PERENCANAAN DAN PEMBUATAN PANEL POMPA AIR OTOMATIS DENGAN MENGGUNAKAN MIKROKONTROLLER AT89851

TUGAS AKHIR

MILIK PERPUSTAKAAN ITN MALANG

Disusun Oleh : Harun Mawadat NIM : 02.52.020

KONSENTRASI ENERGI LISTRIK JURUSAN TEKNIK ELEKTRO D III FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI NASIONAL MALANG 2007

LEMBAR PERSETUJUAN

PERANCANGAN DAN PEMBUATAN PANEL POMPA AIR OTOMATIS DENGAN MENGGUNAKAN MIKROKONTROLLER AT89S51

Disusun Oleh : Harun Mawadat.S NIM : 02.52.020

Diperiksa dan Disetujui Dosen Pembimbing

(Ir. Eko Nurcahyo)

NIP.P 1028700172

KONSENTRASI ENERGI LISTRIK JURUSAN TEKNIK ELEKTRO D -III FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI NASIONAL MALANG MARET 2007

ABSTRAKSI

PERANCANGAN DAN PEMBUATAN PANEL POMPA AIR OTOMATIS DENGAN MENGGUNAKAN MIKROKONTROLLER AT 89S51 (Harun Mawadat. S, 02.52.020, Teknik Elektro D 3/Energi Listrik, Dosen Pembimbing : Ir. Eko Nurcahyo)

Kata Kunci : Panel Otomatis, Elektroda, Motor (Pompa Air), Keypad, LCD, Mikrokontroller

Pada penulisan ini dirancang sebuah system Panel Pompa Air Otomatis dengan Menggunakan Mikrokontroller AT89S51, dimana system kerja dari alat ini adalah digunakan untuk mengontrol pengisian air., maka pengawasan untuk penggunaanya akan lebih mudah karena secara otomatis rangkaian ini mampu menyalakan dan mematikan setiap saat sesuai dengan ketinggian air yang diinginkan. Untuk rumusan masalah yang kita bahas adalah bagaimana merancang dan membuat alat panel pompa air otomatis dengan menggunakan mikrokontroller agar hasilnya sesuai dengan keinginan kita. Pembuatan alat ini bertujuan untuk mempermudah kinerja manusia dalam proses pengisian air yang dikerjakan secara otomatis sehingga menjadi lebih praktis dan efisien,

Sistem ini menggunakan Mikrokontroller AT89S51 sebagai control utamanya. Alat ini dibuat meliputi perencanaan perangkat keras dan perangkat lunak. Perencanaan perangkat keras meliputi : perencanaan keypad, perencanaan LCD, perencanaan rangkaian relay, perencanaan pengaman motor, perencanaan rangkaian utama, perencanaan reset, perencanaan elektroda. Perencanaan perangkat lunak meliputi analogi program dan flow chart.

Prinsip kerja dari alat ini adalah rangkaian pengatur pengisian air ini dapat mengatur cara kerja pompa air listrik untuk dapat bekerja secara otomatis dalam melakukan pengisian bak penampung air,Pengujian alat ini meliputi:elektroda pada saat menyentuh air,motor (Pompa Air) akan Off sedangkan besar tegangan elektroda yaitu 0,978 Volt, Pada saat elektroda tidak menyentuh air, motor (pompa Air) dalam kondisi On (melakukan pengisian) dengan tegangan elektroda sebesar 4,94 Volt.Tegangan pada relay pada saat alat / motor bekerja yaitu sebesar 0,042 Volt sedangkan pada saat alat / motor dalam keadaan off besar tegangan relay 4,95 Volt. Hal ini disebabkan karena alat ini direncanakan dengan kondisi aktif low. Sedangkan waktu yang dibutuhkan untuk pengisian air sampai batas atas / penuh adalah 18,4 menit.

KATA PENGANTAR

Puji syukur saya panjatkan kehadirat ALLAH SWT, Yang Maha Esa karena hanya dengan kasih –Nya sajalah saya mampu menyelesaikan laporan Tugas Akhir ini dengan tepat waktu.

Tidak lupa saya juga ucapkan terma kasih kepada:

- 1. Bapak DR, Ir. Abraham Lomi, MSEE, selaku Rektor ITN Malang.
- 2. Bapak Ir.Chirul Saleh, MT, selaku Kajur Elektro D-III ITN Malang.
- 3. Bapak Ir Eko Nurcahyo, selaku dosen pembimbing.
- Bapak Ir.H.Taufik Hidayat, MT serta rekan-rekan Lab D-3 work shop ITN Malang.
- 5. Orang tua tercinta serta keluarga yang selalu mendukung.
- 6. Semua pihak yang telah membantu menyelesaikan laporan ini.

Saya menyadari bahwa laporan ini jauh dari sempurna. Oleh sebab itu saya sangat berterima kasih apabila ada saran dan kritik yang membangun dari berbagai pihak . Diakhir kata penulis laporan ini dapat bermanfaat bagi kita semua.

Malang, 20 Maret 2007

Penulis

iii

DAFTAR ISI

LEMBAR PERSETUJUAN	i
ABSTRAKSI	ii
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	vii
DAFTAR TABEL	ix
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	2
1.3. Tujuan	3
1.4. Batasan Masalah	3
1.5. Sistematika Pembahasan	3
BAB II LANDASAN TEORI	5
2.1. Mikrokontroller AT 89851	5
2.1.1 Pendahuluan	5
2.2.2 Arsitektur	6
2.2.3 Pin Deskripsi	8
2.2.4 Register Fungsi Khusus	14
2.2.5 Ram Internal	18
2.2. LCD Module M1632	24
2.3. Keypad	27

2.4.	Transformator	28
2.5.	Relay	31
2.6.	Dioda Penyearah	35
2.7.	Transistor	36
2.8.	MCB	36
2.9,	Unit Elektroda	39
2.10	. Karakteristik Motor Pompa Air	33
BAB III PE	RANCANGAN DAN PEMBUATAN ALAT	42
3.1.	Pendahuluan	42
3.2.	Prinsip Kerja Alat	42
3.3.	Perencanaan Perangkat Keras	42
	3.3.1 Diagram Blok Rangkaian	42
	3.3.2 Perencanaan Rangkaian Keypad	44
	3.3.3 Perencanaan Rangkaian Unit Penampil LCD	45
	3.3.4 Perencanaan Rangkaian Relay	47
	3.3.5 Perencanaan Pengaman Motor	48
	3.3.6 Perencanaan Rangkaian Utarna Mikrokontroller	49
	3.3.7 Perencanaan Rangkaian Reset	50
	3.3.8 Perencanaan Elektroda	51
3.4	Perancangan Perangkat Lunak	52
	3.4.1 Analogi Program	53
	3.4.2 Diagram Alir	54

