4TH INTERNATIONAL POSTGRADUATE CONFERENCE ON BIOTECHNOLOGY (IPCB) 2016

AUGUST 24 - 26, 2016, SURABAYA, INDONESIA

Treatment Performance Of Modified Anaerobic Baffled Reactor With Media Filter For Communal Wastewater Treatment Plant

Evy Hendriarianti 1, Nieke Karnaningroem²

hendriarianti@yahoo.com1

National Institute of Technology¹,

Sepuluh Nopember Institute of Technology^{1,2}

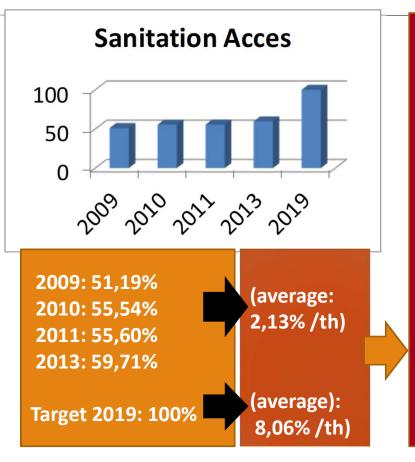
DOMESTIC WASTEWATER PROBLEM

Statement from deputy general secretary of UN MARCH 25, 2013

"INDONESIA"
INCLUDING IN STATES
WITH WORST
SANITATION IN THE
WORLD

TEN STATES WITH WORST SANITATION IN THE WORLD

- 1. BURKINA FASO
 - 2. NIGER
 - 3. CHINA
 - 4. NEPAL
 - 5. SUDAN
 - 6. NIGERIA
 - 7. ETHIOPIA
 - 8. PAKISTAN
 - 9. INDONESIA
 - 10.INDIA


(1 = LESS BAD; 10 = WORST) SOURCE: DETIK.COM - 2013

NR	STATE	% POPULATION HAVING SANITATION ACCES		EXPECTED OF ACHIEVEMENT MDG
		1990	2008	2015
1	SINGAPURA	99 %	100%	FASTER
2	MALAYSIA	84%	96%	FASTER
3	THAILAND	80%	96%	FASTER
4	MYANMAR	49%	81%	FASTER
5	FILIPINA	58%	67%	ON PLAN
6	VIET NAM	35%	75%	FASTER
7	LAOS	18%	53%	ON PLAN
8	INDONESIA	33%	52%	LATE
9	TIMOR LESTE	32%	50%	ON PLAN
10	KAMBOJA	9%	29%	LATE

NEED
TRANFORMATION
OF WASTEWATER
MANAGEMENT

ACTION OF
UNIVERSAL ACCES OF
100% SANITATION
ACCES IN 2019

ACCES SANITATION IN INDONESIA

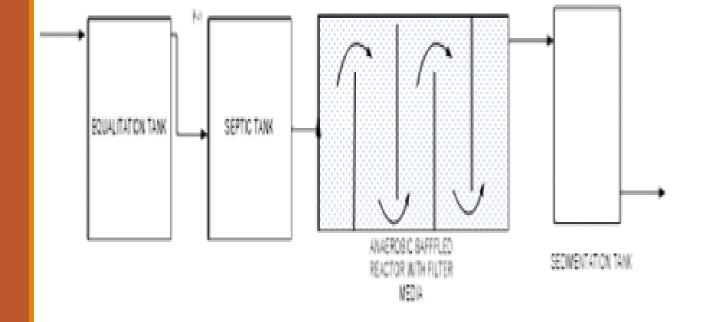
NEED INNOVATIF STEPS

A.POLICY ACCES
B.INSTITUTIONAL ASPECT
C.COMMUNITY AND
EDUCATION ASPECT
D. TECHNICAL ASPECT AND
FINASIAL

COMMUNAL WWTP IN MALANG CITY

NR.	FUNDED BY	AMOU NTS	CAPACITY (KK)	SERVICED HOUSE (KK)	MANAGER*)	YEAR
1.	Swadaya	1	500	110	KSM	1986
2.	PKK Kota	2	100	60		
	Malang	1	150	100	KSM	1998-1999
	_	1	200	150		
3.	APBN	1	150	60	KSM	1999
	Bank	1	6.000	800	LPPL	2000
4.	Dunia	1	10.000	1.550	KSM	2000
5.	DAK- APBN	22	100	30-170	KSM	2006-2014
6.	DAK APBN Propinsi	1	500	200	KSM	2011
7.	USRI	39	70	59-136	KPP	2011-2013
	Total users			19.040 KK, 37.030	person	

