrial processes. For his contributions, he has won 4 prestigious awards of National Science and Technology Progress and National Technological Innovation, the 2007 Industry Award for Excellence in Transitional Control Research from IEEE Multiple-conference on Systems and Control, and the 2017 Wook Hyun Kwon Education Award from Asian Control Association.

Plenary Talk 2

Does the progress of robotics pass through soft materials?

Cecilia Laschi, Ph.D.

Professor, Deputy Director The BioRobotics Institute Scuola Superiore Sant'Anna, Rector's delegate to research e-mail: cecilia.laschi@santannapisa.it https://www.santannapisa.it/en/node/3934

Abstract:

Though a young discipline, robotics progressed rapidly and pervaded our lives more than we perceive, becoming a tool we cannot do without in manufacturing. Futuristic scenarios have been proposing robots in daily life of citizens and professionals for decades, creating expectations that have not yet been matched. What are the realistic scenarios that robotics technologies enable today? What are the abilities

that robots still miss to match expectations for extensive application and healthier and safer human life? Largely inspired by the observation of the role of soft tissues in living organisms, the use of soft materials for building robots is recognized as one of the current challenges for pushing the boundaries of robotics technologies and building robotic systems for service tasks in natural environments. The study of living organisms sheds light on principles that can be fruitfully adopted to develop additional robot abilities or to facilitate more efficient accomplishment of tasks, because living organisms exploit soft tissues and compliant structures to move effectively in complex natural environments.

Robots have a great potential for becoming part of our lives, for responding to current societal challenges, for contributing to economic growth. New materials and new forms of machine intelligence are key directions for the future robotics progress.

Cecilia Laschi is Full Professor at the BioRobotics Institute of Scuola Superiore Sant'Anna in Pisa, Italy, where she serves as Rector's delegate to Research. She graduated in Computer Science at the University of Pisa in 1993 and received the Ph.D. in Robotics from the University of Genoa in 1998. In 2001-2002 she was JSPS visiting researcher at Waseda University in Tokyo.

Her research interests are in the field of soft robotics, a young research area that she pioneered and contributed to develop at international level, including its applications in marine robotics and in the biomedical field. She has been working in humanoid robotics and neurorobotics, at the merge of neuroscience and robotics.

She is in the Editorial Boards of several international journals. She serves as reviewer for many journals, including Nature and Science, for the European Commission, including the ERC programme, and for many national research agencies.

She is senior member of the IEEE, of the Engineering in Medicine and Biology Society (EMBS), and of the Robotics & Automation Society (RAS), where she served as elected AdCom member and currently is Co-Chair of the TC on Soft Robotics. She founded and served as General Chair for the IEEE-RAS First International Conference on Soft Robotics in Livorno, in April 24-28, 2018.

She is founding member of RoboTech srl, spin-off company of the Scuola Superiore Sant'Anna, in the sector of edutainment robotics.

Plenary Talk 3

The New Wave in Robot Grasping

Ken Goldberg, Ph.D.

Professor and Director

William S. Floyd Jr. Distinguished Chair in Engineering

Department Chair, Industrial Engineering/Operations Research (IEOR)

Director, AUTOLAB and CITRIS "People and Robots" Initiative Founding Member, Berkeley AI Research (BAIR) Lab Joint Appointments: EECS, Art Practice, School of Information (UC Berkeley) and Radiation Oncology (UC San Francisco Medical School).

University of California, Berkeley

E-mail: goldberg@berkeley.edu http://goldberg.berkeley.edu

Abstract:

Robots are about to become far more dextrous based on a new wave in research that combines classical mechanics, stochastic, and deep learning.

Despite 50 years of research, robots remain remarkably clumsy, limiting their reliability for warehouse order fulfillment, robot-assisted surgery, and home decluttering. The First Wave of grasping research is purely analytical, applying variations of screw theory to exact knowledge of pose, shape, and contact mechanics. The Second Wave is purely empirical: end-to-end hyperparametric function approximation (aka Deep Learning) based on human demonstrations or time-consuming self-exploration. A "New Wave" of research considers hybrid methods that combine analytic models with stochastic sampling and Deep Learning models. I'll present this history with new results from our lab on grasping diverse and previously-unknown objects and discuss exciting future research including cloud and fog robotics.

Ken Goldberg is an artist, inventor, and UC Berkeley Professor focusing on robotics. He was appointed the William S. Floyd Jr Distinguished Chair in Engineering and serves as Chair of the Industrial Engineering and Operations Research Department. He has secondary appointments in EECS, Art Practice, the School of Information, and Radiation Oncology at the UCSF Medical School. Ken is Director of the CITRIS "People and Robots" Initiative and the UC Berkeley AUTOLAB where he and his students pursue research in machine learning for robotics and automation in warehouses, homes, and operating rooms. Ken developed the first provably complete algorithms for part feeding and part fixturing and the first robot on the Internet. Despite agonizingly slow progress, he persists in trying to make robots less clumsy. He has over 250 peer-reviewed publications and 8 U.S. Patents. He co-founded and served as Editor-in-Chief of the IEEE Transactions on Automation Science and Engineering. Ken's artwork has appeared in 70 exhibits including the Whitney Biennial and films he has co-written have been selected for Sundance and nominated for an Emmy Award. Ken was awarded the NSF PECASE (Presidential Faculty Fellowship) from President Bill Clinton in 1995, elected IEEE Fellow in 2005 and selected by the IEEE Robotics and Automation Society for the George Saridis Leadership Award in 2016.

More information can be obtained in http://goldberg.berkeley.edu

Keynote Speech

Cell Processing Task Automation

James K. Mills, Ph. D.

Professor

Department of Mechanical and Industrial Engineering

University of Toronto

5 King's College Rd. Toronto, Ontario Canada

Email: mills@mie.utoronto.ca

http://www.mie.utoronto.ca/labs/nonlin/mills2.html

Abstract:

Interest has grown rapidly over the last decade in biological research and clinical applications involving manipulation and processing of single cells. In research labs a variety of single cell processes are routinely conducted including removal of cell organelles, transfer of RNA, DNA and proteins into the cell and removal of human embryonic cells formed during cell cleavage, amongst others. Currently, much of this cell processing work is carried out manually by highly skilled technicians. This presentation summarizes some of our recent work directed towards the automation of biological micro-scale tasks using robotic technology. The work presented will address control and automation methods utilized to achieve automation of single cell surgery as well as other cell processing automation methods.

James K. Mills is with Department of Mechanical and Industrial Engineering, University of Toronto. He received the PhD in Mechanical Engineering, specializing in robotic control. His recent research interests include: 3D MEMS robotic assembly, meso-scale machine design, control and automation of micro-scale biological tasks. He has published over 450 papers. He has been an Invited Visiting Professor at the Centre for Artificial Intelligence and Robotics in Bangalore, India, a Visiting Professor at the Hong Kong University of Science and Technology, Chinese University of Hong Kong and the City University, Hong Kong.

IEEE ICMA 2019 Conference Workshop

World Premium Workshops on Robotics

Sunday, August 4, 2019 14:00 - 15:40 Conference Room 1, 1F Tianjin Shangri-La Hotel, Tianjin, China

Regional Analysis of Distributed Parameter Systems and Their

Applications for the Control of Cyber–Physical Systems

Venue: Conference Room 1, 1F Tianjin Shangri-La Hotel, TianjinDate and Time: 14:00 - 15:40, August 4, 2019

Organizers:

Dr. YangQuan Chen, University of California, Merced, USA Dr. Fudong Ge, China University of Geosciences, Wuhan, PR China

About the workshop:

It is well known that Cyber-physical systems (CPSs) with integrated computational and physical processes can be regarded as a new generation of control systems and can interact with humans through many new modalities. The objective of CPS is to develop new science and engineering methods in which sensor and actuator configurations, and physical designs are compatible, synergistic, and integrated at all scales. Many CPSs are characterized by parameters and variables that depend both on time and location so that distributed parameter systems (DPSs) governed by partial differential equations (PDEs) can be used to adequately represent the cyber-physical process dynamics. Moreover, due to the strong interactions between components in these DPS dynamics, there are cases when the

system is not controllable or observable in the whole domain of interest but can be controllable and observable in a subdomain. Thus, regional analysis makes more practical sense. Regional sensing and actuation is getting more and more important in this CPS age with cloud computing and big data movements.

This workshop will prepare the IEEE ICMA 2019 audience with 1) compelling reasons why this research theme is important, 2) what are basic concepts and existing results, and 3) what are rich future research opportunities.

Time	Topics	Speaker List
13:55-14:00	Welcome speech	
14:00-14:30	Regional analysis of DPSs and Their Applications for the control of CPSs – 25 years in review	Dr. YangQuan Chen, University of California, Merced, USA
14:30-15:00	Why we should use regional analysis: From MAS-net project to CPS to CHS	Dr. YangQuan Chen, University of California, Merced, USA
15:00-15:30	Regional analysis of fractional order DPSs and Their Applications for the control of CPSs –(Ge)	Dr. Fudong Ge, China University of Geosciences, Wuhan, PR China
15:30-15:40	Panel Discussion	Moderators: All speakers

List of Speakers and Schedule

IEEE ICMA 2019 Conference Workshop

Regional Analysis of Distributed Parameter Systems and Their Applications for the Control of Cyber–Physical Systems

The Workshop speakers

Dr. YangQuan Chen, Professor

Mechatronics, Embedded Systems and Automation (MESA) LAB, Dept. of Mechanical Engineering, School of Engineering University of California, Merced 5200 NorthLakeRoad, Merced, CA95343, USA Emails:yqchen@ieee.org; ychen53@ucmerced.edu; Phone:(209)228-4672 https://scholar.google.com/citations?user=RDEIRbcAAAAJ&hl=en

YangQuan Chen joined University of California, Merced in summer 2012 with a vision to promote the wide-spread use of low cost scientific data-drones in precision agriculture and environmental monitoring. His unmanned aerial systems (UAS) team at UC Merced has been pursuing research excellence in innovative use of data-drones for crop, water, soil, dust, air, and fire etc. Dr. Chen received Ph.D. from Nanyang Technological University Singapore in 1998. His current areas of research interest include: applied fractional calculus in controls, signal processing and energy informatics; distributed measurement and distributed control of distributed parameter systems using mobile actuator and sensor networks; mechatronics; multi-UAV based cooperative multi-spectral "personal remote sensing" for precision agriculture and environmental monitoring. He is an Associate Editor for IFAC journals of Mechatronics and Control Engineering Practice, Fractional Calculus and Applied Analysis, IET Control Theory and Applications, IEEE Transactions of Control Systems Technology, ISA Transactions and Cogent Engineering (Systems and Control). He also serves as the Topic-Editor-in-Chief in "Field Robotics" for International Journal of Advanced Robotic Systems (IJARS), a Senior Editor for International Journal of Intelligent and Robotic Systems, and an associate editor for Journal of Intelligent Service Robotics. He was an associate editor for ASME Journal of Dynamical Systems, Measurement and Control (2009-2015) and a Founding Associate Editor for Unmanned Systems (2013-2015). Dr. Chen is a member of ASPRS, AUVSI, AMA, IEEE, ASME, AIAA, and ASEE. He serves as the co-chair for IEEE RAS TC on Aerial Robotics and UAV, IEEE-USA CTAP, and Program Co-chair for ICUAS 2016, Washington, DC, and General Co-Chair for ICUAS 2017, Miami, FL. He can be reached by email: yqchen@ieee.org

Dr. Fudong Ge, Associate Professor

School of Computer Science, China University of Geosciences, Wuhan 430074, PR China Email: gefd@cug.edu.cn Phone : +86 18186449217 https://scholar.google.com/citations?hl=zh-CN&user=4rEo3fYAAAAJ

Fudong Ge earned his Ph.D. in the College of Information Science and Technology of Donghua University, Shanghai, China in 2016. He joined the MESA Lab of the University of California, Merced in October, 2014 as an Exchange Ph.D. student. He is now an associate professor at the School of Computer Science, China University of Geosciences, Wuhan, Hubei Province, China. His research interests include existence, stability/stabilization of solutions for fractional differential equations; continuous time random walks and anomalous diffusion systems; distributed measurement and distributed optimal control problems in general distributed parameter systems or cyber-physical systems in general form. He can be reached by email: gefd@cug.edu.cn

Table of Contents

MA1-P	Poster Session (Intelligent Mechatronics and Automation)	
	An Experimental Study on Burrs in Micro Milling Antenna Micro Narrow Slots	1
	Yu Cao, Chaoyang Wang, Yuan Ping, Peng Hou, Weishe Wu	
	Optimization of Spectroscope Parameters for Single-beam Pulsed Laser Scanning Circumferential Detection System	6
	Yanliang Gao, Bingting Zha, Jinbo Huang, Hailu Yuan	
	A Path Planning Strategy for Intelligent Sweeping Robots Hongmei Zhang, Wei Hong, Mingjie Chen	11
	Dynamic Analysis and Simulation of a Deformable Wheeled Jumping Robot Hequan Wang, Han Li, Changlong Ye, Guanglin Ding	16
	Research on Energy Saving Principle of Pumping Unit Driven by Wind Turbine Lihua Wang, Chunyou Zhang, Chunyou Zhang	21
	Exponential Stability Criterion for Vehicle Nonlinear Uncertain Suspension Systems with Time-Varying Delay	27
	Binqiang Li, Guangtian Shi, Yanliang Cui, Rui Shi, Kaiyun Wang, Lanlan Xu	
	Variable Structure Control for the Roll Stabilization of the AUV During the Diving Process with a Constant Speed	33
	Zhigang Qi, Yuan Chen, Wei Zhao	
	DSC and LADRC Path Following Control for Dynamic Positioning Ships at High Speed Guoqing Xia, Hongfei Chu, Yunan Shao, Binyuan Xia	39
	Improved PRM for Path Planning in Narrow Passages Kai Cao, Qian Cheng, Song Gao, Yangquan Chen, Chaobo Chen	45
	Mechanism Analysis and Simulation Study of Static Difference Generated by Proportional Controller	51
	Jiayao Wang, Xuesong Zhou, Youjie Ma	
	Static Error Mechanism Analysis and Simulation Research Based on PI Control Xuesong Zhou, Yongliang Zhou, Youjie Ma	58
	Real-time Obstacle Avoidance and Person Following Based on Adaptive Window Approach Minfeng Cen, Yonglong Huang, Xunyu Zhong, Xiafu Peng, Chaosheng Zou	64
	Robust Optimization Models of Integrated Configuration Design and Scheduling for	70

Reconfigurable Flowline

Jianping Dou, Xia Zhao, Qi Sun

Study on Cooperative Control Algorithm of Two Spherical Amphibious Robots Liang Zheng, Shuxiang Guo, Yan Piao, Shuoxin Gu, Ruochen An, Wenbo Sui	76
Fish Population Status Detection Based on Deep Learning System Baofeng, Zhang, Fuhua Xie, Fangfang Han	81
Study on Visual Detection Device of Plant Leaf Disease Ning Fu, Chong Wang, Xiaowen Ji	86
Automatic Extraction Tracking and Control of Robotic Based on Mean-shift Yang Zhang, Xiukun Wang	91
Research on Multiple Blind Watermarking Algorithm Based on Double Scrambling Hui Wang, Qiang Wang, Lijun Yu, Fei Zhong	97
Design of Distributed Control System for the Pick-up Robot Based on CAN Bus Rui Chen, Biao Liu, Man Pan, Haibo Zhou	102
Finite Element Analysis on the Orthodontic Treatment of Loose Tooth with Overlapping by Periodontal Splint	108
Chunqiu Zhang, Zhongxin Li, Yang Song, Xue Shi, Xinyue Li	
Study on a High G Mechanical Device for Animal Experiments Kangning Li, Lu Cui, Haiying Liu, Chunqiu Zhang, Xizheng Zhang	114
Dynamic Behavior of the Discharge Valve in A Moving Coil Oil-free Linear Compressor for Refrigeration Cycle Chengzhan Li, Jinghui Cai	120
Evaluation Index and Method of Equipment Utilization Rate in Distribution Network with the Integration of PV	125
Yang Yang, Qi Gong, Chao Lv, Shan Guo, He Li, Wenchao Cai	
Mapping of an Enclosed Underwater Environment by Acoustic Side-scan Yibin Peng, Dr Peter N Green	130
Industrial Robot Optimal Time Trajectory Planning Based on Genetic Algorithm Guohong Li, Yuanliang Wang	136
Construction of Welding Quality Intelligent Judgment System Jinjin Guo, Yang Liu, Gang Wu	141
A Fast Calculation Method of Eccentricity of Rotary Parts Based on Least Squares	146