BAB IV HASIL PENGUJIAN ALAT DAN ANALISA	55
4.1. Umum	55
4.2. Pengujian Rangkaian	56
4.2.1. Tujuan	56
4.2.2. Peralatan yang digunakan	56
4.3. Hasil Pengujian	56
4.3.1. Pengujian Rangkaian LCD	56
4.3.2. Pengujian Pemicuan Relay	57
4.3.3. Pengukuran Arus Motor	58
4.3.4. Pengukuran Elektroda	58
4.3.5. Pengujian Waktu Pengisian Air	60
BAB V PENUTUP	61
5.1. Kesimpulan	61
5.2. Saran	62

DAFTAR PUSTAKA

LAMPIRAN-LAMPIRAN

DAFTAR GAMBAR

2-1. Gambar Blok Diagram MK AT 89S51	6
2-2. Gambar Pin – pin MK AT 89851	8
2-3. Gambar Rangkaian Power on reset	12
2-4. Gambar Rangkaian Kristal	13
2-5. Gambar Bit – bit Port	15
2-6. Gambar Diagram deteksi bit	16
2-7. Gambarllustrasi Pembagian ruang RAM	18
2-8. Gambar Rangkaian OP-AMP Inverting dengan Ei negatif	
dihubungkan pada input pembalik	21
2-9. Gambar Step – step yang terjadi pada pemindahan data 5	
Hingga ke alamat 30 H hingga 34	23
2-10. Gambar LCD Module M1632	25
2-11. Gambar Keypad	28
2-12. Gambar Tranformator	29
2-13. Gambar Kontruksi Relay Jenis Kontak Tukar	32
2-14. Gambar Relay Dua Kutub	33
2-15. Gambar Dimensi Relay Dua Kutub	34
2-16. Gambar Dimensi Soket Relay Dua Kutub	34
2-17. Gambar Simbol Dioda	36
2-18. Gambar Transistor PNP dan NPN	
2-19. Gambar Diagram Arus Waktu MCB Type L, G, H	38

2-20,	Gambar MCB	38
2-21.	Gambar Bentuk dan Bagian Pompa Air	40
2-22.	Gambar Pompa – pompa air DAB Model Aqua	40
2-23.	Gambar Karakteristik Dari Pompa Air	41
2-24.	Gambar Pengawatan Pada Pompa Air	41
3-1.	Gambar Diagram Blok	43
3-2.	Gambar Rangkaian Keypad Matrik 4 x 4	44
3-3.	Gambar Rangkaian Penampil LCD	47
3-4.	Gambar Rangkaian Relay	48
3-5.	Gambar Rangkaian Utama MK AT 89851	49
3-6.	Gambar Reset MK AT 89851	51
3-7.	Gambar Rangkaian Koneksi Elektroda ke MK AT89S51	52
4-1.	Gambar Panel Box	55
4-2.	Gambar Pengujian Rangkaian LCD	56
4-3.	Gambar Rangkaian Tegangan Relay Pada Saat Alat Kondisi Off	57
4-4.	Gambar Rangkaian Tegangan Relay Pada Saat Alat Kondisi On	57
4-5.	Cambar Pengukuran Arus Motor	58
4-6.	Gambar Pengukuran Elektroda Pada saat Belum Menyentuh Air	58
4-7.	Gambar Pengukuran Elektroda Pada Saat Menyentuh Air	59
4-8.	Gambar Waktu Pengisian Air	60

viii

DAFTAR TABEL

2-1.	Fungsi – fungsi Alternative Port 1	9
	Fungsi – fungsi Alternative Port 3	11
2-3.	Definisi Pin LCD Module M1632	26
2-4.	Perintah Dalam Pengaksesan LCD	26
3-1.	LCD	46
4-1.	Hasil Pengujian Tegangan Relay	57
	Hasil Pengujian Tegangan Elektroda	59

BABI

PENDAHULUAN

1.1. Latar Belakang

Pompa air merupakan salah satu peralatan yang utama pada industri – industri besar, sebagai sarana penyediaan air untuk kebutuhan perusahaan. Karena apabila kebutuhan air mengandalkan sumber air dari Perusahaan Air Minum misalnya, tentu akan sangat beresiko sebab sewaktu – waktu dapat saja terjadi air tidak mengalir. Demikian pula penggunaan air di rumah tangga.

Jenis pompa air dewasa ini tersedia berbagai macam dari yang sederhana hingga yang dilengkapi dengan peralatan penunjang sehingga pompa air dapat bekerja secara otomatis.

Pompa air sederhana yang tidak bekerja secara otomatis, dapat dibuat dengan menambahkan rangkaian otomatis sehingga mempunyai nilai lebih. Rangkaian yang dimaksud adalah "Panel Pompa Air Otomatis dengan Sistem Mikrokontroller AT89S51".

Hal – hal yang merugikan dapat ditekan sekecil mungkin dengan penggunaan sistem *Mikrokontroller AT89S51* ini, sehingga didapatkan keuntungan – keuntungan antara lain adalah mempermudah kerja manusia yang awalnya secara menual menjadi otomatis, menghemat pemakaian air, energi listrik dan biaya listrik, menerapkan taknologi yang berkembang saat ini, dari segi keamanan dan keindahan penggunaan panel sangat bermanfaat.

Dengan menambahkan rangkaian ini untuk mengontrol pengisian air., maka pengawasan untuk penggunaanya akan lebih mudah karena secara otomatis rangkaian ini mampu menyalakan dan mematikan setiap saat sesuai dengan ketinggian air yang diinginkan.

Rangkaian ini menggunakan elektroda AC dimaksudkan untuk mencegah korosi elektrodanya terhadap air. Karena polaritas arus AC berubah – ubah yang dihasilkan oleh osilator akan mengalir pada elektroda sehingga korosi dapat dihindari.

Jika menggunakan elektroda DC maka akan terjadi pelarutan pada elektroda tersebut. Hal ini disebabkan karena elektroda DC mempunyai polaritas yang tetap dan berlawanan, sehingga elektroda yang dicelupkan akan larut dalam waktu yang relatif lebih cepat.

Kelebihan lain dari penggunaan elektroda AC ini adalah tahan terhadap gangguan listrik yang tiba – tiba turun tegangan. Namun demikian perlu diperhatikan bahwa rangkaian ini tidak dapat bekerja jika air yang digunakan tidak mengandung elektrolit, misalnya garam – garam mineral. Karena tanpa adanya elektrolit arus tidak dapat mengalir dari elektroda satu ke elektroda yang lain.

1.2. Rumusan Masalah

Berdasarkan permasalahan yang terdapat dalam latar belakang, maka dapat dibuat rumusan masalah sebagai berikut:

 Bagaimana merancang dan membuat alat panel pompa air otomatis dengan menggunakan mikrokontroller AT89S51.

 Bagaimana merencanakan dan membuat alat tersebut agar hasilnya sesuai dengan yang kita inginkan.