Schematic Processing Unit

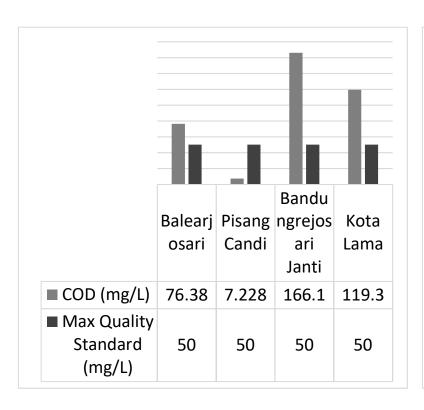

DEWATS system

- sedimentation unit
- anaerobic Baffled Reactor
- anaerobic filter

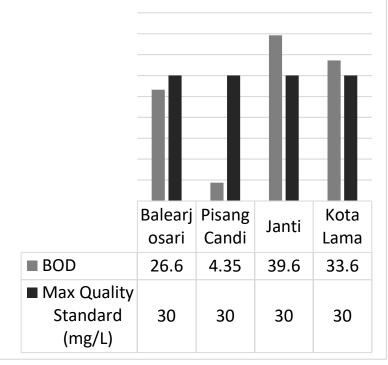
(Borda, 2015)

- ✓ Septic tank
- ✓ ABR with filter media

General description Communal WWTP

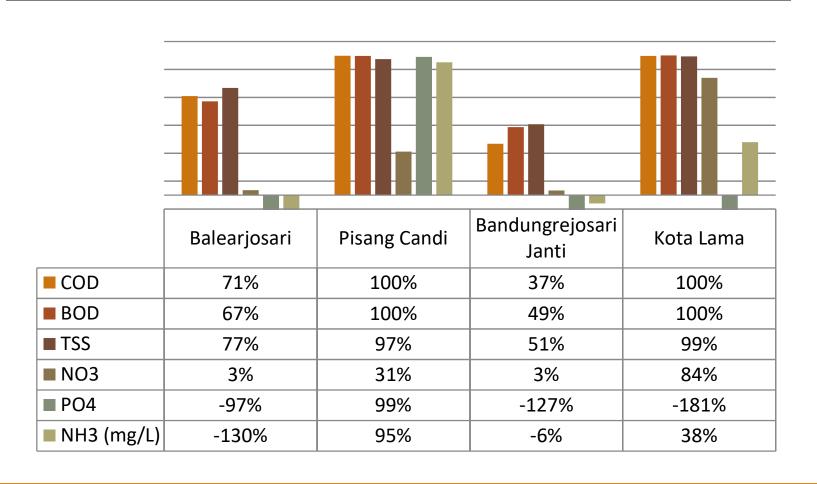

NR.	LOCATION	OPERATION STARTED	OPERATION CAPACITY (%)
1.	RT6 & RT7 RW2 Balearjosari	2012	65
2.	RW9 Bandungrejosari Janti	2010	123
3.	RW3 Pisangcandi	2013	62
4.	RW7 Kota Lama	2013	170