Sanying Zhu, Qiang Liu, Pengpeng Sun, Jian Wang	
Research on The Design of Terminal for EV DC Charging Coupler Wenjia Sun, Jiaojiao Wang, Xiao Li, Yang Li	152
Effects of Loading Frequency on the Mechanical Response Properties of Osteocytes in Microgravity Environment Sen Zhao, Haiying Liu, Yang Song, Yonghe Li, Chunqiu Zhang	158
Practical Kicking Motion Generation Method for NAO Chaojun Wang, Wenchuan Jia, Yi Sun, Shugen Ma	163
Virtual Simulation Test of on-board Electronic Equipment under Mechanical Environment Yahong Dong, Yuejin Shang	169
Basic Experiments for a Remote Control Robot-Mapping System in Complex Environment Li Ke, Tingxin Song, Nattawat Pinrath, Darren Phang Ren Yee, Nobuto Matsuhira	174
A Coupling Simulation of Converter Field Circuit for Active Radial Electromagnetic Bearing Based on Simplorer and Maxwell	180
Yibin Li, Jian Zhou, Haipeng Geng, Tingchen Du, Yonghong Qi, Xiliang Yin	
Multi-Sensor Integrated Navigation System for Ships Based on Adaptive Kalman Filter Bo Fu, Junsheng Liu, Qishuang Wang	186
Analysis of Thermal Characteristics of 10Kw High Speed Permanent Magnet Synchronous Motor	192
Xiliang Yin, Haipeng Geng, Hao Lv, Hao Xu, Yonghong Qi	
A Study on Moving Window Adaptively Weighting Estimation Method Yi Gao, Ya Gao, Yanhui Mao	198
Application of a Combined Denoising Method in Ground Penetrating Radar Signal Pre-processing Dingjie Xu, Yuxuan Wu, Feng Shen	203
Biocompatibility of Ti Coatings with Varied Thicknesses on Ti Alloy Substrates using Osteoblasts	208
Xin Wang, Zheng He, Jinduo Ye, Chunqiu Zhang	
Design and Analysis of Dual-arm Cooperative Robot System for Hole-axis Assembly Bin Li, Yuhang Wang, Shoujun Wang, Qi Li, Yong Yang	213
An Adaptive Contrast Threshold SIFT Algorithm Based on Local Extreme Point and Image Texture	219
Yunwei Jia, Kun Wang, Chenxiang Hao	

A New Saliency Object Extraction Algorithm Based on Itti's Model and Region Growing Yunwei Jia, Chenxiang Hao, Kun Wang	224
Numerical Simulation of Sand Concentration and Pressure Distribution in Sand Experimental Box	229
Youshi Xuchen, Bingting Zha, Zhen Zheng, Hailu Yuan	
Restaurant Serving Robot with Double Line Sensors Following Approach Vo Nhu Thanh, Dang Phuoc Vinh, Ngo Thanh Nghi, Le Hoai Nam, Do Le Hung Toan	235
Research on Control Effect of Window Glass on Inner Sound Environment of High-speed Train	240
Zhengxiao Xu, Guangtian Shi, Xungang Diao, Xiaoan Zhang, Zhidan Huang, Huanhuan Zhang	
A New QR Code Multi-layer Encryption System based on Image Geometric Processing Mingyin Xu, Lianrong Lv, Jiawei Zhang, Mengqi Xu, Chaosen Zhang, Jianfeng Zhang	246
Target Approach for an Autonomous Mobile Robot Using Camera Images and Its Behavioral Acquisition for Avoiding an Obstacle	251
Yuta Takashima, Keigo Watanabe, Isaku Nagai	
A Fast Pose Estimation Method Based on New QR Code for Location of Indoor Mobile Robot Xuewei Cao, Yiping Yang, Tao Lu, Lixin Fang, Jixiang Zhang	257
A Traffic Control Strategy of the Heavy-duty AGVS in a Square Topology Fei Pan, Qiyuan Sun	263
Modal Analysis of Center Frame Structure of Electric Wheelchair Lianyu Zhao, Yuping Wang, Jutao Wang	269
Ship Detection Based on Deep Learning Yuchao Wang, Xiangyun Ning, Binghan Leng, Huixuan Fu	275
Data Transmission and Management System for Robotized Welding Station Jinjin Guo, Song Jin, Enhong Xing, Gang Wu, Ming Lei, Shuying Yang, Teresa Zielinska	280
Design Study of 6-DOF Grinding Robot Weimin Ge, Liang Li, Enhong Xing, Ming Lei, Shuying Yang, Teresa Zielinska	285
Trajectory Tracking Control of Multi-AUVs Formation based on Virtual Leader Juan Li, Xu Zhang, Honghan Zhang, Xue Du	291
Stability Analysis and Observer-Based Controller Design for Uncertain T-S Fuzzy Systems with Disturbance and Time-Delay	297

Rui Shi, Guangtian Shi, Yanliang Cui, Binqiang Li, Xiaoyun Zhang, Lanlan Xu	
A Research Review on Wave Modeling and Simulation Methods in Marine Environment Jian Fu, Fuxiang Huang, Wei Gao, Binggang Yin, Lihui Li	303
Observer-based Event-triggered Output Feedback Control for a Class of Uncertain Nonlinear Systems	308
Min Jin, Fudong Ge	
Angular Stiffness of a Trunnion Joint Sheng Feng, Baisong Yang, Yonghong Qi, Haipeng Geng, Lie Yu	314
Dynamic Parameter Identification for Reconfigurable Robot Using Adaline Neural Network Weimin Ge, Bingda Wang, Haozhi Mu	319
Design and Research of Flexible Joint with Variable Stiffness Based on Torsion Spring Xiangxu Qu, Dongxing Cao, Qiang Wang, Yalin Li	325
A Sectional Auto-docking Charging Control Method for the Mobile Robot Juzhong Zhang, Liming Cai, Yuyi Chu, Qixun Zhou	330
Influence of Variable Frequency Starting Parameters on Synchronous Motor Starting Yonghong Qi, Haipeng Geng, Tingchen Du, Yibin Li, Xiliang Yin, Hao Xu	336
Feature Matching Algorithm Design and Verification in Rotates Camera Normal Region Based on ROS System	342
Ying Mi, Shihua Yuan,Xueyuan Li,Junjie Zhou,Xufeng Yin	
Design of Mechanical Arm-motor Control System Based on DSP Yanjuan Wu, Yanbin Cheng	348
Non-linear Observer Design for Ship Based on Covariance fitting for square-root cubature Kalman Filter	354
Xiaogong Lin, Zhiyu Liu	
The Biomechanical Response of Cervical Spine under Different Follower Loads Chengfei Du, Xinyi Cai, Mengsi Sun, Chengfei Du	360
Suppression of Audiovisual Integration by Exogenous Unimodal Spatial Cue Yanna Ren, Zhenhua Zhou, Yue Ding, Wei Nie, Weiping Yang	365
Structural Design and Kinematics Analysis of a Multi-legged Wall-climbing Robot Bin Li, Weiqi Lu, Chaowei Kang, Shoujun Wang, Qi Li, Yong Yang	371
Biomechanical Comparison of Lateral Interbody Fusion with and without Fixation Chengfei Du, Mengsi Sun, Xinyi Cai, Chenxi Yuchi, Chengfei Du	377

Respiratory Rate Estimation from the Photoplethysmogram Combining Multiple Respiratory-induced Variations Based on SQI Haonan Yang, Min Li, Dong He, Xinze Che, Xiaogang Qin	382
Design and Application of Fault Prevention System for Automobile Shock Absorber Assembly Process Based on RFID Shide Qian	388
Vibration Control for Lathe System against Deterministic and Band-limited Random Disturbances Fanfan Qian, Zhizheng Wu, Maotong Zhang, Tao Wang, Yuanyuan Wang, Tengfei Yue	392
Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers Haoyu Niu, Tiebiao Zhao, YangQuan Chen	397
Research on a Virtual Simulation System for Master-slave Teaching of a Spraying Robot Kai Feng, Zhengyu Wang, Bin Zi, Daoming Wang, Sen Qian	403
An Improved Method for Forward Kinematics of Parallel Manipulator Based on Hybrid Strategy <i>Qidan Zhu, Zheng Zhang</i>	409
Analysis on The Research Status and Structure Characteristics of Castor Harvester Huayang Zhao, Chunyou Zhang, Huayang Zhao	415
Prediction of Body Temperature from Smart Pillow by Machine Learning Songsheng Li	421
Functional Brain Network Analysis during Informative Auditory Stimulus-modulatedAudiovisual IntegrationSiyuan He, Yang Xi, Ning Gao, Qi Li	427
Model for Calculating the Target Characteristics of Synchronous Scanning Circumferential Pulsed Laser Detector Bingting Zha, Yanliang Gao, Jinbo Huang, Xuchen Youshi	433
An Improved Bat Algorithm for Job Shop Scheduling Problem Xiaohan Chen, Beike Zhang, Dong Gao	439
A Fuzzy Approach to Visual Servoing with A Bagging Method for Wheeled Mobile Robot Meng Xu, Haobin Shi, Kai Jiang, Lihua Wang, Xuesi Li	444
Modeling of Hybrid Energy Management Information Network in Vessel Integrated Power System	450
You Wu, Lijun Fu, Fan Ma, Xueping Gao, Yinan Xu	

An Improved SURF Algorithm Based on Gradient and Amplitude Pre-computation Yanhui Wei, Pengfei Yang, Lixue Xu, Zhi Zheng	456
A Pressure Regulating System for Wheelchair Back Based on PID Algorithms Tao Wang, Lianyu Zhao	463
Learning Pushing Skills Using Object Detection and Deep Reinforcement Learning Wei Guo, Guantao Dong, Chen Chen, Mantian Li	469
Perfusion System for Cell-Scaffold Complex Culture in Vitro Chunqiu Zhang, Pengfei Wu, Xin Wang, Lilan Gao	475
Topography State Analysis using Structures Abdramane Dembélé, Xiufen Ye, Adama Mariko, Daou Ibrahima	480
Mobile Blasting Robot Obstacle Avoidance Planning Lianyu Zhao, Yanqiang Wang, Jutao Wang	485
Amphibious Vehicle Layout Optimization based on Adaptive Elite Genetic Algorithm Mingxiao Sun, Tiantian Luan, Jun Xu	491
Design, Fabrication and Experiments of a 3D-motion Soft Elastomer Actuator Jian Zhang, Junjie Zhou, Shihua Yuan, Chongbo Jing	497
Monitoring and Warning for Digital Twin-driven Mountain Geological Disaster Huan Zhang, Ruigang Wang, Chuang Wang	502
Ultrasonic Vibration Assisted Drilling in Cortical Bone Experiment: a Comparative Study of Twist Drill and Three-Point Drill	508
Yahui Hu, Zhiqiang Yan, Chunqiu Zhang, Qingchun Zheng, Weihua Fu	
Simulation and Analysis on Work hardening of Mechanical repeated ruling process Chaochao Shi, Guangfeng Shi, Guoquan Shi	513
Analysis of Influencing Factors of Pipeline Blockage in Domestic Garbage Pneumatic Conveying System Rui Tian, Hongbo Liu, Yue Li	519
Kinematics Modeling and Analysis of a Novel Five-DoF Spraying Robot Jiarui Wan, Zhengyu Wang, Bin Zi, Daoming Wang, Zixiang Cao	524
Simulation and Analysis of Mechanical Characteristics of a 6-DOF Spray-painting Robot Daoming Wang, Zitong Huang, Bin Zi, Jiawei Pang, Huajian Zhang, Lei Zheng	530
Stability Control of Intermediate Frequency for A Double Cavity HCN Laser Junjie Shen, Bin Sun, Fuyong Hu, Haiqing Liu, Yinxian Jie, Yuan Yao	537

The Effect of Aging on Attentional Networks	543
Yanna Ren, Zhihan Xu, Ying Zhang, Jing Li, Jianqiu Wu, Weiping Yang	
Portable Wireless Food Safety Rapid Detection Device Based on MCU Luyang Jin, Xiuling Yan, Jing Wang, Wenbin Zhao, Wei Wei, Jun Liu	549
Seismic Response Study of the Tower of a 3 Rotors-Horizontal Axis Wind Turbine Linping Lu, Yiping Wang, Weimin Ge, Enhong Xing, Teresa Zielińska	554
Multi-AUV Fixed-point and Positioning Control Based on Virtual Leader Juan Li, Ruikun Yuan, Huixin Wang, Xue Du	560
Design and Implementation of Automatic Window Closer Based on Intelligent Control Algorithm	566
Keping Zhang, Guangtian Shi, Zhihao Zhai	
Structural Design and Analysis of 3-DOF Manipulator for Spraying Operation Xinhua Zhao, Mengchen Ma, Bin Li, Qi Li, Yong Yang	572
Design of Wave Pushing Plate of Multi-Directional Wave Maker with Embeddable Wave Height Sensor	578
Nan Liu, Haozhi Mu, Renzhe Wei, Peng Zhang, Qingsong Ning, Tao Xue, Shoujun Wang	
Research on Fault Diagnosis Method of Asynchronous Motor Ya Gao, Guanghui Du, Yi Gao, Qinling Zhu, Bo Li	583
Phenological Prediction Algorithm Based on Deep Learning Yuchao Wang, Shuhe Liu, Yunpeng Sun, Huixuan Fu	589
Study on the Effect of Relative Disparity and Horizontal Position of Two Lines of 3D Subtitles on Visual Comfort <i>Yan Wu, Qi Li, Hua Li</i>	594
A basic Study on Capacity and Reaction time of Visual working memory for Elderly Memory training	600
Ting Guo, Yanna Ren, Yinghua Yu, Yiyang Yu, Yuuki Hasegawa, Qiong Wu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	
Fuzzy PID Control Applied in Evaporator of Organic Rankine Cycle System Zhigang Wang, Zhihao Yu, Shuang Guo, Xiuli Li	605
Design of Motor Mechanism of 126kV High Voltage Circuit Breaker and Control Strategy of Stroke Subsection	610
Hongkui Yan, Xin Lin, Jianyuan Xu, Tianyao Tang, Di Tang, Yan Bao	
Three-dimensional Local Path Planning of Robot Based on AR-ANT Algorithm and B-spline	615