1.3. Tujuan Pembahasan

Tujuan pembuatan tugas akhir ini adalah untuk merancang dan membuat suatu alat yang dapat mengatur cara kerja pengisian air dengan pompa air, baik dari jenis pompa air yang otomatis maupun tidak otomatis untuk dapat menaikkan air ke dalam suatu bak penampungan (tandon) yang letaknya di atas maupun yang di bawah dengan ketinggian air yang dapat dikontrol secara otomatis.

1.4. Batasan Masalah

Dalam perencanaan dan pembuatan alat ini agar pembahasan lebih akurat, maka perlu adanya pembatasan masalah yang meliputi :

- 1. Mikrokontroller AT89S51 sebagai kontrol utama dan tidak membahas bahasa C .
- 2. Pompa air yang dipakai merk DAB Aqua 108 C.
- 3. Alat bantu untuk kontrol yaitu Omron relay untuk tegangan DC.
- Kapasitas ground tank (sumber) dan bak penampungan (tandon) adalah 270 m³.
- 5. Ukuran konstruksi tidak dibahas secara mendalam.

1.5. Metodologi Penulisan

Metodologi yang dipakai penulis dalam menyajikan dan menganalisa Tugas Akhir ini adalah :

" Studi Literatur yang berhubungan dengan perencanaan dan pembuatan alat "

1.6. Sistematika Pembahasan

BAB 1	: Pendahuluan
	Menjelaskan tentang latar belakang, rumusan masalah, tujuan,
	batasan masalah, sistematika penulisan.
BAB II	; Teori Dasar
	Bab ini menjelaskan teori tentang dasar teori dan karakteristik
	komponen utama yang digunakan dalam perancangan peralatan
	tersebut.
BAB III	: Perencanaan dan Pembuatan Alat
	Membahas tentang perencanaan dan pembuatan panel pompa air
	otomatis dengan menggunakan sistem Mikrokontroller AT89S51
BAB IV	: Hasil Perencanaan, Pengujian, dan Analisa Alat
	Membahas tentang hasil dari perencanaan alat, pengujian yang
ut:	dilakukan terhadap alat yang dibuat, data hasil pengujian, dan juga
	analisanya.
BAB V	: Penutup
	Berisi tentang kesimpulan dan keseluruhan tugas akhir yang telah
	dikerjakan dan saran

BAB II

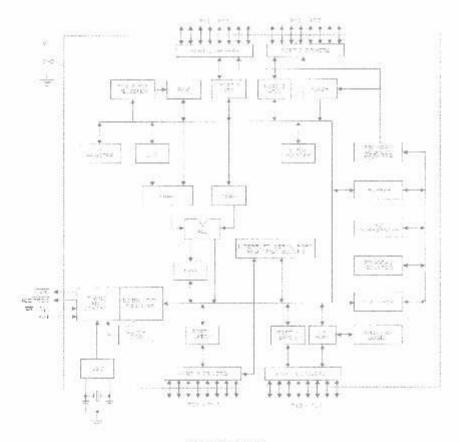
LANDASAN TEORI

Pengatur pengisian air secara otomatis yang bekerja berdasarkan ketinggian air. Pada dasarnya menggunakan operasi – operasi logika sebagai komponen aktifnya. Disamping itu digunakan juga komponen – komponen yang lain sebagai komponen pendukung. Penerapan komponen – komponen yang digunakan dalam pembuatan alat ini dibahas secara ringkas sebagai berikut :

2.1. Mikrokontroler AT89S51

2.1.1. Pendahuluan

Mikrokontroller bisa dipandang sebagai sebuah mini komputer yang terintegrasi dalam sebuah chip. Didalam satu chip mikrokontroller sudah terdapat bagian-bagian seperti dalam sebuah komputer. Bagian-bagian itu antara lain ; ALU (*Arithmetic Logic Unit*), PC (*Program Counter*), SP (*Stack Pointer*), Register, ROM (*Read Only Memory*), RAM (*Random Acces Memory*), Paralel I/O, Serial I/O, *Counter* dan sebuah rangkaian *Clock*.


Seperti sebuah mikroprosessor, mikrokontroller adalah sebuah perangkat serbaguna, yang fungsi kerjanya dapat ditentukan melalui sebuah perangkat lunak yang mendeskripsikan sebuah sistem yang diinginkan.

Pada saat ini terdapat banyak keluarga mikrokontroller salah satunya adalah keluarga MCS51. Salah satu tipe mikrokontroller yang termasuk dalam keluarga MCS51 adalah A'1'89S51 buatan Atmel.

AT89S51 adalah mikrokontroler keluaran atmel dengan 4K byte Flash PEROM (*Programmable and Erasable Read Only Memory*), AT89S51 merupakan memori dengan teknologi nonvolatile memori, artinya isi memori tersebut dapat diisi ulang ataupun dihapus berulang kali.

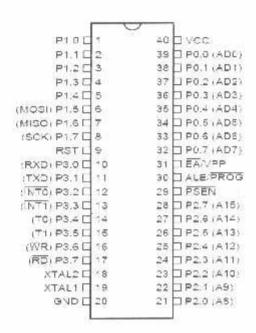
Memori ini biasa digunakan untuk menyimpan instruksi (Perintah) berstandar MCS - 51 code sehingga memungkinkan mikrokontroler ini untuk bekerja dalam mode *Single Chip Operation* (Mode Operasi Keping Tunggal) yang tidak memerlukan *Eksternal Memori* (Memori luar) untuk menyimpan source code tersebut.

2.1.2. Arsitektur AT89S51

Gambar 2.1. Blok Diagram AT89S51 Data Sheet AT89S51, http://www.atmcl.com

AT89S51 adalah mikrokontroler keluaran atmel dengan 4K byte Flash PEROM

(Programmable and Erasable Read Only Memory), AT89S51 merupakan memori dengan teknologi nonvolatile memori, artinya isi memori tersebut dapat diisi ulang ataupun dihapus berulang kali


Memori ini biasa digunakan untuk menyimpan instruksi (Perintah) berstandar MCS – 51 code sehingga memungkinkan mikrokontroler ini untuk bekerja dalam mode *Single Chip Operation* (Mode Operasi Keping Tunggal) yang tidak memerlukan *Eksternal Memori* (Memori luar) untuk menyimpan source code tersebut.

IC ATMEL AT89S51 menyediakan standart berikut:

- ⇒ 4K Bytes memori yang dapat diprogram ulang
- ⇒ 128 Bytes internal RAM
- ⇒ 32 jalur I/O (Input dan Output) yang dapat diprogram
- ⇒ Sepasang 16 bit Timer dan Counter
- ⇒ Dual data Pointer (DPTR)
- ⇒ Watchdog Timer
- \Rightarrow ISP Port
- ⇒ Mendukung serial Port secara penuh
- ⇒ Waktu Pemrograman yang singkat

Sebagai tambahan AT89S51 dirancang menggunakan logika yang statis untuk mode pengoperasian yang menuju ke frekwensi dasar dan pendukungan terhadap dua Software, serta dapat memilih model Power Savingnya. Mode idle akan berhenti ketika CPU sedang menjalankan RAM, Timer/Counter, Serial Port dan Interrupt System untuk terus melanjutkan fungsinya. Model power down akan menyimpan isi dari RAM tapi akan

memberhentikan ossilator dan akan menghentikan semua chip lain yang sedang berfungsi sampai terdapat adanya gangguan dari luar atau hardware di reset.