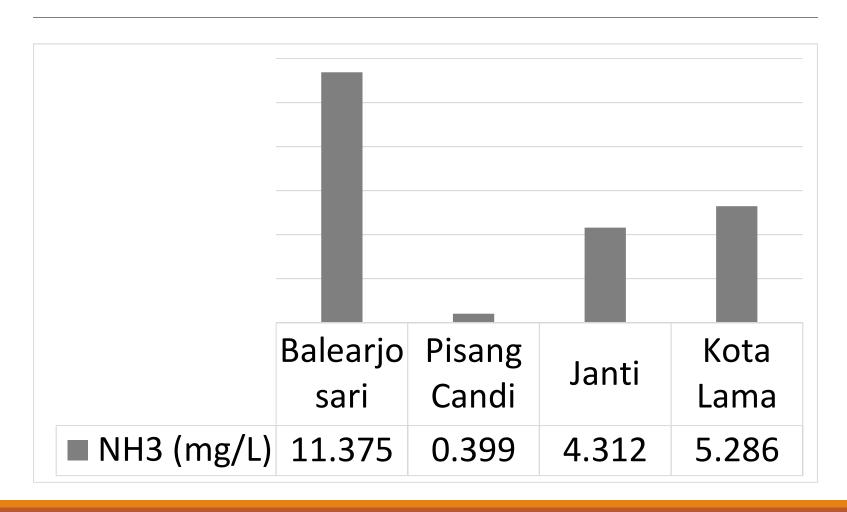
ANAEROBIC PROCESS


- Anaerobic process is economically attractive (Samb, 1996; Chernicharo, 1998)
- > easily built
- investment and operating costs are lower
- > easier to operate
- > separation efficiency is relatively high for organic material, nutrients, solids and pathogens at ambient temperature (Mahcdar, 1997)

effluent concentrations

PARAMETERS COD


PARAMETERS BOD


Ratio of BOD-COD

Communal	BOD/COD		
WWTP	Inlet	Outlet	
Balearjosari	0,31	0,35	
Pisangcandi	0,37	0,60	
Balearjosari	0,29	0,24	
Janti			
Kota Lama	3,44	0,28	

Communal WWTP Performance

Ammonia Effluent

METHODS

- Data collection and processing operations Communal WWTP comprising of operations and process design data of the cleanliness and landscaping services Dinas Kebersihan dan Pertamanan Kota Malang) and community sanitation groups (KSM) as manager of the Communal WWTP.
- Sampling and analysis of influent and effluent quality parameters in any communal wastewater treatment unit that includes the concentration of BOD, COD, TSS, NO₃, and PO₄. Sampling of wastewater was conducted by moment sampling (grab sampling) in accordance with SNI 6989.57: 2008 on Method of Wastewater Sampling.

METHODS

Analysis of the quality of wastewater samples carried out by the Water Quality Laboratory PJT I

Parameter
Wastewater
Analytical Methods

No.	Parame ter	Unit	Analysis Method
1.	BOD	mg/L	APHA.5210 B-
			1998
2.	COD	mg/L	QI/LKA/19
			(Spektrofotometr i)
3.	TSS	mg/L	APHA.2540 D-
			2005
4.	NO_3	mg/L	QI/LKA/65
5.	PO₄	mg/L	SNI 19-2483-

DISCUSSION- anaerobic process

- SRT separate from HRT to maximize performance of pollutants processing by anaerobic bacteria that slow (Nguyen, 2010)
- The strength characteristics of wastewater
- •The anaerobic bacteria are a group of bacteria metabolic consisting of microorganisms hydrolytic, fermentative, syntrophic and methanogenic which outlines the complex organic compounds in the process of anaerobic degradation (Satoh, 2007).

DISCUSSION- biofilter

mechanism of processing using a biofilter (Chaudhary, 2003)

- 1. attachment of biomass,
- 2. The use of the substrate and the growth of biomass and
- 3. Sloughing of biomass.
 - Strong attachment process and colonization of biomass depends on the influent characteristics (eg organic and concentration) and the surface properties of the filter media.
 - the amount of the growth and physical factors that affect the release of biofilm.
 - the loss of biomass only because of the shear stress of the fluid

DISCUSSION-The existence of ammonia

- Ammonium is an important nutrient for the growth of methanogens,
- The excess of free ammonia will disrupt the process of methanogenesis

Norg
$$\rightarrow$$
 NH₄ + + OH⁻ \leftrightarrow NH₃ + H₂O

CONCLUSION

- 1. Technology choice of Septic Tank and ABR with media filter reactor proved capable of processing organic matter of BOD and COD with the levels of allowance respectively by 49% -67% and 37% -100%. Parameter TSS, NO_3 and PO_4 have the ranges of allowance respectively by 51% 99%, 3% 84%, (181%) 99%.
- 2. The value of the ratio of BOD / COD WWTP Communal of the influent on the object of study ranged from 0.29 to 3.44.
- 3. From the evaluation shows that the high concentrations of organic matter in influent in line with the high of HRT and operation time will result in a higher allowance level. With the organic loading that is too low cause biomass limited to degrade organic matter and result low levels of organic material separation. The presence of ammonia in anaerobic degradation should be treated to produce biogas and nutrient-N.

THANK YOU AND KEEP FOR SUSTAINABILITY