Curve

	Hongjun Wang, Rong Ye	
	Improved ORB Algorithm used in Image Mosaic Hong Yu, Yuesheng Dai	621
	A CMOS Fish Freshness to Continuous-Time Incremental Sigma-Delta Modulator for Monitoring Fish Freshness in Fish Markets Cheng-Ta Chiang, Lian-Teng Lin	626
	A Wide-Range Sugar Concentration to Duty Cycle Converter with Scaling Circuits for Detecting Sugar Concentration Applications Cheng-Ta Chiang, Lu-Shen Shie, Bin-Hong Wang	631
	A CMOS Salinity Difference to Frequency Converter with Auto-Sensitivity Selection Circuits for Applications in Aquaculture Cheng-Ta Chiang, Tsung-Yuan Chen, Yi-Ting Wu	637
	Kinematic Analysis, Simulation and Manipulating of a 5-DOF Robotic Manipulator for Service Robot Song Kang, Wusheng Chou	643
MP1-1	Micro and Nano Systems	
	Dexterous Vibrationless Micromanipulation by Magnetic-Field Driven Micro-gripper Dan Liu, Xiaoming Liu, Pengyun Li, Xiaoqing Tang, Yuqing Lin, Qiang Huang, Tatsuo Arai	650
	A Novel Auto-Focusing Algorithm for Automated Cell Immobilization Huipeng Zhang, Liying Su, Hongmiao Wei, Yueqing Yu, Xuping Zhang	656
	A Mechanic Model and Velocity Optimization of Cell Microinjection Hongmiao Wei, Liying Su, Huipeng Zhang, Yueqing Yu, Xuping Zhang	662
	Study on Tetherless Micro-Soft Robot Based on Magnetic Elastic Composite Material Hongbiao Xiang, Jiancheng Ba, Yan Li, Tilei Zhang, Shoujun Wang	668
	Dispersion Correction for Optical Coherence Tomography by Parameter Estimation in Fractional Fourier Domain Di Liu, Yi Xin, Qin Li, Ran Tao	674
	Piezoelectric Single Crystal-based Nano-scale Actuator and Its Amplifying Mechanism Tianlu Zhang, Zhangming Du, Chao Zhou, Zhiqiang Cao, Shuo Wang, Long Cheng, Lu Deng	679
MP2-1		

Study on Circulating Tumor Cell Separation Sensing System Based on Size Selection

685

	Zhe Wang, Yuanhua Yu, Qimeng Chen, Ru Zheng, Xiangkai Meng, Luyang Duanmu, Zhen Zhang, Jian Li	
	Hybrid Encryption Algorithm Based on Wireless Sensor Networks Tongxu Yue, Chuang Wang, Zhi-xiang Zhu	690
	A Novel Deformation Estimation Method Based on Robust Student's t Kalman Filter Yonggang Zhang, Geng Xu, Guangle Jia, Yongxu He	695
	Wave Height Measuring Device Based on Gyroscope and Accelerometer Shoujun Wang, Lu Liu, Ruijia Jin, Songgui Chen	701
	An Optical Tactile Sensor with Structural Color Using Deep Learning Method Jiawen Hao, Yin Zhu, Erbao Dong	707
	Improvement and Analysis of Piezoresistive Effect Model of Suspended Graphene Pressure Sensor	713
	Xin Lin, Yong Zhang, Ying Liu, Xianzhe Cheng, Jing Qiu, Guanjun Liu	
MP3-1	Laser Technology and Laser Processing	
	Simulation and Experimental Research on Residual Stress Field of Cemented Carbide YG8 by Laser Shock Processing	718
	Guanglin Wu, Chong Peng, Shenhua Peng, Wei Guo	
	Research On Self-Mixing Interference Displacement Reconstruction Method Based On Ensemble Empirical Mode Decomposition	723
	Baofeng Zhang, Haitong Zhang, Junchao Zhu, Honghong Xu, Yan Zhao	
	Influence of Residual Stress on Fatigue Lives of AISI9310 Gear Processed by Laser Shock Peening	728
	Hedong Wang, Chong Peng, Yuzhe Xiao	
	Schattering Power of Laser in Aerosol Medium Hailu Yuan, Bingting Zha, Zhen Zheng, Youshi Xuchen	733
MP1-2	Manipulator Control and Manipulation (I)	
	Leader-Following Consensus of Multiple Electrohydraulic Actuators with Unknown External Disturbances	738
	Xiaochai Li, Fan Guo, Qing Guo	
	End-Effector Force Estimation for Robotic Manipulators from Motor Current Measurements Xiaoqi Li, Yanbo Wang, Zelin Yang, Haiping Zhou	744
	Kinematics Modeling and Analysis of Manipulator Using the Dual Quaternion	750

	Weimin Ge, Lei Chen, Xiaofeng Wang, Enhong Xing, Teresa Zielinska	
	A Learning Method of Dual-arm Manipulation for Cloth Folding Using Physics Simulator Daisuke Tanaka, Sho Tsuda, Kimitoshi Yamazaki	756
	A Motion Planning Algorithm Based on Trajectory Optimization with Workspace Goal Region Kai Mi, Peng Hao, Jun Zheng, Yunkuan Wang, Jianhua Hu	763
	Multi-Component Toxic Gas Monitoring System Based on Internet of Things Junchao Zhu, Ye Fu, Yunlong Xing, Yao Zhang, Qian Qiao	769
MP2-2	Manipulator Control and Manipulation (II)	
	A Multiple Working Mode Approach to Hammering with a Modular Reconfigurable Robot Vladyslav Romanyuk, Sina Soleymanpour, Guangjun Liu	774
	Autonomous Two-stage Object Retrieval Using Supervised and Reinforcement Learning Thibault Rouillard, Ian Howard, Lei Cui	780
	A Distant Optical-Center Binocular Servo System Based on TDNN with Online Fine-tuning Xuesong Jiang, Yudi Jiang, Yuehong Yin	787
	A Case Study on Automated Manipulation for Hooking Wiring of Flexible Flat Cables Kazuki Sano, Siguma Iijima, Kimitoshi Yamazaki	793
	A Strategy for Large Workpiece Assembly Based on Hybrid Impedance Control Gang He, Shicai Shi, Da Wang, Hong Liu	799
	Structural Design and Kinematics Analysis of a Heavy Load Manipulator Weimin Ge, Shuangshuang Zhang, Xiaofeng Wang, Enhong Xing, Teresa Zielinska	805
MP3-2	Manipulator Control and Manipulation (III)	
	Control System Design for Electromagnetic Driving Robot Used for Vehicle Test Gang Chen, Weigong Zhang	811
	Inverse Dynamics of a Rigid-flexible Parallel Mechanism Chenyang Shi, Liang Liu, Xinhua zhao, Jiabin Wang, Lei Zhao, Zhifeng Xie, Jianling Li	816
	Sliding Mode Control for Manipulator Based on Fuzzy Switching Gain Adjustment Jingyi Chen, Longmiao Chen, Quan Zou	822
	Kinematics Calibration of Spraying Robot based on Laser Tracker Yajun Liu, Bin Zi, Zhengyu Wang, Daoming Wang, Lei Zheng	827
MP1-3	Biomimetic Measurement and Control in Robotics	
	Proposal of an Environmental Recognition Method for Automatic Parking by an Image-based CNN	833

	Kazuki Yamamoto, Keigo Watanabe, Isaku Nagai	
	Development of an Anemometer to Assist a Quadrotor with Auxiliary Thrusters Satoshi Kato, Keigo Watanabe, Isaku Nagai	839
	The Structural Design of a Magnetic Driven Wireless Capsule Robot for Drug Delivery Shuxiang Guo, Lining Zhang, Qiuxia Yang	844
	Development of a Leaping Mechanism for Electric Skateboards Toshiki Aoki, Isaku Nagai, Keigo Watanabe	850
	An Adaptive Control for Pure-feedback Systems with Non-linearly Parameterized Uncertainty Shixin Li, Hailiaing Zhou, Shun Gao, Yong Ran	856
	Real-time Dynamic Monitoring of a Multi-robot Cooperative Spraying System Jingfeng Pan, Bin Zi, Zhengyu Wang, Sen Qian, Daoming Wang	862
MP2-3	Human-System Interaction and Interface (I)	
	Tactile Servo Based on Pressure Distribution Chen-Ting Wen, Jun Kinugawa, Shogo Arai, Kazuhiro Kosuge	868
	The Identification and Evaluation for Animal and Other Sounds: The Effect of Presentation Time	874
	Qingqing Li, Qiong Wu, Jiajia Yang, Yiyang Yu, Fengxia Wu, Wu Wang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	
	Influence of Different Feature Selection Methods on EMG Pattern Recognition Anyuan Zhang, Qi Li, Ning Gao, Liang Wang, Yan Wu	880
	Visual Perception Design and Evaluation of Electric Working Robots	886
	Weimian Zhou, Jing Zhu, Yutao Chen, Jie Yang, Erbao Dong, Hao Zhang, Xuming Tang	
	A Basic Study on Relationship between Facial Expression and Cuteness for Human-robot Emotional Communication	892
	Lichang Yao, Qi Dai, Ting Guo, Qiong Wu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	
	Configuration of Laparoscope Holding Manipulator Xiaofei Wang, Yao Li, Jiliang Shao, Xu Zhu, Jinsong Gao	898
MP3-3	Human-System Interaction and Interface (II)	
	Continuous Estimation of a sEMG-Based Upper Limb Joint Dongdong Bu, Shuxiang Guo, Wenyang Gao	904
	The Effect of Spatial Consistence on Character Recognition of Brain-Computer Interface	910

.. .. 147

	Jingjing Yang, Qi Wu, Xiao Dong, Xiujun Li, Qi Li, Jinglong Wu	
	Research on Human Stoop Activity Energy Expenditure Detection Algorithm Based on AHRS Transducer	916
	Wei Wang, Wei Wei, Zhicheng Qu, Lidan Cheng, Jihua Gu, Xichuan Lin	
	Configuration Comparison and Design of an Upper Limb Exoskeleton for Robot Teleoperation	921
	Chang Liu, Haiyuan Li, Qinjian Zhang	
MP1-4	Neuro, Fuzzy, and Intelligent Control (I)	
	Intelligent Multi Agent System for Energy Management in the Classrooms with Grid	927
	Connected PV	
	Aryuanto Soetedjo, Yusuf Ismail Nakhoda, Choirul Saleh	
	A Fuzzy Based Parallel Filtering Matching Algorithm for Gravity Aided Navigation	933
	Maosu Zhao, Lingjuan Miao, Haijun Shao, Tian Dai	
	Research on Fuzzy Adaptive Impedance Control of Lower Extremity Exoskeleton	939
	Zhicheng Qu, Wei Wei, Wei Wang, Shijia Zha, Tianyi Li, Jihua Gu, Chunfeng Yue	
	Edge Detection Algorithm based on Morphology and Grey Relation Analysis	945
	Zhen Zheng, Bingting Zha, Hailu Yuan, Youshi Xuchen	

Algorithm Based on Improved Genetic Algorithm for Job Shop Scheduling Problem 951 Xiaohan Chen, Beike Zhang, Dong Gao

Support Vectors Classification Method Based on Matrix Exponent Boundary Fisher Projection 957 Yaqin Guo

MP2-4 Neuro, Fuzzy, and Intelligent Control (II)

Online Learning of the Inverse Dynamics with Parallel Drifting Gaussian Processes:	962
Implementation of an Approach for Feedforward Control of a Parallel Kinematic Industrial	
Robot	
Tim-Lukas Habich, Daniel Kaczor, Svenja Tappe, Tobias Ortmaier	
Fusion Method of Convolutional Neural Network and Support Vector Machine for High	970
Accuracy Anomaly Detection	
Fusaomi Nagata, Kenta Tokuno, Kento Nakashima, Akimasa Otsuka, Takeshi Ikeda, Hiroyuki	
Ochi, Keigo Watanabe, Maki K. Habib	
Position Adjustment Control of A Nursing-care Robot Holding A Patient in Its Arms	976
Yang Li, Shijie Guo, Toshiharu Mukai	
PCA-CIPSO-GRNN-Based Cyclic Cooling Water Corrosion Prediction	982

Chao Dong, Zeyao Feng, Jingxian Li	
User-depth Customized Men's Shirt Design Framework Based on BI-LSTM	988
Manyu Tian, Zhixiang Zhu, Chuang Wang	
Application of Deep Learning in Interturn Short Circuit Fault Diagnosis of PMSM	993
Jieqiu Bao, Sen Wang, Siyang Li, Di Tang	
Neuro, Fuzzy, and Intelligent Control (III)	
Robust Control of a Mechatronic Exoskeleton for Motion Rehabilitation	998
Muhammad Tallal Saeed, Shiyin Qin	
Optimization of MVDC Power System of All Electric Ship Based on Hybrid Energy Storage Xiuyan Peng, Luo Zhao	1004
Graph-based Analysis of Functional Brain Networks for Processing Semantic Auditory and Visual Stimuli	1010
Yang Xi, Qi Li, Siyuan He, Jinxing Zhang, Mengchao Zhang, Lin Liu	
A Novel Feature Analysis Method for EEG Signal Classification of Attended and Unattended Audiovisual Integration	1016
Yang Xi, Anyuan Zhang, Qi Li, Xingjian Yang, Mengchao Zhang, Lin Liu	
Vision System and Robotic Vision (I)	
Optimal Design of Monocular Stereo Vision System	1022
Yuanhao Cheng, Sunan Wang, Dehong Yu	
New Real-time View Synthesis Method Using Spatiotemporal Background Information Jian Li, Yubin Liu, Ge Li, Jie Zhao	1028
A Method of Performing Loop Closing Using Mask R-CNN Model in SLAM System Xiangyang Chen, Zhangli Zhou, Wei Liang, Meiling Wang	1035
A Novel Recognition Algorithm in 3D Point Clouds based for on Local Spherical Harmonics Cao Hui, Riwei Wang, Xianbin Wen, Jindong Zhao, Wei Chen, Xuping Zhang	1041
Extrinsic Calibration of a Monocular Camera and a Single Line Scanning Lidar	1047
Quan Ye, Leizheng Shu, Wei Zhang	
Research on V-SLAM Methods	1055
Haoxin Zhang, Biao Liu, Chuangyun Shen, Haibo Zhou, Shucheng Liu	
Vision System and Robotic Vision (II)	
Study on Motion Recognition for a Hand Rehabilitation Robot Based on sEMG Signals Shuxiang Guo, Zhi Wang, Jian Guo	1061
	User-depth Customized Men's Shirt Design Framework Based on BI-LSTM Manyu Tian, Zhixiang Zhu, Chuang Wang Application of Deep Learning in Intertum Short Circuit Fault Diagnosis of PMSM Jieqiu Bao, Sen Wang, Siyang Li, Di Tang Neuro, Fuzzy, and Intelligent Control (III) Robust Control of a Mechatronic Exoskeleton for Motion Rehabilitation Muhammad Tallal Saeed, Shiyin Qin Optimization of MVDC Power System of All Electric Ship Based on Hybrid Energy Storage Xiuyan Peng, Luo Zhao Graph-based Analysis of Functional Brain Networks for Processing Semantic Auditory and Visual Stimuli Yang Xi, Qi Li, Siyuan He, Jinxing Zhang, Mengchao Zhang, Lin Liu A Novel Feature Analysis Method for EEG Signal Classification of Attended and Unattended Audiovisual Integration Yang Xi, Anyuan Zhang, Qi Li, Xingjian Yang, Mengchao Zhang, Lin Liu Vision System and Robotic Vision (I) Optimal Design of Monocular Stereo Vision System Yuanya Dehong Yu New Real-time View Synthesis Method Using Spatiotemporal Background Information Jian Li, Yubin Liu, Ge Li, Jie Zhao A Movel Recognition Algorithm in 3D Point Clouds based for on Local Spherical Harmonics Cao Hui, Riwei Wang, Xianbin Wen, Jindong Zhao, Wei Chen, Xuping Zhang Extrinsic Callibration of a Monocular Camera and a Single