Gambar 2.2. Pin – Pin AT89851¹

2.1.3. Pin Deskripsi

VCC : Power Supply

- GND : Ground
- Port 0 : Port 0 berfungsi sebagai 8 bit I/O bertipe open drain bi-directional. Sebagai port keluaran masing – masing pin dapat menyerap arus sebesar 8 masukan TTL (sekitar 3,8 mA). Ketika diberikan logika '1' pada pin port 0 ini maka pin – pin port 0 ini akan dapat digunakan sebagai inputan berimpedansi tinggi.

¹ Data Sheet AT89S51, http://www.atmel.com, hal 2

Port 0 juga dapat dikonfigurasikan pada sebagai bus alamat/data selama proses pengaksesan data memori dan program eksternal. Jika digunakan dalam mode ini port 0 memiliki internal Pull Up.

Port 0 juga menerima kode – kode data yang diberkan padanya selama proses pemrograman dan memberikan kode – kode selama proses verifikasi program yang telah tersimpan didalam memori. Dalam hal ini dibutuhkan eksternal Pull Up selama proses verifikasi program.

Port 1 : Port 1 berfungsi sebagai 8 bit I/O Bi-directional yang dilengkapi dengan internal Pull Up. Ketika diberikan logika '1' pin ini akan di Pull Up secara internal sehingga dapat digunakan sebagai input. Sebagai inputan jika pin
 pin ini dihubungkan ke ground maka masing – masing pin ini dapat menghantarkan arus karena di Pull High secara internal. Port 1 juga menerima Low Order Address Bytes selama melakukan verifikasi program.

Pada port 1 di AT89S51 pin ini mempunyai alternatif seperti pada tabel berikut ini:

Port Pin	Alternate Funtions
P1.5	MOSI (Master Output Slave Input)*
P1.6	MISO (Master Input Slave Output)
P1.7	SCK (Serial Clock)*

Tabel 2 – 1 Fungsi – Fungsi Alternative Port 1²

² Data Sheet AT89S51, http://www.atmel.com, hal 4

Port 2 berfungsi sebagai 8 bit I/O Bi-directional yang dilengkapi dengan internal Pull Up Penyangga keluaran port 2 dapat memberikan atau menyerap arus empat masukan TTL (sekitar 1,6 mA)

> Jika diberikan logika '1' pada pin – pin port 2, maka masing – masing pin akan di Pull High secara internal sehingga dapat digunakan sebagai inputan. Sebagai inputan jika pin – pin port 2 dihubungkan ke ground (di Pull Low), maka, masing – masing pin dapat menghantarkan arus karena di Pull High secara al.

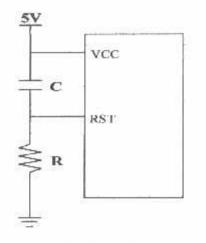
> Port 2 akan memberikan byte alamat bagian tinggi (High Byte) selama pengambilan instruksi dari memori program eksternal dan selama pengaksesan memori data eksternal yang menggunakan perintah dengan alamat 16 bit (misalkan **MOVX@DPTR**). Dalam aplikasi ini , jika ingin mengirimkan '1', maka digunakan Pull Up internal yang sudah disediakan. Selama pengaksesan memori data eksternal yang menggunaka perintah 8 bit (misalkan **MOVX@RI**), port 2 akan mengirimkan isi dari SFR P2 (*Special Function Register Port 2*). Port 2 juga menerima alamat bagian tinggi (High Order Address) selama pemrograman dan verifikasi memori.

Port 3 : Port 3 sebagai 8 bit I/O Bi-directional yang dilengkapi dengan Pull Up Internal. Penyangga keluaran port 3 dapat memberikan atau menyerap arus empat masukan TTL (sekitar 1,6 mA).

> Jika diberikan logika '1' pada pin pin port 3, maka masing – masing pin akan di Pull High oleh Pull Up internal sehingga dapat digunakan sebagai inputan. Sebagai inputan, jika pin – pin port 3 dihubungkan ke ground,

maka masing – masing kaki akan memberikan arus karena di Pull High secara internal.

Seperti Port 1, port 3 juga mempunyai fungsi – fungsi alternatif yang diberikan oleh AT89S51 seperti pada tabel berikut ini:

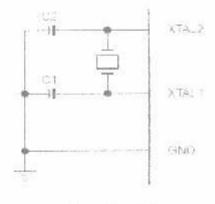

Tabel 2 – 2 Fungsi – Fungsi Alternatif Port 3³

Port Pin	Fungsi Alternatif
P3.0	RXD (Serial Input Port)
P3.1	TXD (Serial Output Port)
P3.2	INT0 (Eksternal Interrupt 0)
P3.3	INTI (Eksternal Interrupt 1)
P3.4	T0 (Timer 0 Eksternal Input)
P3.5	T1 (Timer 1 Eksternal Input)
P3.6	WR (Eksternal Data Memory Write Strobe)
P3.7	RD (Eksternal Data Memory Read Strobe)

Reset : Inputan Reset akan memberikan logika High '1' pada pin ini dengan jangka waktu yang ditentukan oleh lamanya pengosongan data muatan kapasitor. Jangka waktu minimal adalah 2 siklus mesin (24 periode frekwensi clock) ditambah waktu start On Osilator.

П

³ Data Sheet AT89S51, http://www.amel.com, hal 5


Gambar 2.3. Rangkaian Power On Reset⁴

ALE/PROG: Keluaran ALE (Address Latch Enable) menghasilkan pulsa – pulsa untuk menutup byte rendah (Low Byte) alamat selama mengakses memori eksternal. Pin ini juga berfungsi sebagai inputan pulsa program (The Program Pulse Input) atau PROG selama melakukan Flash Program. Pada operasi normal, ALE akan berpulsa dengan pewaktuan (Timing) atau pendetakan (Clocking) rangkaian eksternal. Sebagai catatan ada sebuah pulsa yang dilewati selama pengaksesan memori data eksternal. Jika dikehendaki operasi ALE dapat di nonaktifkan dengan cara mengatur bit 0 dari SFR (Special Function Register) lokasi 8Eh. Jika diberi logika '1' ALE hanya akan aktif selama menemui instruksi MOVX atau MOVC. Selain itu, pin ini secara perlahan akan di Pull High. Mematikan bit ALE tidak akan ada efeknya jika mikrokontroller mengeksekusi program secara eksternal.

⁴ Teknik Antarmuka dan Pemrograman, Mikrokontroler AT89C51, Paulus Andi Nalwan, PT. Elex Media Komputindo, Jakarta, 2003 hal 27

- PSEN : PSEN (Program Store Enable) merupakan sinyal baca untuk memori program eksternal. Ketika mikrokontroller AT89S51 menjalankan kode dari program eksternal, PSEN akan diaktifkan sebanyak 2 kali per siklusnya, kecuali dua aktivasi PSEN dilompati (Diabaikan) saat mengakses memori data eksternal.
- EA/VPP : EA/VPP (External Access Enable). EA harus selalu dihubungkan ke Ground karena digunakan untuk mengakses eksternal memori dengan lokasi 0000H sampai FFFFH. Catatan sekalipun bit '1' sudah terkunci dan terprogram, maka EA akan terkunci pada reset. EA juga harus dihubungkan ke Vcc untuk melakukan menjalankan program secara internal. Pada saat Flash Programming pin ini mendapatkan tegangan sebesar 12 Volt.
 - XTAL1 : Merupakan input ke penguat pembalik osilator dan ke rangkaian operasi Clock internal.
- XTAL2 : Keluaran dari penguat pembalik osilator.

Gambar 2.4. Rangkaian Cristal⁵

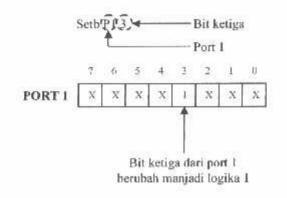
⁵ Data Sheet AT89S51, http://www.atmel.com. hal 11

Mikrokontroler AT89S51 memiliki rangkaian osilator internal dengan mengacu pada frekwensi referensi pada pin XTAL1 dan XTAL2.

2.1.4. Register Fungsi Khusus

AT89S51 mempunyai 21 Special Function Registers (Register Fungsi Khusus) yang terletak pada antara alamat 80H hingga FFH. Beberapa dari register – register ini juga bisa dialamati dengan pengalamatan bit sehingga dapat dioperasikan seperti yang ada pada RAM yang lokasinya dapat dialamati dengan pengalamatan bit.

 \Rightarrow Accumulator


Register ini terletak pada alamat E0H. Hampir semua operasi aritmatik dan operasi logika selalu menggunakan register ini. Untuk proses pengambilan dan pengiriman data ke memori eksternal juga diperlukan register ini.

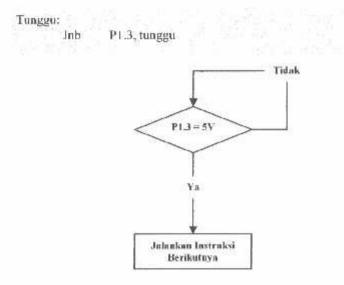
 \Rightarrow Port

89S51 mempunyai empat buah Port, yaitu Port 0, Port 1, Port 2 dan Port 3 yang terletak pada alamat 80H, 90H, A0H dan B0H. Namun, jika digunakan eksternal memoriataupun fungsi – fungsi special, seperti Eksternal Interrupt, Serial ataupun Eksternal Timer, Port 0, Port 2 dan Port 3 tidak dapat digunakan sebagai Port dengan fungsi umum.

Semua Port ini dapat diakses dengan pengalamatan secara bit sehingga dapat dilakukan perubahan output pada tiap – tiap pin dari port ini tanpa mempengaruhi port – port yang lainnya.

Sebagai contoh, jika dilakukan instruksi Setb P1.3, maka bit ketiga dari port 1 akan berkondisi high (5V) tanpa mempengaruhi bit – bit yang lain pada port ini.

Gambar 2.5. Bit – Bit Port⁶


Seperti yang tampak pada gambar 2 - 5, bit ketiga dari port 1 terletak pada alamat 93H oleh karena itu instruksi Setb P1.3 dapat diganti dengan instruksi Setb 93H.

Port ini digunakan untuk menunggu sinyal yang dikirim oleh komponen lain yang merupakan sinyal positif (5V) misalnya, dengan instruksi berikut ini:

Selama kondisi pada port 1 pin ketiga masih low (0V), program akan terus melompat ke alamat yang ditunjukkan oleh label "tunggu" sehingga dapat diartikan bahwa program berhenti di alamat tersebut hingga terjadi sinyal positif (5V). Setelah sinyal positif (5V) muncul di bit ketiga dari port 1; program akan menuju ke alamat yang berikutnya:

⁶ Teknik Antarmuka dan Pemrograman, Mikrokontroler AT89C51, Paulus Andi Nalwan, PT. Elex Media Komputindo, Jakarta, 2003 hal 10

Gambar 2.6. Diagram Alir Deteksi Bit Ketiga Port 1⁷

⇒ Register B

Register B digunakan bersama accumulator untuk proses aritmatik selain dapat juga difungsikan sebagai register biasa. Register ini juga bersifat *Bit Addressable*.

⇒ Stack Pointer

Stack Pointer merupakan sebuah register 8 bit yang terletak di alamat 81H. Isi dari Stack Pointer ini merupakan alamat dari data yang disimpan di stack. Stack Pointer dapat diedit atau dibiarkan saja mengikuti standart sesudah terjadi reset. Jika Stack Pointer diisi data 5FH, area untuk proses penyimpanan dan pengambilan data dari dan ke stack adalah sebesar 32 byte, yaitu antara 60H hingga 7FH karena 89S51 mempunyai Internal RAM sebesar 128 byte.

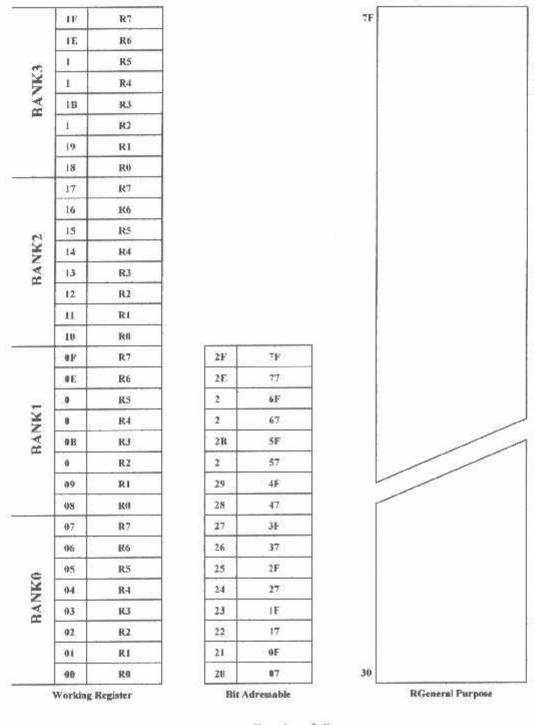
 \Rightarrow Data Pointer Two Byte Register (DPTR)

⁷ Teknik Antarmuka dan Pemrograman, Mikrokontroler AT89C51, Paulus Andi Nalwan, PT. Elex Media Komputindo, Jakarta, 2003 hal 11

Data Pointer Two Byte Register atau DPTR merupakan register 16 bit dan terletak pada alamat 82H untuk DPL (Data Pointer Low) dan 83H untuk DPH (Data Pointer High). DPTR biasa digunakan untuk mengakses source code ataupun data yang terletak di memori eksternal.