	Lithium-ion Battery Face Imaging with Contactless Walabot and Machine Learning Yanan Wang, Yangquan Chen, Xiaozhong Liao, Lei Dong	1067
	Hierarchical Discriminant Regression Tree algorithm based on BDPCA and its application in object recognition Weimin Ge, Kaikai Yuan, Xiaofeng Wang, Gang Wu	1073
	Real-time Motion Detection with High-speed Vision and Local Parallel Processing Luxin Yang, Wenbo Dong	1079
	Optimization of Time Domain Moving Target Detection Algorithm Based on Improved FT Hui Wang, Chaoda Liu, Lijun Yu, Yizhuo Liu	1085
	Face and Gender Recognition System Based on Convolutional Neural networks Yuxiang Zhou, Hongjun Ni, Fuji Ren, Xin Kang	1091
MP3-5	Vision System and Robotic Vision (III) An Improved Genetic Algorithm based on Immune Theory in Target Segmentation of Infrared	1096
	Images Enzeng Dong, Hao Jian, Jigang Tong	
	A Reading Assistant System of Chinese Text for Persons with Central Visual Field Loss Yiyang Yu, Yang Feng, Meng Wang, Qiong Wu, Yulong Liu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	1102
	Contrast Discrimination of Circular Contour Patterns Across Visual Field for Virtual Reality Yang Feng, Qiong Wu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	1108
	Design of Mean Shift Tracking Algorithm Based on Target Position Prediction Hui Wang, Xueying Wang, Lijun Yu, Fei Zhong	1114
MP1-6	Control Theory and Application (I)	
	UVMS Controller Design Based on Double Close-loop Integral Sliding Mode Hua Sun, Zhi Zheng, Yanhui Wei, Shanshan Luo, Pengfei Yang, Jing Liu	1120
	Modeling of Small UAV Parachute Recovery System Based on Lagrangian Method Han Wu, Zhengping Wang, Zhou Zhou, Jieyu Jia, Rui Wang	1127
	Simulation Study on Noise Control Algorithm in Logging While Drilling Zeyang Zhang, Lin Fa	1133
	Simulation and Research on Position Servo Control System of Opposite Vertex Hydraulic Cylinder based on Fuzzy Neural Network <i>Jinjin Guo, Can Ye, Gang Wu</i>	1139

	Identification of Hydrodynamic Derivative and Motion Modeling of Underactuated Ship Based on CFD	1144
	Shouzheng Yuan, Zhilin Liu, Linhe Zheng	
	Integrated Aircraft and Propulsion System Simulation for Control and Performance Optimization	1150
	Min Wang, Weiqun Gu, Lijun Wei, Lionel Belmon	
MP2-6	Control Theory and Application (II)	
	Study on Horizontal Path Tracking Control Method for the Spherical Amphibious Robot Shuxiang Guo, Xujie Yang, Jian Guo	1155
	Longitudinal Dynamic Control under Complex Driving Conditions via Fuzzy Logic Sliding-mode Control	1161
	Ruiqi Zhang, Yuzhuang Zhao, Sizhong Chen, Zhicheng Wu, Lin Yang	
	Research and Analysis of SOGI-QSG Integral Saturation in the Application of Grid Synchronization	1167
	Guangjun Zhu, Qiping Yuan, Xiaoping Yang	
	Parameters Estimation of Damage Water for Undersurface Submarine Based on Extended State Observer	1172
	Haiying Nie, Changbo Liu, Kun Hu, Haifeng Huang, Bingli Tian	
	Application of Active Disturbance Rejection Technology in Boost Converter Kang Li, Yunliang Wang, Xuesong Zhou, Youjie Ma	1178
	An Adaptive Control Method for Fin Stabilizer Using Saturated Nonlinear Lift Compensation Mingxiao Sun, Tiantian Luan, Jun Xu	1184
MP3-6	Control Theory and Application (III)	
	Research and Design of Low Voltage and High Current DC Power Supply Based on Hybrid Energy Storage	1190
	Chunjie Wang, Yang Xiao, Peng Chen, Jinliang Yin	
	Stroke Estimation for Linear Compressor with Energy Method	1196
	Mingsheng Tang, Huiming Zou, Xuan Li, Changqing Tian	
	Safety Requirements Analysis for a Launching Control System based on STPA Nan Qin, Liang Ma	1201
	L ₁ Gain Scheduled Adaptive Control to Water Level of Nuclear Steam Generator Junling Wang, Jie Zhou, Xiuchun Luan, Zhida Yang	1206

MP1-7	Rotor Dynamics, Vibration Analysis and Vibration Control	
	Study on Vibration Characteristics of an Asymmetric Dual-rotor System Jun Liu, Zhu Han, Chang Wang, Weimin Ge	1212
	The Character Analysis and Testing on Vibration Noise of Permanent Magnet Synchronous Motor in Marine Electric Propulsion System Lanyong Zhang, Lei Zhang, Sheng Liu, Wugui Wang	1218
	Research of the Dual-rotor System with Spring Characteristics Jun Liu, Chang Wang, Teresa Zielińska	1224
	Investigation on the Nonlinear Dynamic Characteristics of the Air Lubricated Bearing Concerning Frequency of Perturbation Effect Baisong Yang, Sheng Feng, Jiale Tian, Lie Yu	1230
	An Investigation on the Stability Performance of Wave Journal Bearing Rotor System with Geometry Parameters Baisong Yang, Sheng Feng, Jiale Tian, Lie Yu	1236
	Study on Low-Pressure Casting Technique and Mold Design of the Aluminum Wheel Jiaze Wang, Kaijie Lu, Qingchun Zheng, Wenpeng Ma, Pai Peng, Cong Chen, Jiehe Li, Peixin Li, Dawei Zheng	1242
MP2-7	Biomimetic Systems	
	Subtle Vibration Sensing and Dimension Measurement with A Bio-inspired Optical Tactile Sensor	1248
	Yin Zhu, Jiawen Hao, Jie Yang, Erbao Dong	
	Design of a Hierarchical Control System for Tetherless Snake Robot Fenglei Ni, Yongqiang Li, Yunhu Zhou, Liangliang Zhao, Hong Liu	1254
	Phase Space Reconstruction Based Multi-Task Classification for Motor Imagery EEG Enzeng Dong, Kairui Zhou, Shengzhi Du	1260
	Stable Control Gait Planning Strategy for A Rehabilitation Exoskeleton Robot Ziming Guo, Can Wang, Zefeng Yan, Lufeng Zhang, Xunju Ma, Xinyu Wu	1265
	Directing Multiphenotypic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells under Mechanical Gradient Field Xin Wang, Yang Li, Chunqiu Zhang	1271
	A Novel Optimization Design Method for Multi-Degree of Freedom Vibratory Gyroscope Shuying Hao, Yulun Zhu, Chenqing Zhang, Jingjing Feng, Wei Chen, Kunpeng Zhang	1276

TA1-1 Medical, Biomedical and Rehabilitation Systems (I)

	A Novel Master Manipulator with Force Feedback for Robot-Assisted Natural Orifice Transluminal Endoscopic Surgery Chenglong Wang, Jianchang Zhao, Shuxin Wang, Jianmin Li, Chaoyang Shi	1282
	Design and Evaluation of a Training System to Increase Knee Extension Load During Walking Zixi Gu, Mazoon Salim Al Maamari, Di Zhang, Yasuo Kawakami, Sarah Cosentino, Atsuo Takanishi	1288
	Design and Implementation of the Lower Extremity Robotic Exoskeleton with Magnetorheological Actuators Jiajun Xu, Linsen Xu, Youfu Li, Chen Peng, Jinfu Liu, Chanchan Xu, Shouqi Chen, Yang Liu, Jian Chen	1294
	Remote Tongue Based Control of a Wheelchair Mounted Assistive Robotic Arm - a proof of concept study Ásgerður Arna Pálsdóttir, Strahinja Dosen, Mostafa Mohammadi, Lotte N.S. Andreasen Struijk	1300
	Design and Evaluation of A New Push-type Targeted Drug Delivery Capsule Robot Jian Guo, Zihong Bao, Shuxiang Guo, Qiang Fu	1305
	A Finite Element Analysis of Anterior Cervical Discectomy and Fusion Compared with Percutaneous Full-endoscopic Anterior Cervical Discectomy Chengfei Du, Chenxi Yuchi, Xinyi Cai, Mengsi Sun	1311
TA2-1	Medical, Biomedical and Rehabilitation Systems (II)	
	Estimation of Fatigue Status by sEMG Signal Using SVM Algorithm in Massage Assessment Dafan Long, Xingsong Wang, Mengqian Tian, Yuliang Mao, Yanzhong He	1316
	Different Brain Activation of Phonological and Semantic Processing with Bilinguals Speakers: An fMRI Study Xiujun Li, Jingjing Yang, Qi Li, Dan Tong, Jinglong Wu	1321
	Radial Basis Function Neural Network-based Control Method for a Upper Limb Rehabilitation Robot	1327
	Shuxiang Guo, Wenyang Gao, Dongdong Bu	1000
	Assessment of Pathological Grading of Bladder Cancer Using Texture Features from MRI Zhe Zhou, Lin Liu, Kaiming Xue, Yue Ma, Jiayan Liu, Mengchao Zhang	1333
TP1-1	Medical, Biomedical and Rehabilitation Systems (III)	
11 1-1		

A Method of Evaluating Rehabilitation Stage by sEMG Signals for the Upper Limb 1338

	Rehabilitation Robot	
	Shuxiang Guo, Huimin Cai, Jian Guo	
	Evaluation Method of Linear Displacement Precision for a Rope-driven Vascular Intervention Surgery Robot	1344
	Wei Zhou, Shuxiang Guo, Xianqiang Bao, Yangming Guo	
	Design and Evaluation of a Novel Slave Manipulator for the Vascular Interventional Robotic System	1350
	Jian Guo, Cheng Meng, Shuxiang Guo, Qiang Fu, Qi Zhan, Lei Qi	
	Effects of Femur and Pelvis Material Parameters on Hip Replacement	1356
	Limin Dong, Zhe Liu, Hanxiang Li, Jinduo Ye, Chunqiu Zhang, Nian Liu, Wei Chen	
	Study on Robust Control for the Vascular Interventional Surgical Robot Jian Guo, Shuai Yang, Shuxiang Guo, Cheng Meng, Lei Qi	1361
	Morphological Characteristics and Stress Analysis of 3D Printed Trabeculae Chunqiu Zhang, Lan Zhang, Xin Wang, Linwei Lv, Lu Liu, Xiankang Wang, Jinduo Ye	1367
TP2-1	Medical, Biomedical and Rehabilitation Systems (IV)	
	Biomechanical Study of MC3T3-E1 Osteoblasts under Hypergravity Xin Wang, Wenkai Yang, Chunqiu Zhang, Jinduo Ye	1372
	Biomechanical Study on Elastic and Viscoelastic Properties of Osteoblasts Using Atomic Force Microscopy	1377
	Xin Wang, Xiaoshuang Zhang	
	Biocompatibility of 3D-printed Titanium Alloy Porous Scaffold using Osteoblasts Xin Wang, Guanwen Han, Jinduo Ye, Chunqiu Zhang	1382
	Study on Tracking Stability for a Master-Slave Vascular Interventional Robotic System Jian Guo, Lei Qi, Shuxaing Guo, Cheng Meng, Qi Zhan	1387
	Mechanical Response of Intervertebral Disc Under Cyclic Compression Chunqiu Zhang, Tao Zhang, Qing Liu, Chengfei Du, Haiying Liu, Xin Wang	1393
	Mechanical Test and Stability Study of Cervical Fusion Cage Ling Chen, Zhi-Wen Nian, Yu-tao Men, Jie Tian	1398
TA1-2	Mobile Robot System (I)	
	A Novel Vascular Interventional Surgeon Training System with Cooperation between Catheter and Guidewire	1403

Shuxiang Guo, Qi Zhan, Jian Guo, Cheng Meng, Lei Qi

	Motion Performance of a Novel Fan Type Magnetic Microrobot in Pipe Zixu Wang, Shuxiang Guo, Wei Wei	1409
	Modeling and Control of a Personal Care Robot Considering Posture Adjustment Guang Yang, Shuoyu Wang	1414
	Study on the Path Planning of the Spherical Mobile Robot based on Fuzzy Control Jian Guo, Chunying Li, Shuxiang Guo	1419
	Path Planning of Omnidirectional Mobile Vehicle Based on Road Condition Yazhe Ding, Hongbin Ma, Shan Li	1425
	Modeling and Control of a Two-wheel Mobile Robot With Auxiliary Arms Zhensheng Xie, Haitao Zhou, Haibo Feng, Songyuan Zhang, Xu Li, Jiacheng Li, Yili Fu	1430
TA2-2	Mobile Robot System (II)	
	Application of ADAMS User-Written Subroutine to Simulation of Multi-gait for Spherical Robot Debin Xia, Shuxiang Guo, Liwei Shi, Huiming Xing, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Zan Li	1436
	Dynamic Modeling and Optimizing Analysis of Rigid-Flexible Coupling for Bundling Manipulator Based on ADAMS Shoujun Wang, Longrui Mao, Tao Xue	1442
	Design of A Negative Pressure Adsorption Pipeline Robot for Omni-directional Mobility Gangfeng Liu, Hao Mo, Changle Li, Ge Li, Liyi Li	1448
	Movement Performance Analysis of Mecanum Wheeled Omnidirectional Mobile Robot Changlong Ye, Jianhui Zhang, Suyang Yu, Guanglin Ding	1453
TP1-2	Mobile Robot System (III)	
	Model Based Control for Slip Reduction Teresa Zielinska, Weimin Ge	1459
	Study on Collaborative Algorithm for a Spherical Multi-robot System based on Micro-blockchain Shuxiang Guo, Sheng Cao, Jian Guo	1465
	Research on Gait Stability of a Foot-Type Wall-Climbing Robot Zili Xu, Sijia Gu, Ming`en Zhao, Peng Bao, Hua Tian	1471
	Trajectory Tracking Use Linear Active Disturbance Control of The Omnidirectional Mobile Robot	1478
	Huixuan Fu, Liang Xin, Bingyu Wang, Yuchao Wang	

	A Study on Slippage and Tip-over Stability for an Omnidirectional Mobile Robot with Longitudinal MY-wheels Suyang Yu, Changlong Ye, Chunying Jiang, Han Li	1484
	Crawling Gait Planning Based on Foot Trajectory Optimization for Quadruped Robot Shuaidong Yuan, Yijun Zhou, Chen Luo	1490
TP2-2	Mobile Robot System (IV)	
	CFD-based Underwater Formation Analysis for Multiple Amphibious Spherical Robots Xihuan Hou, Shuxiang Guo, Liwei Shi, Huiming Xing, Yu Liu, Yao Hu, Debin Xia, Zan Li	1496
	Basic Characteristics Evaluation of a Duck-like Robot Shuxiang Guo, Zan Li, Liwei Shi, Huiming Xing, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia	1502
	Design of a New Type of Tri-habitat Robot Jian Guo, Kaitian Zhang, Shuxiang Guo, Chunying Li, Xujie Yang	1508
	Implementation and Performance Assessment of Triphibious Robot Yiduo Zhu, Ziyi Guo, Tao Li, Meiling Wang	1514
	Research on the Image Enhancement Technology of Underwater Image of Supercavitation Vehicle	1520
	Xinhua Zhao, Yue Wang, Zeshuai Du, Xiufen Ye	
	Design of a Booster Exoskeleton for Lumbar Spine Protection of Physical Workers Ming Han, Tiejun Li, Shijie Wang, Tao Ma, Ningyi Ai	1525
TA1-3	Signal and Image Processing (I)	
	The Impacts of Subliminal Priming Effect on Normal Choice and Questionnaire Choice Qi Dai, Lichang Yao, Yiyang Yu, Qiong Wu, Jiajia Yang, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	1530
	Real-Time Facial Expression Recognition Using Deep Convolutional Neural Network Yuwen Zeng, Nan Xiao, Kaidi Wang, Hang Yuan	1536
	Uyghur Text Detection in Natural Scene Images Xinming Li, Junfang Li, Qiang Gao, Xiao Yu	1542
	PICO and OS-ELM-LRF Based Online Learning System for Object Detection Man Luo, Hongbin Ma, Xin Wang, Xiaofei Zhang	1548
	Efficient Pose Estimation using Random Forest and Hash Voting Bin Sun, Xinyu Zhang	1554