Contoh:

MOV A, #01h MOV DPTR, #2000H MOVX @Dptr,A


Listing diatas berfungsi untuk menuliskan data 01H ke dalam alamat 2000H. Pertama, data 01H diisikan ke accumulator. Kemudian, DPTR yang berfungsi untuk menunjukan alamat penyimpanan data diisi dengan 2000H. terakhir, isi dari accumulator A disimpan ke lokasi memori yang ditunjukan oleh DPTR (*Indirect Addressing*).

⇒ Register Port Serial

AT89S51 mempunyai sebuah on chip serial port (serial port dalam keping) yang dapat digunakan untuk berkomunikasi dengan peralatan lain yang menggunakan serial port juga seperti modern, shift register dan lain – lain.

Buffer (Penyangga) untuk proses pengiriman maupun pengambilan data terletak pada register SBUF, yaitu pada alamat 9911. Sedangkan untuk mengatur mode serial dapat dilakukan dengan mengubah isi dari SCON yang terletak pada alamat 9811.

2.1.5 RAM Internal

Gambar 2.7. Ilustrasi Pembagian Ruang RAM AT89851⁸

⁸ Training Mikrokontroler AT89S51, Programing dan Interfacing, Winstrich Engineering Services

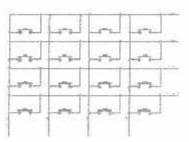
Tabel 2 Definisi Pin LCD		- 3				
D	efinisi	Pin	LCD	Modu	I M1632	
umber	Seilen In	strain	wat Inc	·100	Machila M163	9

	and a set by a	ATRONALL.	AT A 474 48
Sumber: Se	iko Instrument	Inc. ' LCD M	lodule M1632 '.

Keterangan	Level		Pin No
		Vss	1
Power Supply		Vec	2
		Vee	3
H: Data Input L: Instruction Inpu		RS	4
H: read L: Write	H/L	R/W	5
H: Enable L: Disable	H/L	E	6
	H/L	DB0	7
	H/L	DB1	8
	H/L	DB2	9
DATA DUG	H/L	DB3	10
DATA BUS	H/L	DB4	11
	H/L	DB5	12
	H/L	DB6	13
		DB7	14
Daula 1 Salat accorde	-	V + BL	15
Back Light supply		V-BL	16

Instruksi - instruksi untuk dapat mengakses LCD tipe M1632 dijelaskan pada tabel

berikut ini:


Instruksi	1		Provend								
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DBI	DB0	Fungsi
Display Clear	0	0	0	0	0	0	0	0	0	1	Clear display dan kursor pada Add 0
Cursor Home	0	0	0	0	0	0	0	0	1	X	Kursor ke Add 0
Entry Mode Set	0	0	0	0	0	0	0	1	1/D	s	Pemakaian Mode pada LCD
Display ON/OPT	0	U	0	Ũ	0	0	1	D	С	в	Menset Tampilan display
Cursor/Display Shift	0	0	0	Û	0	Ι	S/C	R/L,	x	x	Gerakan kursor tanpa meruhah DDRAM
Function Set	3 0	0	0	0	42	DL.	4	х	x	x	Untuk menset lebar data yang akan digunakan
CG RAM Addres set	0	0	0	I ACG					Duganakan untuk pengisian CGRAM		
DD RAM Addres set	U	0	1	ADD					Untuk pengisian DD Ram		

Tabel 2-4 Perintah Dalam Pengaksesan LCD Sumber: Seiko Instrument Inc. ' LCD Module M1632'.

Tolis Duta ke CG RAM	1	0		Perintah Untuk penulisan data ke DD atau ke CG RAM			
Baca Data dari CG atau DD RAM	1	1		Perintah untuk membaca data dari CG atau DD Ram			
AC	CG		: CG RA	M Adress	B = 1	: Blink On	
ADD			: DD RA	M Adress	$\mathbf{B} = 0$: Blink Off	
I/D			: Incre	ment	S/C	: Display Shift	
I/D			: Decrem	nent	S/C	: Cursor Movement	
S = 1			: Display	$V \operatorname{Shift} R/L = 1$: right Shift		
D =	D = 1 : Displa		ay On	R/L = 0	: Left s	shift	
D = 0 : Disp		lay Off	DL = 1	: 8 Bit	Data		
C =	= 1		: Cursor	On	DL - 0 : 4 Bit Data		
C =	= 0		: Cursor	Off			

2.3. keypad

Keypad digunakan sebagai sarana masukan data ke minimum sistem.Untuk rangkaian keypad digunakan IC key encoder jenis CMOS tipe MM79C922N. Dipilih IC jenis ini karena di dalamnya sudah memiliki beberapa kelengkapan, seperti misalnya rangkaian anti *debouncing* yang hanya memerlukan satu kapasitor eksternal. Rangkaian internal register akan mengingat tombol terakhir yang ditekan meskipun tombol sudah dilepas. IC jenis ini memiliki 4 bagian baris dan 4 bagian kolom, sehingga bisa dipakai sebagai keypad 4 x 4 karakter

Gambar 2.11. Keypad

2.4. Transformator

Transformator adalah alat yang dapat memindahkan energi listrik dari suatu rangkaian ke rangkaian lain. Dengan transformator tegangan AC dapat diubah menjadi tegangan DC. Setiap transformator atau disebut "trafo" tidak dapat digunakan pada rangkaian arus searah. Tegangan arus searah tidak dapat dinaikkan dengan trafo, karena tegangan arus searah tidak dapat menghasilkan tegangan induksi pada trafo.

Kumparan *primer* dihubungkan pada sumber tegangan yang mengakibatkan arus *primer* membentuk medan bolak-balik dalam inti besi. Menurut gejala induksi akan terjadi suatu tegangan induksi pada kumparan *sekunder*, yang juga merupakan tegangan bolak-balik. Tegangan yang di induksikan selalu berbanding lurus dengan banyaknya lilitan pada kumparan yang tegangannya diinduksikan, sehingga:

$$E_p: E_s = n_p: n_s atau \frac{E_p}{E_s} = \frac{n_p}{n_s}$$
....(2.24)

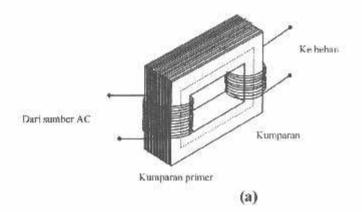
Dimana:

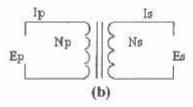
E_P = Tegangan pada kumparan primer

 E_S = Tegangan pada kumparan sekunder

n_P = Jumlah lilitan pada kumparan primer

n_S = Jumlah lilitan pada kumparan sekunder


Jika lilitan sekunder dihubungkan pada suatu hambatan (beban) maka terjadilah arus sekunder Is, sehingga:


Np . Ip = Ns . Is atau
$$\frac{I_{P}}{I_{S}} = \frac{N_{S}}{N_{P}}$$
(2.24)

Dimana:

Ip = Arus pada kumparan primer

Is = Arus pada kumparan sekunder

Gambar 2.12. a. Bagian *Transformator* b. Simbol *Transformator*

Sesuai dengan fungsinya transformator dapat dibedakan antara lain :

- Step-Up Transformator
- Step-Down Transformator
- Trafo dengan bermacam-macam tegangan sekunder
- Trafo Kopling

Seperti dijelaskan keberadaan Step-Down transformator diatas, maka transformator disini difungsikan sebagai penurun tegangan yang diperuntukkan untuk memberi tegangan pada komponen-komponen pengontrol.

Setiap trafo memiliki prinsip kerja yang sama yaitu:

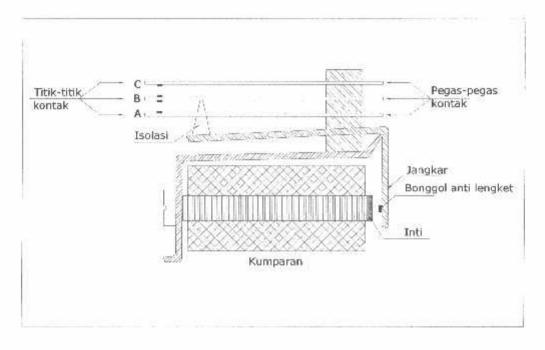
- Arus bolak-bolik dalam lilitan primer membangkitkan fluks dalam intinya.
- Garis-garis gaya magnet memotong lilitan primer dan lilitan sekunder.
- Tegangan (ggl) diinduksier dalam lilitan primer dan sekunder.
- $Ep = 4,44, \emptyset, Np.f.10^{-8}$: $Es = 4,44, \emptyset, Ns.f.10^{-8}$ Volt.....(2.25)

Dimana :

Ep = tegangan yang *diinduksier* pada lilitan *primer* Es = tegangan yang *diinduksier* pada lilitan *sekunder*

Ø = fluk (garis-garis gaya magnet)......Maxwell

- Np = lilitan primer
- Ns = lilitan sekunder
- F = frekuensi abb.....Hz


2.5. Relay

Pada dasarnya prinsip kerja relay sama dengan kontaktor, yang mana berfungsi untuk membuka dan menutup kontak listrik yang di control dengan prinsip kerja elektromagnetik. Kerja dari relay tersebut adalah apabila arus mengalir di dalam kumparan yang meliliti inti besi akan menjadi magnet, maka jangkar yang terdiri dari besi lunak akan tertarik dan bergerak menggelinding pada engsel (pivot).

Relay dapat menggulingkan kalau gaya magnet dapat mengarahkan gaya pegas yang mengalahkannya, maka kontak pun menutup. Besarnya gaya magnet ditentukan oleh kuat medan magnet pada celah udara antara jangkar dan inti besi, sedangkan kuat medan magnet tergantung pada jumlah lilitan kumparan dan kuat arus, kuat medan magnet ditetapkan juga oleh besar resistansi magnet dalam sirkuit kemagnetan. Kuat medan di celah udara akan semakin kuat bila letak jangkar semakin dekat dengan inti. Jarak jangkar dan inti dapat di atur dengan menyetel pencairan pegas.

Seperti halnya kontaktor, relay dapat menggerakkan beberapa kontak sekaligus hanya dengan suatu kumparan jangkar.

Ada dua jenis relay, yaitu : (1) relay yang bekerja dengan arus bolak – balik, dan (2) relay yang bekerja dengan arus searah. Jenis relay yang bekerja dengan arus bolak – balik tidak bisa bekerja pada alat – alat elektronik.

Gambar 2.13.

Konstruksi relay jenis kontak tukar

Pada gambar di atas bila kumparan dialiri arus listrik, maka akan timbul medan magnet pada lilitan tersebut. Karena adanya medan magnet ini inti besi menjadi magnet dan menarik jangkar, sehingga kontak antara A dan B putus (membuka), kontak antara B dan C menutup. Jenis relay ini dinamakan dengan *kontak tukar*.

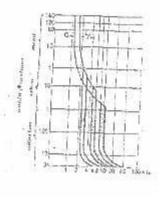
Jenis lain adalah jenis relay dengan *kontak menutup* seperti ditunjukkan pada gambar 2.13.a. Jika relay diberi arus, kontak – kontaknya menutup. Gambar 2.13.b adalah relay dengan *kontak putus*, yaitu bila kumparan relay diberi arus maka kontak – kontaknya akan membuka (memutus). 2.13.c adalah relay *dua kutub (bi – polar)*. Relay ini mempunyai 2 kumparan dan 2 kondisi kerja. Bila relay tidak diberi arus, maka kontak B bebas, tidak menghubung kemana – mana. Kalau ada arus yang lewat pada kumparan I, kontak B menghubung kontak A. Kalau ada arus yang lewat pada gulungan II, maka B menghubung pada C.

Pada prinsipnya pengaman ini memberikan pengaman thermis maupun relay elektronik. Pengaman termis digunakan untuk melindungi beban lebih. Jika arus yang melewati MCB lebih besar dari arus nominal MCB maka arus akan menaikkan suhu penghantar sehingga bimetal akan saling lepas dan arus akan terputus. Pemutus secara termis berlangsung dengan kelambatan, dimana lamanya waktu pemutusan tergantung besar arusnya, sedang pengaman elektronik digunakan sebagai pelindung apabila terjadi hubungan singkat.

Berdasarkan waktu pemutusan, pengaman otomatis ini dibagi atas :

a. MCB type L (untuk hantaran)

Pada type ini pengaman thermisnya disesuaikan denagn meningkatnya suhu hantaran. Kalau terjadi beban lebih dan suhu hantarannya melebihi batas tertentu maka elemen dwilogamnya akan memutuskam arusnya.


Kalau terjadi hubung singkat, arusnya diputuskan oleh pengaman elektromagnetiknya. Untuk arus bolak balik yang sama dengan 4 ln sampai 6 ln, pemutusan arusnya berlangsung dalam waktu 0,2 detik.

b. MCB type H (untuk instalasi rumah)

Pengaman thermis jenis sama dengan MCB type L, tetapi pengaman elektromagnetiknya memutuskan dalam waktu 0,2 detik, jika arusnya sama dengan 2,5 In untuk arus bolak balik atau sama dengan 4 In untuk arus searah. Jenis MCB ini digunakan pada instalasi rumah dimana arus yang rendahpun harus diputuskan dengan cepat. Jadi kalau terjadi gangguan tanah, bagian-bagian yang terbuat logam tidak akan bertegangan.

c. MCB type G (untuk motor-motor listrik)

MCB jenis ini digunakan untuk mengamankan motor-motor listrik kecil untuk arus bolak-balik atau searah, alat- alat listrik dan juga rangkaian besar untuk penerangan, misalnya bengkel atau pabrik. Pengaman elektromagnetiknya berfungsi pada 8 In sampai 11 In untuk arus bolak balik atau 14 IN untuk arus searah.