	Text Detection for Natural Scene based on MobileNet V2 and U-Net Kangwei Fu, Ling Sun, Xin Kang, Fuji Ren	1560
TA2-3	Signal and Image Processing (II)	
	Effect Evaluation System of Massage Chair Based on EEG Jiawei Li, Mengqian Tian, Yanzhong He, Xingsong Wang	1565
	P300 Detection with Adaptive Filtering and EEG Spectrogram Graph Hao Meng, Hongwei Wei, Tianhao Yan, Weihao Zhou	1570
	3D Face Recognition Based on Deep Learning Jing Luo, Fei Hu, Ruihuan Wang	1576
	A Joint Classifier for Sleep Staging with Pulse Rate Variability Based on Automatic Weight Assignment Dong He, Min Li, Haonan Yang, Wenbo Kang, Yanglei Ou	1582
TP1-3	Signal and Image Processing (III)	
	Automated Blastomere Segmentation for Early-Stage Embryo Using 3D Imaging Techniques Simarjot S. Sidhu, James K. Mills	1588
	Multi-Feature Clustering Approach for Firearm Wound Identification on CT Images Lian Luo, Yong Chao, Shuai Liu, Wanjun Shuai, Fei Shang	1594
	Research on 3D Reconstruction Method Based on Laser Rotation Scanning Tao Liu, Ningning Wang, Qiang Fu, Yi Zhang, Minghui Wang	1600
	Image Fusion Processing Method Based on Infrared and Visible Light Xiaogong Lin, Ronghao Yang	1605
	Moving Target Detection based on Multi-feature Adaptive Background Model Peiye Sun, Lianrong Lv, Juan Qin, Linghui Lin	1610
	The Method of the Road Surface Crack Detection by the Improved Otsu Threshold Yuwen Quan, Jie Sun, Yang Zhang, Haiwei Zhang	1615
TP2-3	Signal and Image Processing (IV)	
	Design of an Ultrasonic Nondestructive Testing System for Composite Materials Qinxue Pan, Xiaoyu Xu, Lang Xu, Yuping Jia, Xiaohao Liu, Dingguo Xiao, Meile Chang	1621
	Study of Defect Segmentation from a Mode Background Image Fangfang Han, Fuhua Xie, Baofeng Zhang, Junchao Zhu	1626
	A Variable Sampling Compressed Sensing Reconstruction Algorithm Based on Texture Information	1632

Lijun Yu, Fei Zhong, Hui Wang, Shuai Zhou

	Adaptive Filtering Fuzzy C-means Image Segmentation with Inclusion Degree Hui Wang, Shuai Zhou, Lijun Yu, Jinyuan Zhao	1637
	Method for Determining Grasping Position and Angle of Sea Cucumber by Rotatable Bounding Box	1642
	Shuguo Xiao, Xiufen Ye, Hao Chen, Wenzhi Liu	
	The Algorithm based on the Improved Image Intensity Subtraction for the Optical Coherence Tomography Angiography	1648
	Yang Zhang, Jie Sun, Yuwen Quan, Haiwei Zhang	
TA1-4	Industrial, Manufacturing Process and Automation (I)	
	Development of Variable Mold for Transition Nozzle Automation Process using TRIZ and DEFORM	1653
	Hui Geon Hwang, Seung Min Bae, Won Jee Chung, Sang Suk Sul, Jung Gwon Kim, I Man Kim, Seong Gi Seo	
	Cooperative Kinematic Synchronization of a 2-Axis (Tilting/Rolling) Additional System and a 6-Axis Articulated Robot using Simulink of MATLAB and RecurDyn	1659
	Seung Min Bae, Hui Geon Hwang, Won Jee Chung, Sung Joo Kim, Yeon Joo Ahn	
	Application and Experimental Verification of Practical Estimation Approach to Interpolation Cutter Path Error Caused by NC Servo Characteristics of Machining Center <i>Hua Qiu</i>	1665
	Path Generation for Robotic Polishing of Free-form Surfaces Zhaosheng Li, Linlin Shang, Wei Wang, Taiwen Qiu	1671
	Research on Stamping Process Parameters of Reinforcing Plate in Automobile Side Sill Ling Chen, Hui Li, Yanling Wang	1677
	Intelligent Workshop Bottleneck Prediction Based on Complex Network Feng Zhu, Ruigang Wang, Chuang Wang	1682
TA2-4	Industrial, Manufacturing Process and Automation (II)	
	A Novel Manufacturing Method for Thermoplastic Polyurethane Welding Using CO2 Laser	1687
	Daofu Zhang, Xingsong Wang, Mengqian Tian, Donghua Shen, Yuliang Mao	
	Design of Bank Server Fault Diagnosis System Based on Machine Vision Jun Xu, Shunyi Wu, Mingxiao Sun, Tiantian Luan	1692
	The Temperature Control of Blackbody Radiation Source Based on IMC-PID	1698

Lei Shao, Chang Liu, Zhigang Wang, Jinghui Wang, Xue Yang	
Real-Time Flow Control System Based on Siemens PLC	1703
Zeyu Quan, Xin Yuan, Yuntao Zhu, Zhengyang Wang	
Industrial, Manufacturing Process and Automation (III)	
RTCP Detection for Five-Axis CNC Machine Tool Dynamic Performance Based on 8-shape Trajectory	1709
Qicheng Ding, Wei Wang, Zhong Jiang, Jing Zhang, Li Du, Jiexiong Ding	
A Tool Path Generation Method for Three-dimensional Vibration-assisted Machining Guilian Wang, Bingrui Lv, Bin Liu, Haozhi Mu	1715
Machining Parameters Optimization of Ultrasonically-Assisted Drilling Cortical Bone Based on Genetic Algorithm	1721
Yahui Hu, Huaiyu Zhang, Longfei Wei, Weihua Fu, Chunqiu Zhang	
Simulation and Analysis of Residual Stress and Tool Wear in Mechanical Repeated Ruling Process	1727
Chaochao Shi, Guangfeng Shi, Guoquan Shi	
An All Position Automatic Welding Machine of Large Diameter Penstock Jiacheng Qi, Qiang Fu, Yifei Wu, Mo Yang, Yu Liu	1733
Pumping Unit Design and Control Research	1738
Liwen Cao, Tongsen Zhao	
Industrial, Manufacturing Process and Automation (IV)	
A Hands-on Course on Mechatronics, Based on Modular Production Systems	1744
Tohid Alizadeh, Mohamad Mosadeghzad	
Towards Enhancing Modular Production Systems by Integrating a Collaborative Robotic Manipulator	1750
Mohamad Mosadeghzad, Daryn Kalym, Zhassulan Kaliyanurov, Tohid Alizadeh	
Rotor Design and Analysis of a High Speed Permanent Magnet Synchronous Motor for Cryogenic Centrifugal pump	1756
Hao Xu, Haipeng Geng, Hao Lin, Yonghong Qi, Xiliang Yin	
Theoretical and Experimental Analysis of Spiral Tiled Combined Wireless Power Supply for Track Based on Electromagnetic Induction	1761
Shitai Ma, Haibo Zhou, Gang Liu, Shoujun Wang, Guilian Wang	
Digitally Controlled Power Supply Design with Continuously Adjustable Input Voltage Based	1767
	Real-Time Flow Control System Based on Siemens PLC Zeyu Quan, Xin Yuan, Yuntao Zhu, Zhengyang Wang Industrial, Manufacturing Process and Automation (III) RTCP Detection for Five-Axis CNC Machine Tool Dynamic Performance Based on 8-shape Trajectory Qicheng Ding, Wei Wang, Zhong Jiang, Jing Zhang, Li Du, Jiexiong Ding A Tool Path Generation Method for Three-dimensional Vibration-assisted Machining Guilian Wang, Bingrui Lv, Bin Liu, Haozhi Mu Machining Parameters Optimization of Ultrasonically-Assisted Drilling Cortical Bone Based on Genetic Algorithm Yahui Hu, Huaiyu Zhang, Longfei Wei, Weihua Fu, Chunqiu Zhang Simulation and Analysis of Residual Stress and Tool Wear in Mechanical Repeated Ruling Process Chaochao Shi, Guangfeng Shi, Guoquan Shi An All Position Automatic Welding Machine of Large Diameter Penstock Jiacheng Qi, Qiang Fu, Yifei Wu, Mo Yang, Yu Liu Pumping Unit Design and Control Research Liwen Cao, Tongsen Zhao Industrial, Manufacturing Process and Automation (IV) A Hands-on Course on Mechatronics, Based on Modular Production Systems Torid Alizadeh, Mohamad Mosadeghzad Towards Enhancing Modular Production Systems by Integrating a Collaborative Robotic Manipulator Mohamad Mosadeghzad, Daryn Kalym, Zhassulan Kaliyanurov, Tohid Alizadeh

on UCD3138

	Zhiqiang Cheng, Tao Lan, Yifei Xie, Jiaqi Fan, Huimin Liu, Zijuan Chen, Zengjia Wang	
	Wireless Power Transmission System via Magnetic Resonance Coupling Platform Yuling Ye, Chongsen Peng, Yizhang Wang, Junli Chen, Jucheng Liao, Tao Ma, Yu Liang, Mi Zhou	1772
TA1-5	Intelligent Mechatronics and Application (I)	
	Intelligent Outdoor Aquaponics with Automated Grow Lights and Internet of Things Zheng Jie Ong, Andrew Keong Ng, Thu Ya Kyaw	1778
	Development of an Anti-Sway Positioning Controller for Rotary Cranes Lihong Zhang, Zhiming Zhang, Chunquan Xu	1784
	Structural Design and Test of Movable Wake Maker Nan Liu, Haozhi Mu, Renzhe Wei, Peng Zhang, Qingsong Ning, Tao Xue, Shoujun Wang	1790
	Finite Element Analysis and Optimization of Movable Wave Maker Based on Workbench Nan Liu, Haozhi Mu, Renzhe Wei, Peng Zhang, Lili Zhao, Tao Xue, Shoujun Wang	1795
	AOI Planning Method Based on Genetic Algorithm Xiaohui Jia, Tao Wang, Yang Li, Jinyue Liu, Yunlong Zhang	1801
	2-DOF Haptic Device based on Closed-loop EBA Controller for Gastroscope Intervention Zhaoyang Xue, Chongyang Wang, Xiao He, Tao Yu, Xinyu Dong, Hao Liu	1806
TA2-5	Intelligent Mechatronics and Application (II)	
	Development of Miniature Control Moment Gyroscope Engineering Prototype Gang Li, Lin Lai, Wenshan Wei, Bing Xue, Jinghui Liu	1812
	The Wireless Electric Vehicle System Based on Supercapacitor Power Supply Tao Lan, Shengjie Cao, Zhiqiang Cheng, Qiqi Huang, Zhengchun Yang, Liqiang Xie	1818
	Design of 3-D Magnetic Field Sensor and Calibration Platform for TMS Hui Xiong, Hao Fu, Jianguo Zhu, Jinzhen Liu, Xiaohui Luo, Bowen Qiu	1823
	Research on the Motion and Dynamics of Biomimetic Manipulator with Seven Degrees of Freedom	1830
	Liang Xuan, Siyuan Peng, Tianmin Guan, Ning Li	
TP1-5	Intelligent Mechatronics and Application (III)	
	A Hybrid Stepper Motor Control Solution Based on A Low-Cost Position Sensor Chuyao Zhou, Bin Liu	1836
	A Method of Online Motion Generation Using Swept Volumes Collected in Advance	1842

	Rui Zhu, Kotaro Nagahama, Keisuke Takeshita, Kimitoshi Yamazaki	
	A Rotor Displacement Estimation Method for Magnetic Bearings with Direct Measurement of	1848
	the Ripple Current Slope	
	Zhongliang Tian, Zhengyuan Wei, Bin Guo, Yanhua Sun	
	Embedded Toxic Gas Monitor Based on µCOS-II	1854
	Yunlong Xing, Junchao Zhu, Ye Fu, Yao Zhang, Qian Qiao	
	Design of a Dual-core Processor Based Controller with RTOS-GPOS Dual Operating System	1859
	Yuansong Sun, En Li, Guodong Yang, Zize Liang, Rui Guo	
	Research and Design of Intelligent Traffic Signal Light Handheld Control Terminal Based on STM32	1865
	Xiao Chen, Feng Chen	
TP2-5	Intelligent Mechatronics and Application (IV)	
	Design and Kinematics Analysis of Modular Soft Robot with Two-stage Driven Mechanism Weimin Ge, Zhijie Pan, Haozhi Mu	1871
	A Step-wise Feature Selection Scheme for a Prognostics and Health Management System in Autonomous Ferry Crossing Operation	1877
	Xu Cheng, Andre Listou Ellefsen, Guoyuan Li, Finn Tore Holmeset, Houxiang Zhang, Shengyong Chen	
	Pitch Motion Control of a Soft Bionic Robot Fish Based on Centroid Adjustment Weiping Shao, Chunquan Xu	1883
	Research on Joint-Assisted Exoskeleton Control System of Lower Extremity in Active Spacesuit	1889
	Zhaoyang Li, Junyao Wang, Shengyong Yan, Peipeng Hao, Peng Tang, Yuehong Dai	
	Application of Big Data Processing Method in Intelligent Manufacturing Yao Xiao, Qiang Liu	1895
	Path Planning of Sand Blasting Robot Based on Improved RRT Algorithm	1901
	Lianyu Zhao, Jianpeng Liu, Jutao Wang	
TA1-6	Control Theory and Application (IV)	
	Tele-Operation of Robot using Facial Feature Point Detection	1907
	Masahiko Minamoto, Hidaka Sato, Takahiro Kanno, Tetsuro Miyazaki, Toshihiro Kawase, Kenji Kawashima	
	Temperature Control of a Pulse Tube Cryocooler System Using Model Identification and	1913

	Dynamic Matrix Control Ziyin Chen, Zhe Lin, Han Zhang, Yu Wang	
	Vertical Dynamics of Voice Coil Motor Active Suspension with Active Disturbance Rejection Control Junlin Luo, Wei Wu, Likun Ge	1919
	Research on Maximum Power Point Tracking of Pendulum Wave Energy Generator Chunjie Wang, Xiaochun Zhao, Peng Chen, Lin Cui, Yunqi Duan	1925
	Research on DC Bus Voltage Control of Ship Based on Hybrid Energy Storage Jingnan Zhang, Ruochen Bai	1931
	Analysis and Design of Self-propelled Trolley Based on Spatial RSSR Mechanism Hongbiao Xiang, Yan Li, Jiancheng Ba, Tilei Zhang, Shoujun Wang	1936
TA2-6	Control Theory and Application (V)	
	An Improved Power Quality Control Method of Micro-grid Converter based on Equivalent Impedance Calculation	1942
	Tianyi Ma, Jinyao Li, Haichao Li	
	Virtual Current Based Direct Power Control Strategy of Dual-active-bridge DC-DC Converter Xueping Gao, Lijun Fu, Feng Ji, You Wu	1947
	Research on Immunity of Permanent Magnet Synchronous Motor Vector Control System Guohong Li, Yongqing Xu	1953
	An Improved SVPWM Modulation Strategy for Three-Level Inverter Based on 60° Coordinate System	1959
	Xiaojie Lou, Qiping Yuan	
TP1-6	Control Theory and Application (VI)	
	Development of a Novel Remote Controller for Interventional Surgical Robots Cheng Yang, Shuxiang Guo, Yangming Guo	1964
	Pneumatic Attitude Control of the Air Bearing Tesbed to Simulate the Three Axis Free Tumbling Motion of an Uncooperative Target	1969
	Qiang Zhang, Kemo Zhang, Yong Lu, Xiaoguang Liu, Yuanhao Yin	
	Finite-Time Active Disturbance Rejection Control Based on High-Order Sliding Mode Jianzhao Jin, Suoliang Ge	1974
	Task Assignment of Heterogeneous UAV for Anti-radar Mission Using CTAP Models Siqi Yi, Zhiqiang Long, Juncan Lin	1980

	Disturbance Observers for General Exogenous Disturbances Chuanfeng Zang, Jessada Juntawongso, Kotaro Hashikura, Md Abdus Samad Kamal, Kou Yamada	1986
	Adaptive Fixed-Time Cooperative Intercept Guidance Law with Line-of-sight Angle Constraint Mingjie Zhang, Jianjun Ma	1992
TP2-6	Control Theory and Application (VII)	
	Multi-Robot Collaborative Coverage Under Localization Uncertainty Mert Turanli, Hakan Temeltas	1999
	Comprehensive Bond Graph Modeling and Optimal Control of an Anthropomorphic Mechatronic Prosthetic Hand	2006
	Muhammad Tallal Saeed, Sardor Khaydarov, Biniam Legesse Ashagre, M. S. Zafar	
	Research on Multi-USV Cooperative Search Method Xiaogong Lin, Yeye Liu	2012
	Research on Thrust Allocation Optimization with Main Propeller-rudder Based on Improved Genetic Algorithm	2019
	Guoqing Xia, Pengfei Sun, Binyuan Xia	
	Optimal Area Keeping Control for USV based on Minimum Energy Consumption Mingyu Fu, Zhiyi Liu, Yujie Xu	2025
	Research on Adaptive Control of Four-Rotor Aircraft Posture Stability Jiayuan Pang	2031
TA1-7	Modeling, Simulation Techniques and Methodology (I)	
	State Evaluation of Large Ships Diesel Engine Based on SOM Neural Network Jinxin Zhao, Jian Zhou, Peng Shang, Pengpeng Liu, Youlin Xu	2036
	Microscopic Analysis of Ultrasonic Attenuation of Polymer Bonded Explosives Qinxue Pan, Xiaoyu Xu, Lang Xu, Yuping Jia, Xiaohao Liu, Dingguo Xiao, Meile Chang	2041
	Simulation Research on Hydraulic Energy Regulation System of Beam Pumping Unit Chunyou Zhang, Lihua Wang, Huayang Zhao, Chunyou Zhang, Liang Wang	2047
	Equal Load Property Simulation Analysis of Planetary Gear Transmission of Deep-Sea Geological Winch	2053
	Fankai Kong, Zhenyang Wang, Hengchong Ge, Binghan Wang, Huaqiu Ding	
	Geometric Tolerance Modeling Method Based on B-spline Parameter Space Envelope Chenming Song, Yijun Zhou, Chen Luo	2058

	Research on the Control of Wheel-rail Noise by Wheel Sound-proof Skirt for High-speed Train Huanhuan Zhang, Guangtian Shi, Xiaoan Zhang, Zhidan Huang, Xiaoyun Zhang, Zhengxiao Xu	2064
TA2-7	Modeling, Simulation Techniques and Methodologies (II)	
	Research on Temperature Field of Rotor with Small Clearance of Axial-Flow High Speed PMSM	2070
	Baisong Yang, Sheng Feng, Jiale Tian, Lie Yu	
	Research on Diffusion Behaviors of Leaked Natural Gas in Urban Underground Utility Tunnels Chengcheng Liu, Deguo Wang, Yanbao Guo, Songzhao Zhang, Haitao Wang, Renyang He	2076
	Study on the Influence of Carrier Motion of Vertical Axis Turbine Power Station on Turbine Performance	2082
	Fankai Kong, Binghan Wang, HuaQiu Ding, LinHui Su, Zhenyang Wang	
	Dynamic Response Analysis of Marine Evacuation Chute System	2088
	Fankai Kong, Hongyang Xu, Zhenyang Wang, Hengchong Ge, BingHan Wang	
TP1-7	Modeling, Simulation Techniques and Methodologies (III)	
	Probabilistic Simulation and Determination of Sojourn Time Distribution in Manufacturing Processes	2094
	Johannes Zumsande, Karl-Philipp Kortmann, Mark Wielitzka, Tobias Ortmaier	
	Modelling of Creep Property of Base Material for Life Assessment of Mod.9Cr-1Mo Steel Welded Joint	2100
	Takuya Nakamura, Oga Kataoka, Hidenori Yoshimura, Hideyuki Hirata, Shuxiang Guo, Kazunari Fujiyama	
	The Application Research of Soft Starting Technology in Marine LED Lighting System Fang Liu, Zhichao Tao, Xuehui Zhang	2105
	Research of Ultrasonic C-scan Imaging Lateral Resolution Ran Liu, Qinxue Pan, Dingguo Xiao, Pengzhi Ma, Ming Cheng	2111
	Study on the Safety Limit of Rail Corrugation of Metro Lines Yukui Wang, Guangtian Shi, Zhenxin He, Xiaoan Zhang	2116
	Influence of Coil Radius, Distance and Working Frequency on Efficiency in Two-Coil Magnetically Coupled Resonant Wireless Power Transmission System Kun Li, Haibo Zhao, Lianrong Lv, Zhuang Sun, Yankai Shi, Yujie Hua, Qing Liu	2121

TP2-7 Modeling, Simulation Techniques and Methodologies (IV)

	Review on the Development and Applications of Vibration Isolators Wei Chen, Zhen Qin, Xuping Zhang	2126
	A General Method to Solve Inverse Kinematics of Spherical Wrist Manipulators Jiajing Wei, Minghe Jin, Yechao Liu	2132
	Related Factors and Risk Prediction of Type 2 Diabetes Complicated with Liver Cancer Hui Chen, Yi Xin, Yuting Yang, Fei Li, Guoliang Cheng, Xinxin Zhang	2138
	A Comparison of Methods of Data Mining Algorithms Directed Predictive Pharmacosafety Networks for Adverse Drug Event Detection	2144
	Xiangmin Ji, Liyan Hua, Xueying Wang, Yunfei Zhang, Jin Li	
	Research on Passive Heave Compensation System for Synchronous Lifting and Salvage of Shipwreck	2150
	Jianan Xu, Shanglong Zheng, Yong Zhan, Jing Liu	
	Impact of Inter Tine Coupling on the Spring Constant of the Quartz Tuning Fork Sajid Parveez, Danish Hussain, Usman Asad	2157
WA1-1	Medical, Biomedical and Rehabilitation Systems (V)	
	Performance Evaluation of a Powered Variable-stiffness Exoskeleton Device for Bilateral Training	2163
	Yi Liu, Shuxiang Guo, Ziyi Yang	
	EMG-based Continuous Prediction of the Upper Limb Elbow Joint Angle Using GRNN Shuxiang Guo, Ziyi Yang, Yi Liu	2168
	Research on Stress-Relaxation Property of Different Layers Periodontal Ligament under Compression	2174
	Jinlai Zhou, Yang Song, Xue Shi, Chenguang Xu	
	In Non-small Cell Lung Cancer, Can Radiomic Features Predict EGFR Mutations? Jiayan Liu, Lin Liu, Yue Ma, Kaiming Xue, Zhe Zhou, Mengchao Zhang	2180
	Application of CT Texture Analysis in Predicting Preoperative Lauren Classification of Gastric Cancer	2185
	Kaiming Xue, Lin Liu, Zhe Zhou, Yue Ma, Jiayan Liu, Mengchao Zhang	
	Prediction of Benign and Malignant Thymic Tumors based on Radiomics Features Yue Ma, Lin Liu, Jiayan Liu, Kaiming Xue, Zhe Zhou, Mengchao Zhang	2190
WA2-1	Intelligent Control Strategies and Algorithms	
	Automatic Fault Detection for Marine Diesel Engine Degradation in Autonomous Ferry	2195

	Crossing Operation Andre Listou Ellefsen, Xu Cheng, Finn Tore Holmeset, Vilmar Aesoy, Houxiang Zhang, Sergey Ushakov	
	Image Encryption Algorithm Based on Double Scrambling Hui Wang, Qiang Wang, Lijun Yu, Jingyuan Zhao	2201
	Optimum Platform Design of 3- <u>R</u> RR Planar Parallel Manipulators with a Parameterized Model <i>Kun Wang, Zhijiang Xie, Ruiqin Li, Shaoping Bai</i>	2206
	Reliability Evaluation of Bolt Fastening Force Based on Ultrasonic Measurement Method Qinxue Pan, Ruipeng Pan, Meile Chang, Chang Shao, Xiaohao Liu, Xiaoyu Xu	2212
	Moving Object Detection Based on Adaptive Loci Frame Difference Method Zixuan Bai, Qiang Gao, Xiao Yu	2218
	Investigation of the Gate Resistance and the RC snubbers on the EMI Suppression in Applying of the SiC MOSFET Wenjie Ma, Yingzhe Wu, Hui Li, Doudou Chu	2224
WA1-2	Medical Robots for Minimal Invasive Surgery (I)	
	Preliminarily Design and Evaluation of Tremor Reduction Based on Magnetorheological Damper for Catheter Minimally Invasive Surgery <i>Lingling Zheng, Shuxiang Guo, Linshuai Zhang</i>	2229
	Guidewire Tracking based on Visual Algorithm for Endovascular Interventional Robotic System	2235
	Peng Shi, Shuxiang Guo, Linshuai Zhang, Xiaoliang Jin, Dapeng Song, Weihao Wang	
	Tactile Training Improvement of Same-orientation but Not Different-orientation Discrimination Wu Wang, Jiajia Yang, Yinghua Yu, Qiong Wu, Qingqing Li, Jiabin Yu, Satoshi Takahashi, Yoshimichi Ejima, Jinglong Wu	2240
	Blood Flow Simulation of Virtual Simulation System for Vascular Interventional Surgery Baofeng Gao, Lamei Shang, Xiaojuan Cai, Yuhua Jiang, Shu Yang	2245
	Position-Free Hand Gesture Recognition Using Single Shot MultiBox Detector Based Neural Network	2251
	Jingwei Tang, Xingtian Yao, Xin Kang, Shun Nishide, Fuji Ren	
	Dissipative Particle Dynamics Simulation of Cells Deformation under Tensile Loading Xin Wang, Yandong Qu	2257

WA2-2 Medical Robots for Minimal Invasive Surgery (II)

	Development of a Grasper for Vascular Interventional Surgery Robotic System Xiaoliang Jin, Shuxiang Guo, Jian Guo, Linshuai Zhang, Peng Shi, Dapeng Song, Weihao Wang	2262
	Surgical Instruments Motion Safety Constraint Based on Haptic Virtual Fixture Hao Qiu, Bo Pan, Yili Fu, Yue Ai	2267
	A Novel Catheter Rotation Structure for Aseptic Environment of Interventional Surgery Robot Kaidi Wang, Nan Xiao, Yuwen Zeng, Hang Yuan	2273
	Development of Collaborative Clamping Devices for a Vascular Interventional Catheter Operation Shuxiang Guo, Youchun Ma, Yan Zhao, Yuxin Wang, Jinxin Cui	2279
	A Quantitive Description Method of Vascular basing on Unsupervised Learning towards Operation Skills Assessment of Endovascular Surgery <i>Jinxin Cui, Shuxiang Guo, Yan Zhao, Yuxin Wang, Youchun Ma</i>	2285
	A CNNs-based of Force and Torque Identification Model for Vascular Interventional Surgery Robot Yuxin Wang, Shuxiang Guo, Yan Zhao, Jinxin Cui, Youchun Ma	2291
WA1-3	Signal and Image Processing (V)	
	Deep CNN Framework for Environmental Sound Classification using Weighting Filters Baolong Tang, Yuanqing Li, Xuesheng Li, Limei Xu, Yingchun Yan, Qin Yang	2297
	A Convolutional Neural Network based on Batch Normalization and Residual Block for P300 Signal Detection of P300-speller System Zhaohua Lu, Qi Li, Ning Gao, Taiyue Wang, Jingjing Yang, Ou Bai	2303
	An Improved Struck Tracking Algorithm Based on Scale Adaptation and Selective Updating Enzeng Dong, Mengtao Deng, Jigang Tong	2309
	State and Parameter Estimation Algorithm for State Space Model Based on Linear Neural Network and Kalman Filter Yuhang Yang, Ying Shi	2314
	An Improved SSD Algorithm and Its Mobile Terminal Implementation Enzeng Dong, Yao Lu, Shengzhi Du	2319
	Low-dose CT Image Super Resolution using a Model-based Framework with CNN Prior Lei Sun, Shijie Guo	2325

WA2-3 Signal and Image Processing (VI)

	Dynamic Objects Detection Based on Stereo Visual-Inertial System in Highly Dynamic Environment	2330
	Jia He, Yanwu Zhai, Haibo Feng, Songyuan Zhang, Yili Fu	
	Sub-pixel Gear Parameter Measurement Based on Zernike Moment Yangyang Li, Dagui Huang, Xian'gang Wu, Silei Huang, Siyuan Huang, Youcheng Li, Xunkuai Zhou	2336
	High Speed Train Trajectory Algorithm through Fiber Optic Sensor Xiaoyue Yan, Fuyang Chen, Li Wang, Bin Jiang	2342
	Research on Rainfall Identification Based on the Echo Differential Value from X-band Navigation Radar Image Zhizhong Lu, Boqun Lv, Lei Li, Shuyuan Guo	2347
	Research on Optical Fiber IMU Signal Processing Based on Wavelet Algorithm Xiaogong Lin, Ruxin Guo, Yuqi Yuan	2352
	Research on Acoustic Model of Speech Recognition Based on Neural Network with Improved Gating Unit Wei Liu, Yan Yan, Jiangiang Yu, Yiming Sun	2358
WA1-4	Elements, Structures, and Mechanisms (I)	
	Theoretical and Numerical Analysis on the Load Capacity of Hydrodynamic Thrust Bearings with Fourier Series Decomposition Baisong Yang, Sheng Feng, Jiale Tian, Lie Yu	2363
	Research on the Static Performance of Multi-Cantilever Foil Bearing with the Fully Coupled Elastic Hydrodynamic Solution Baisong Yang, Sheng Feng, Jiale Tian, Lie Yu	2369
	Modeling and Coupled Vibration Analysis of Two-Span Series Dual-Rotor System Jun Liu, Ruiguo Zhu, Weimin Ge	2375
		2375 2381
	Jun Liu, Ruiguo Zhu, Weimin Ge Mechanism Design and Curve Passing Performance Research on Walking Module of Orbital Cable Pipe Gallery Inspection Robot	
	Jun Liu, Ruiguo Zhu, Weimin Ge Mechanism Design and Curve Passing Performance Research on Walking Module of Orbital Cable Pipe Gallery Inspection Robot Jianjun Ke, Yingqiu Xu, Ruiming Qian Study on Mechanism of Shaft Fault Suppression Based on Squeeze Film Damper	2381

WA2-4 Elements, Structures, and Mechanisms (II)

	Genetic Optimization of Thermal Management Systems for EV Power Electronics via ANSYS Multiphysics	2401
	Andrew J. Michalak, James K. Mills	
	Prediction of Effective Elastic Modulus of Polymer Bonded Explosive Based on Digimat Qinxue Pan, Xiaohao Liu, Lang Xu, Yuping Jia, Xiaoyu Xu, Meile Chang	2407
	Maximum Torque and Limit Angular Velocity of High-speed Coupling for Interference Fit Peng Shang, Yanhua Sun, Renjun Zhan, Ning Shan, Jinxin Zhao, Jian Zhou	2412
	Transparent Glass-based Directional Loudspeaker Yuxin Li, Limei Xu, Xuesheng Li, Xiaomei Xie, Min Chen, Cong Luo, Fang Zhu, Yalun Zhang	2418
	Smoothed FE-Meshfree with Extended Moving Least-Square Method for Analysis of Reissner-Mindlin plates Guangsong Chen, Jinsong Tang, Zihan Wang	2423
	Compliance Analysis of a Parallel Leaf-spring Carrying Mechanism Peng Li	2428
WA1-5	Robot Navigation and Control Algorithm (I)	
	Vision-based Waypoints Tracking Control for an Amphibious Spherical Robot Yao Hu, Liwei Shi, Shuxiang Guo, Huiming Xing, Xihuan Hou, Yu Liu, Huikang Liu, Debin Xia, Zan Li	2434
	Adaptive Sliding Control for Lower Exoskeleton Robot Driven by The Series Elastic Actuator Shuqiao Chen, Jianghai Zhao, Zhipeng Yu	2439
	Particle Filter Algorithm for Underwater Acoustic Source DOA Tracking with Co-prime Array Feibiao Dong, Limei Xu, Xuesheng Li, Shihao Wang, Xiaomei Xie	2445
	Real-time Indoor Navigation of UAV Based on Visual Delay Compensation Jian Li, Shaokai Xu, Yanmin Liu, Xiangdong Liu, Zhen Li, Fengdi Zhang	2451
	An Improved Calibration and Compensation Method for Lever-arm Errors between Two Rotational Inertial Navigation Systems <i>Qi Wu, Kui Li, Wenwei Liang</i>	2457
	Improved JPS Algorithm Using New Jump Point for Path Planning of Mobile Robot Xue Zheng, Xiaowei Tu, Qinghua Yang	2463
WA2-5	Robot Navigation and Control Algorithm (II)	
	Quadrotor Vision-based Localization for Amphibious Robots in Amphibious Area Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Yao Hu, Debin Xia, Zan Li	2469

	LLOAM: LiDAR Odometry and Mapping with Loop-closure Detection Based Correction Xingliang Ji, Lin Zuo, Changhua Zhang, Yu Liu	2475
	Gain Scheduling Control of Wheel-Legged Robot LPV system Based on HOSVD Jiachen Li, Haitao Zhou, Haibo Feng, Songyuan Zhang, Yili Fu	2481
	Fast and Accurate Robot Localization through Multi-Layer Pose Correction Yuxiang Liu, Lin Zuo, Changhua Zhang, Fenglian Liu	2487
	End-to-end Decentralized Multi-robot Navigation in Unknown Complex Environments via Deep Reinforcement Learning	2493
	Juntong Lin, Xuyun Yang, Peiwei Zheng, Hui Cheng	
	Speeding up FastMap for Pathfinding on Grid Maps Cong Hu, Quanjun Yin, Yue Hu, Junjie Zeng, Long Qin	2501
WA1-6	Biomimetic Underwater Robots	
	Turning Locomotion Analysis and Performance Evaluation for a Spherical Underwater Robot Shuoxin Gu, Shuxiang Guo, Liang Zheng, Ruochen An	2507
	Improvement and Evaluation for the Stability of Mobile Spherical Underwater Robots (SUR III) Ruochen An, Shuxiang Guo, Shuoxin Gu, Liang Zheng	2512
	Performance Study of an Underwater Snake-like Robot with a Flexible Caudal Fin Zhong Huang, Detian Kong, Chao Ren, Shan Li, Shugen Ma	2518
	Multi-Sensor Fusion Based Localization System for an Amphibious Spherical Robot Yu Liu, Shuxiang Guo, Liwei Shi, Huiming Xing, Xihuan Hou, Huikang Liu, Yao Hu, Debin Xia, Zan Li	2523
	A PID-type Fuzzy Logic Controller for an Interventional Surgical Robot Shuxiang Guo, Yangming Guo, Xianqiang Bao, Cheng Yang	2529
	Platform Design and Three-dimensional Underwater Experiment of Robotic Tuna Swimming Yi Zhao, Dan Xia, Po Dai	2534
WA2-6	Rescue Robots and Field Robot Systems	
	Mobile Robot Capable of Crossing Floors for Library Management Han Yu, Lei Li, Jingge Chen, Yutong Wang, Yankun Wu, Mingyuan Li, Hui Li, Zhihong Jiang, Xiaoming Liu, Tatsuo Arai	2540
	Real-time Riverbank Line Detection for USV System Tianwei Feng, Junfeng Xiong, Jinchao Xiao, Jinqing Liu, Yuqing He	2546
	Floor Surface Property Estimation based on Measurement of Hardness and Viscosity Using	2552

Wiping-motion and Separating-motion

Koichiro Matsumoto, Kimitoshi Yamazaki

Development of a Hybrid Locomotion Robot for Earthquake Search and Rescue in Partially2559Collapsed Building

Di ZHANG, Yukitoshi MINAMI Shiguematsu, Jia-Yeu LIN, Yi-Hsiang MA, Mazoon Salim AI MAAMARI, Atsuo TAKANISHI

Graphical Force and Haptic Feedback Teleoperation System for Live Power Lines Maintaining 2565 Robot

Jing Zhu, Yutao Chen, Ming Xu, Erbao Dong, Hao Zhang, Xuming Tang

Design of An Inspection Robot System with Hybrid Operation Modes for Power Transmission2571Lines

Han Wang, En Li, Guodong Yang, Rui Guo

IEEE ICMA 2019 2019 IEEE International Conference on Robotics and Automation Society

Mechatronics and Automation

Certificate of Participation

On behalf of IEEE ICMA 2019 Organizing Committee, we appreciated in participation of

Aryuanto Soetedjo

National Institute of Technology (ITN) Malang Indonesia

Indonesia

Kazuhiro Kosuge General Chair of IEEE ICMA 2019 Tohoku University, Japan August 4~7, 2019

Jian Guo Program Chair of IEEE ICMA 2019 Tianjin University of Technology, China

Intelligent Multi Agent System for Energy Management in the Classrooms with Grid Connected PV

Aryuanto Soetedjo, Yusuf Ismail Nakhoda and Choirul Saleh

Department of Electrical Engineering National Institute of Technology (ITN) Malang Jalan Raya Karanglo KM 2 Malang, Indonesia aryuanto@gmail.com

Abstract - This paper presents an application of the Multi Agent System (MAS) in the Building Energy Management System, more specifically to manage the energy in the classrooms of a university. The grid connected photovoltaic (PV) is used as the electrical generation system to supply the loads in the classrooms. The objective is to minimize the electricity cost while maintaining user comfort. The MAS consists of the PV Agent, the Utility Agent, the Load Agent and the Central Control Agent. In addition, the Course Scheduler Unit is employed to inform the utilization or occupancy of the classrooms. The proposed system provides a new method to manage the energy usage from the PV by changing the temperature set-point of the air conditioner system using the Fuzzy Logic Controller. The simulation results show that the proposed system provides the highest performance index of 0.9902 in the optimization of the electricity cost and temperature comfort compared to the conventional method using a fixed temperature set-point.

Index Terms – Multi agent, energy management, grid connected PV.

I. INTRODUCTION

An Intelligent Multi Agent System (MAS) is widely adopted in the distributed control systems [1]. An intelligent agent (or agent) is an autonomous system that acts in the environment to achieve its goal. An agent receives the information from the environment and takes a decision to response the changes according to the goal. In the MAS, several agents collaborate with each other to meet the global objective.

Nowadays, the development of electrical power system increases rapidly in the framework of smart grid technology. The distributed generation becomes popular due to the high penetration of renewable energy resources. Another aspect in the smart grid that attracts the attention is the energy management system. The MAS is adopted in both applications, such as for the microgrid operations [2,3], the renewable energy generation [4], the energy management in smart homes [5-7] and the buildings [8-13].

The MAS was employed to schedule smart devices in multiple smart homes [5]. The objective is to minimize the cost and peak load. In [6], the MAS was proposed to optimize energy usage in a smart home. The multi agents consist of the Management Agents, the Electrical Supply System Agents, and the Home Appliance Agents. There are three agents in the Management Agents, i.e. the Supply Side Management Agent, which is used to manage the power from the supply systems; the Demand Side Management Agent, which is used to manage the power to the loads; and the Home Energy Management Agent, which is used to manage both Supply Side Management Agent and Demand Side Management Agent. The MAS in [7] used the Fuzzy Logic Controller (FLC) which is embedded in each agent of the home appliance. The system was developed to minimize the electricity cost while maintaining the user comfort level.

A four-layer agent consisted of the Switch Agent, the Central Coordinator Agent, the Local Controller Agent, and the Load Agent was proposed in [8] to manage energy in the commercial building. The Local Controller Agent controls the lighting and temperature of the rooms using the FLC. The Central Coordinator Agent coordinates the Switch Agent, the Local Controller Agent, and the Load Agent.

In [11] the MAS was employed in the Building Energy Management System (BEMS). The building is divided into several zones which are controlled by the agents. The agents consist of the Local Zone Agent, the Zone Agent, the On-site Generation Agent, and the Building Agent. The Local Zone Agent controls the environment at the local zone (room), which is composed of the H-agent (heating system), the Vagent (ventilation system), the C-agent (cooling system), the E-agent (lighting and electrical systems) and the U-agent (occupancy level).

Three agents namely the Generation Agent, the Load Agent, and the Storage Agent were proposed to manage the energy operation in the self-sustainable building [12]. The Generation Agent performs the following tasks: analyze and acquire the historical and weather data, control the electrical output, and power conditioning. The Load Agent optimizes the usage of loads of building by performing several tasks, such as load forecasting, appliance management, metering, and load scheduling. The Storage Agent controls the charging/discharging of the battery storage based on the state of charge (SOC) and the charging/discharging rate.

As discussed previously, the MAS in the BEMS is usually divided into the generation agents (and the storage agents), the load agents and the control agents. The loads discussed previously are the general loads in the common building such as the air conditioner, the lighting, etc. In this paper, we deal with the BEMS in a university building, more specifically the lecture rooms or the classrooms. The building is powered by the grid connected PV system. One unique characteristic of our proposed system is that the occupancy of the classroom is well defined by the course schedule. The main contribution of our paper is in the application of MAS to optimize the energy consumed by the classrooms by maximizing the energy from the PV resources while satisfying the temperature comfort in the classrooms. It is conducted by employing the FLC to set the temperature set-point of the classroom according to the power availability of the PV system and the outdoor temperature.

The rest of paper is organized as follows. Section 2 presents the proposed system. Section 3 discusses the simulation results. The conclusion is covered in Section 4.

II. PROPOSED SYSTEM

A. System Overview

The configuration of the electrical system is depicted in Fig. 1, where the arrow indicates the electrical flow. As shown in the figure, the electrical power to the loads in the classrooms is supplied by the PV system and the electric utility.

In this research, to simplify the discussion, only five classrooms are considered. However, the proposed system could be extended to cope with a large number of classrooms accordingly. In each classroom, there are three kinds of loads, i.e. the air conditioner (AC), the LCD projector, and the lamps. The LCD projector and the lamps are controlled by on/off mode according to the class utilization. While the AC is a thermostat controlled, in which the temperature set-point is determined by the MAS as described in the next section.

The configuration of MAS to manage the energy consumption in the classroom is depicted in Fig. 2. The Load Agent (LA) is used to control the loads in a classroom. It sets the temperature set-point for operating the AC and switches on/off the lamps and the LCD projector based on the information from the Central Control Agent (CCA) and the Course Scheduler (CSCH). The CCA sends information about the available power of renewable resources. The Course Scheduler (CSCH) is an information system that manages the utilization of classrooms, i.e. the time schedule of the course.

The PV Agent (PVA) is an agent that is responsible to manage the power from the PV. The PVA sends the information about its power to the CCA and gets the control signal related to its power flow from the CCA. The UA is basically a simple agent to control the connection of the utility to the grid according to the signal control sent by the CCA.

CCA is the main control of the whole system. It manages the operation of the loads, the PV system and the utility. The CCA employs the FLC to generate the signal controls to the respective agents. The main objective is to maximize the power while maintaining the user comfort.

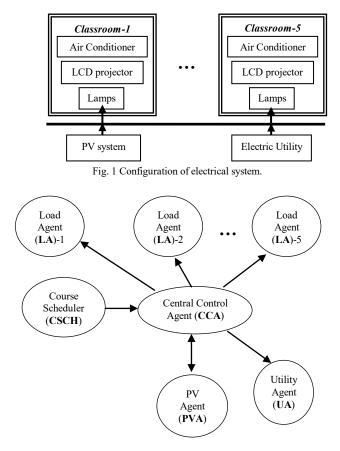


Fig. 2 Configuration of MAS.

B. Multi Agent System

The configuration of the Load Agent (LA) is depicted in Fig. 3. All three loads (AC, lamps, LCD projector) are operated when the classroom is occupied, i.e. there is a course conducted in the classroom. The occupancy information is obtained from the CSCH.

In the current research, the operation of the Lamps and the LCD projector is just switched on/off. While the AC is operated using the thermostat control, i.e. the temperature of the classroom should follow the temperature set-point of AC. By varying the temperature set-point, the energy consumed by the AC could be managed respectively.

As shown in the figure, the agent controls the operation of the loads based on the occupancy of the classroom, the outdoor temperature and the level of renewable energy resources (RES_LEV). The RES_LEV data is sent by the CCA. The RES_LEV is a value that indicates the level of availability of renewable energy resources. This value will be used by the FLC in the LA to set the temperature set-point as discussed in the next section.

The configuration of the PV Agent (PVA) is depicted in Fig. 4. PVA has two main tasks. The first task is to read the weather information and send the predicted PV power to the CCA. The second task is to read the control signal from the CCA and generate a switching signal to the power switch.

The switching signal is used to select the power flow from the PV as follows:

- Grid connection: the PV is connected to the grid
- Disconnected: the PV is disconnected from the system.

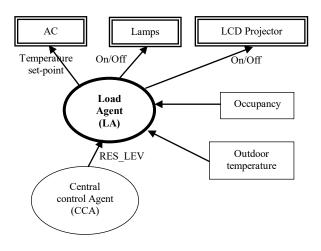
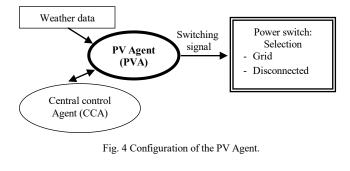



Fig. 3 Configuration of the Load Agent.

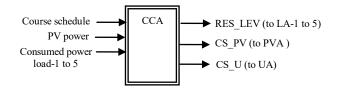
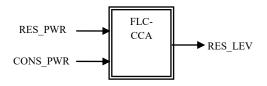


Fig. 5.The input and output of the Central Control Agent.

The CCA generates the control signals to the other agents as depicted in Fig. 5. The control signal to PVA and UA are CS_PV and CS_U, which are used to connect or connect the PV and the utility to the grid.


The control signal to the LA is RES_LEV which is determined by the FLC as described in the following section.

C. FLC in the Central Control Agent

As described previously, the CCA employs the FLC (later on is called as the FLC-CCA) to generate the control signal to the LA, the PVA, and the UA. The architecture of FLC-CCA is depicted in Fig. 6. As shown in the figure, the FLC-CCA has two inputs and one output. The inputs are the available power from the renewable energy resources (RES_PWR=PV power) and the power consumed by the loads (CONS_PWR=Consumed power load-1 to 5). While the output is the level of available power from renewable energy resources (RES_LEV).

The fuzzy membership functions of RES_PWR, CONS_PWR, and RES_LEV are depicted in Fig. 7. Each variable has three linguistic values, i.e. LOW, MED, and HIGH.

Since the objective of MAS is to minimize the electricity cost by maximizing the energy usage from the RES, thus the fuzzy rules are developed in such a way to fulfill that objective. The main idea is to provide information about the availability of RES to the LA. Then the LA uses this information to determine the temperature set-point.

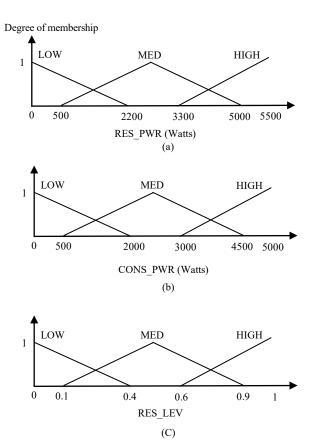


Fig. 7 Membership functions of FLC-CCA: (a) RES_PWR; (b) CONS_PWR; (c) RES_LEV.

TABLE I Fuzzy Rules of FLC-CCA						
RES_PWR CONS_PWR	LOW	MED	HIGH			
LOW	MED	MED	HIGH			
MED	LOW	MED	HIGH			
HIGH	LOW	MED	MED			

The information about the availability of RES is then called as the RES_LEV and determined based on the RES_PWR and CONS_PWR. The fuzzy rules are listed in Table 1. Several rules from the table could be explained as follows:

- IF RES_PWR is HIGH AND CONS_PWR is LOW THEN RES_LEV is HIGH: There is surplus power from RES, thus the RES_LEV is set to a high level.
- IF RES_PWR is LOW AND CONS_PWR is HIGH THEN RES_LEV is LOW: There is not enough power from RES, thus the RES_LEV is set to a low level.
- IF RES_PWR is MED AND CONS_PWR is MED THEN RES_LEV is MED: The availability of power from RES is medium, thus the RES_LEV is set to medium level.

D. FLC in the Load Agent

The FLC in the LA (later on is called FLC-LA) is used to set the temperature set-point of the AC in the classroom as depicted in Fig. 8. This set-point is determined to satisfy two conditions: a) the temperature set-point is in the range of comfortable level; b) the availability power from RES should be extracted as much as possible.

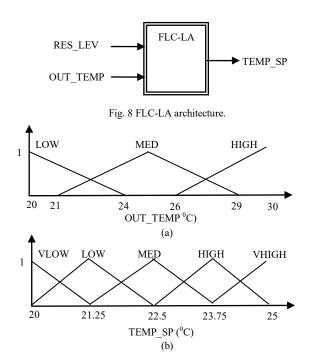


Fig. 9 Membership functions of FLC-LA: (a) OUT_TEMP; (b) TEMP_SP.

TABLE II

FUZZY RULES OF FLC-LA						
RES_LEV OUT_TEMP	LOW	MED	HIGH			
LOW	VERY HIGH	MED	VERY LOW			
MED	HIGH	MED	LOW			
HIGH	HIGH	MED	LOW			

As shown in Fig. 8, the inputs of FLC-LA are the RES_LEV and the outdoor temperature (OUT_TEMP). While the output is the temperature set-point (TEMP_SP). The fuzzy membership function of RES_LEV is the one in the FLC-CCA which is shown in Fig. 7(c). The fuzzy membership functions of OUT_TEMP and TEMP_SP are depicted in Fig. 9. It is noted here that the value of TEMP_SP falls in the range of user comfortable, i.e. from 20 $^{\circ}$ C to 25 $^{\circ}$ C.

To achieve the goal of minimizing the electricity cost while allowing the temperature comfort, the fuzzy rules are defined as listed in Table 2. The rules are determined based on the idea that by increasing the temperature set-point, the energy consumed by the AC will decrease. Thus when the RES power is low, it is better to increase the temperature setpoint and vice versa.

From the fuzzy rules listed in Table 2, several rules are explained as follows:

- IF RES_LEV is LOW AND OUT_TEMP is LOW THEN TEMP_SP is VERY HIGH: There is a small amount power from RES, and the outdoor temperature is low, thus it is a better to set the temperature set-point to very high value for decreasing the energy consumption.
- IF RES_LEV is HIGH AND OUT_TEMP is HIGH THEN TEMP_SP is VERY LOW: There is surplus power from RES, and the outdoor temperature is low, thus it suggests that the temperature set-point could be set to a very low value.

III. SIMULATION RESULTS

To verify our proposed system, we model the system using MATLAB-SIMULINK [14]. The PV generator is simulated using the model developed in [15]. The AC and thermal system of the room are modeled based on the example given in the SIMULINK software [14]. The electrical power rating of the PV and the loads in the classroom are given in Table 3. The data for irradiation, outdoor temperature, course schedule (occupancy of the classroom) are given in Table 4.

The simulation results are depicted in Fig. 10 and Fig. 11. In Fig. 10, the profiles of RES_LEV, outdoor temperature, temperature set-point, classroom temperature of classroom-1 are shown. For convenience, the profiles are shown from 06:00 h to 17:00 h when the classrooms are occupied. From the figure, we can see that at 07:00 h, the classroom-1 is occupied and the PV produces a small power.

Therefore the RES_LEV is low and forces the system to set the temperature set-point to the higher value, i.e. 23 ^oC. At 12:00 h, when there is enough power from the PV and the consumed power is also high, then the RES_LEV will have a medium value, i.e. 0.5. It will set the temperature set-point to the medium value, i.e. 22.5 ^oC.

Fig. 11 shows the profiles of consumed power of classroom-1 to classroom-5 from 06:00 h to 17:00 h. By observing the top figure, i.e. the consumed power of classroom-1, it is obtained that the consumed power in the morning is lower than the one in the afternoon. This result could be understood by examining Fig. 10 as follows. In the afternoon, the outside temperature is higher than the one in the morning. Since the temperature set-point is about 22.5 0 C, the AC will consume more power in the afternoon to reach the set-point.

 TABLE III

 POWER RATINGS OF GENERATOR AND LOADS

Generator and Loads	Power rating
PV	3000 W
AC	450 W (per room)
LCD projector	310 W (per room)
Lamps	240 W (per room)

 TABLE IV

 IRRADIATION, OUTDOOR TEMPERATURE, OCCUPANCY OF CLASSROOM-1 TO 5

Time	Irradiation	Outdoor temperature				try)	
(hour)	(W/m ²)	(⁰ C)	1	2	3	4	5
00:00	0	21	Х	Х	Х	Х	Х
01:00	0	21	Х	Х	Х	Х	Х
02:00	0	21	Х	Х	Х	Х	Х
03:00	0	21	Х	Х	Х	Х	Х
04:00	0	21	Х	Х	Х	Х	Х
05:00	0	21	Х	Х	Х	Х	Х
06:00	0	22	Х	Х	Х	Х	0
07:00	200	22	0	Х	Х	0	0
08:00	300	24	0	0	Х	0	0
09:00	500	25	0	0	Х	0	0
10:00	700	26	Х	0	0	Х	0
11:00	900	26	Х	0	0	Х	0
12:00	900	26	0	0	0	Х	Х
13:00	800	26	0	Х	0	Х	0
14:00	600	27	0	Х	0	0	0
15:00	400	27	Х	Х	0	0	0
16:00	300	24	Х	Х	Х	0	Х
17:00	0	24	Х	Х	Х	Х	Х
18:00	0	24	Х	Х	Х	Х	Х
19:00	0	24	Х	Х	Х	Х	Х
20:00	0	23	Х	Х	Х	Х	Х
21:00	0	23	Х	Х	Х	Х	Х
22:00	0	23	Х	Х	Х	Х	Х
23:00	0	22	Х	Х	Х	Х	Х

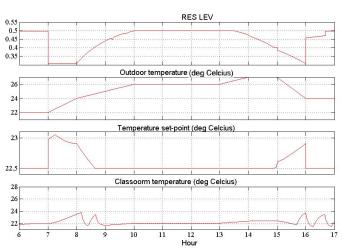


Fig. 10 Profiles of RES_LEV, outdoor temperature, temperature set-point, classroom temperature of classroom-1.

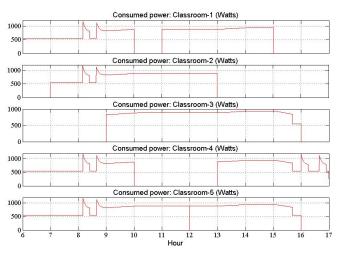


Fig. 11 Profiles of consumed power of classroom-1 to classroom-5.

TABLE V Comparison results of Performance Index					
Metho	d	en_lev	cf_lev	pi	
	21 ⁰ C	0.0039	0.8480	0.8519	
Fixed	22 °C	0.0498	0.9124	0.9622	
temperature	23 °C	0.1475	0.8276	0.9751	
set-point	24 ⁰ C	0.4317	0.3541	0.7858	
	25 °C	0.6358	0.0077	0.6435	
Proposed system		0.0989	0.8913	0.9902	

To measure the effectiveness of the proposed system in the optimization of the electricity cost and the comfort level, we define the performance index (pi) as follows:

$$pi = en_lev + cf_lev \tag{1}$$

$$en_{lev} = 1 - \sum_{h} (c - p) / \beta)$$
⁽²⁾

$$cf_{lev} = 1 - \sum_{h} \left| st - rt \right| / \gamma)$$
(3)

where en_lev and cf_lev represent the level of electricity cost and the temperature comfort respectively, c and p are consumed power by the loads and the PV power respectively, st and rt are the reference temperature and the classroom temperature respectively, β and γ are the constants for normalization, and h represents the hour.

In the simulation, we compare our proposed system, i.e. varying the temperature set-point, with the fixed temperature set-point. The comparison results are given in Table 5. It is clearly shown that the proposed method provides the highest value of the performance index (pi). It means that our proposed system achieves the highest performance among the other methods (fixed temperature set-point). The table suggests that our proposed system achieves the high index of the temperature level. It conforms with the idea of the proposed algorithm that determining the temperature set-point according to the availability of power from the PV and the outdoor temperature.

In addition, we test our proposed MAS on the embedded system, especially dealing with the execution time, the implementation cost, and the communication interface. The embedded platform is similar to our previous work [16], i.e. using the low cost WeMos module [17]. The main algorithm of each agent is implemented on the WeMos module, which is communicated with other agents via the WiFi communication. From the experiments, the execution time of the FLC is 13 ms and the transfer time between each agent is 332 ms. The results show that our proposed method is suitable for the real-time implementation, in which the update time of building energy management system is usually on hourly basis.

IV. CONCLUSION

The MAS is proposed to manage the energy in the classrooms by varying the temperature set-point according to the PV power and the outdoor temperature. The FLC is adopted in the agents to find the optimal temperature set-point. The performance index representing the measurement of the level of electricity saving cost and the user comfortable level is developed which is used to compare the proposed system with the fixed temperature set-point. Using the developed performance index, the proposed system achieves the highest value of 0.9902. Further, the possible implementation in the real-time system is verified by a small embedded platform and shows the promising results, in terms of the fast execution time, i.e. less than one minute, and the low cost implementation of the embedded system.

In future, the system will be extended to cope with more complex building. The advanced algorithms will be adopted accordingly. Further the system will be implemented in the hardware prototype.

ACKNOWLEDGMENT

This work is supported by the Research Grant, Excellent Basic Research on Higher Institution scheme (PDUPT) from Directorate General of Higher Education, Ministry of Research and Technology and Higher Education, Republic of Indonesia, 2019.

References

- J. Xie and C.-C. Liu, "Multi-agent systems and their applications," *Journal* of International Council on Electrical Engineering, vol.7, no. 1, pp. 188-197, July 2017.
- [2] H.-M. Kim, Y. Lim and T. Kinoshita, "An Intelligent Multiagent system for Autonomous Microgrid Operation, "*Energies*, vol 2012, no. 5, pp. 3347-3362, Sep. 2012.
- [3] D.O. Elamine, E.H. Nfaoui and J. Boumhidi, "Intelligent multi-agent system for smart microgrid energy management," *International Journal of Intelligent Engineering Informatics*, vol. 4, no. 3/4, pp. 245 – 266, Nov. 2016.
- [4] R.G. Ramirez and M. Borunda, "An intelligent multi-agent based improved approach for conventional and renewable power generation operation and control, "*Journal of Renewable and Sustainable Energy*, vol. 9, issue 1, Jan. 2017.
- [5] F. Fioretto, W. Yeoh and E. Pontelli, "A Multiagent System Approach to Scheduling Devices in Smart Homes," in *Proc. of the International Conference on Autonomous Agents and Multiagent Systems* Sao Paulo, 2017, pp. 981–989.
- [6] W. Li, T. Logenthiran and W. L. Woo, "Intelligent multi-agent system for smart home energy management," in *Proc. 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)*, Bangkok, 2015, pp. 1-6.
- [7] A. Garrab, A. Bouallegue and R. Bouallegue,"An Agent Based Fuzzy Control for Smart Home Energy Management in Smart Grid Environment," *International Journal of Renewable Energy Research*, vol. 7, no. 2, pp. 599-612, June 2017.
- [8] S. D. Smitha and F. M. Chacko, "Intelligent energy management in smart and sustainable buildings with multi-agent control system," in *Proc. 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)*, Kottayam, 2013, pp. 190-195.
- [9] P. Zhao, S. Suryanarayanan and M. G. Simoes, "An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology," in *Proc. 2010 IEEE Industry Applications Society Annual Meeting*, Houston, TX, 2010, pp. 1-8.
- [10] V. Sutedy, P. Wang, L.H. Koh and F.H. Choo,"Intelligent Eco-Building Management System," in Proc. the 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Shenyang, 2015, pp. 229-233.
- [11] L. A. Hurtado, P. H. Nguyen, W. L. Kling and W. Zeiler, "Building Energy Management Systems — Optimization of comfort and energy use," 2013 48th International Universities' Power Engineering Conference (UPEC), Dublin, 2013, pp. 1-6.
- [12] S. Sharma, B. K. Panigrahi and A. Verma, "A Smarter Method for Self Sustainable Buildings: Using Multiagent Systems as an Effective Iterative for Managing Energy Operations," *IEEE Consumer Electronics Magazine*, vol. 7, no. 2, pp. 32-41, March 2018.
- [13]S. D. Smitha, J. S. Savier and F. Mary Chacko, "Intelligent control system for efficient energy management in commercial buildings," in *Proc.* 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, Kanjirapally, 2013, pp. 1-6.
- [14] Thermal Model of a House. [Online]. Available: https://ww2.mathworks.cn /help/simulink/shef/thermal-model-of-a-house.html (Date accessed: 26 May 2019)
- [15] PV Array Simulink Block. [Online]. Available: https://ww2.mathworks.cn/ matlabcentral/fileexchange/30326-pv-array-simulink-block (Date accessed: 26 May 2019)
- [16]A. Soetedjo, Y.I. Nakhoda and C. Saleh, "Embedded Fuzzy Logic Controller and Wireless Communication for Home Energy Management Systems," *Electronics*, vol. 7, issue 9, pp. 1-21, Sep. 2018.
- [17] An Arduino UNO Compatible WiFi board on ESP8266EX [Online]. Available: https://wiki.wemos.cc/products:d1:d1 (Date accessed: 26 May 2019)