Gambar 2.19.Diagram Arus Waktu MCB Type L,G,H Sumher : Laporan Tugas Akhir,Panel Pompa Air Otomatis dan Manual dengan Menggunakan WLC, Andyk Probo, 2006.

Sebagai pengganti pengaman lebih dapat digunakan sebagai pengaman otomatis,

yang bekerja secara otomatis apabila arusnya melebihi nilai yang terdapat pada beban pengaman ini.

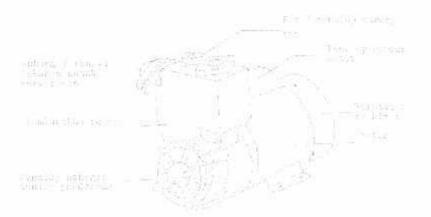
Gambar 2.20. Miniature Circuit Breaker Sumber : Laporan Tugas Akhir, Panel Pompa Air Otomatis dan Manual dengan Menggunakan WLC, Andyk Probo, 2006.

2.9 Unit Elektroda

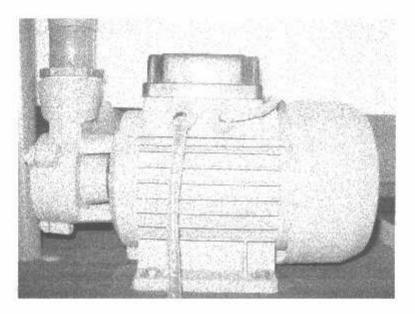
Unit ini difungsikan untuk memilih seberapa keinginan untuk meletakkan batas minimum dan batas maksimum air dalam suatu tangki atau bak penampung.

Misalnya diinginkan batas minimum 20% dan batas maksimum 100% maka ketika air menyentuh batas maksimum di tandon/sumber maka kontak relay akan bekerja.

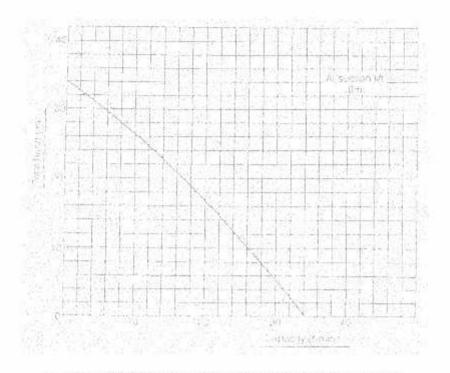
2.10 Karakteristik Motor Pompa Air

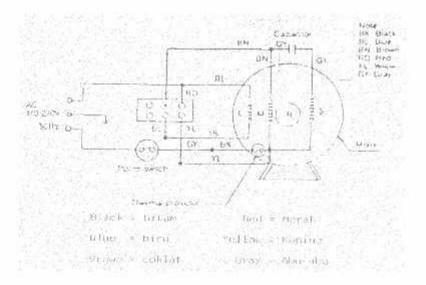

Pompa ini membutuhkan sedikit air yang akan terbuka oleh uap pada awal pengopersaian, pemberian air ini tanpa adanya kegagalan sebelum dilakukan awal pengoperasian.

Tabel 2.5.


Spesifikasi pompa air dari merk DAB model Aqua 108 C :

Max Cap	đ	32 Ltr/M	Size	:	1" x 1"
Suct Head	:	9 Mtr	Output	:	90 Watt
Disc Head		15 Mtr	V/ Hz / Ph	:	220/50/1
Total Head	ł	24 Mtr	Rpm		2850


Bagian bagian dari pompa air antara lain sebagai berikut :


Gambar 2.21. Bentuk dan Bagian – bagian Pompa Air Sumber : Laporan Tugas Akhir, Panel Pompa Air Otomatis dan Manual dengan Menggunakan WLC, Andyk Probo, 2006.

Gambar 2.22. Pompa Air DAB Model Aqua Tampak dari Samping

Gambar 2.23. Gambar Karakteristik dari Pompa Air Sumber : Laporan Tugas Akhir, Panel Pompa Air Otomatis dan Manual dengan Menggunakan WLC, Andyk Probo, 2006.

Gambar 2.24. Gambar Pengawatan pada Pompa Air Sumber : Laporan Tugas Akhir, Panel Pompa Air Otomatis dan Manual dengan Menggunakan WLC, Andyk Probo, 2006.

BAB III

PERENCANAAN DAN PEMBUATAN ALAT

3.1 Pendahuluan

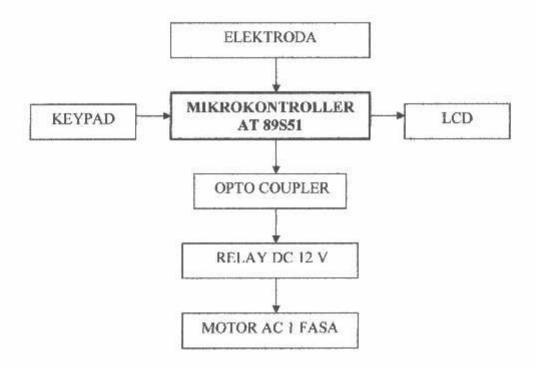
Dalam bab ini akan di bahas pembuatan seluruh perangkat yang ada pada alat ini, secara garis besar terdapat dua bagian perangkat yang ada, yaitu :

1. Perencanaan perangkat keras

2. Perencanaan perangkat lunak.

Pada perencanaan perangkat keras akan meliputi penjelasan dari perancangan digram blok system dan juga perencanaan minimum system mikrokontroller AT 89S51 beserta perihal yang digunakan, pada perencanaan perangkat akan meliputi penjelasan dari perangkat lunak yang digunakan pada minimum system mikrokontroller AT 89S51. Akan tetapi perangkat tersebut dalam kerjanya akan saling menunjang antara satu dengan yang lain.

3.2. Perinsip Kerja Rangkaian Lengkap


Rangkaian pengatur pengisian air ini dapat mengatur cara kerja pompa air listrik untuk dapat bekerja secara otomatis dalam proses pengisian air ke bak penampung air.

3.3 Perencanaan Perangkat Keras

3.3.1. Diagram Blok Rangkaian

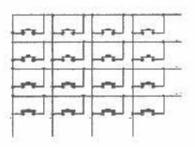
Dalam tugas akhir ini perencanaan alat pompa air otomatis yang berbasis mikrokontroller AT 89S51 sebagai control utama dan menggunakan komponen lain sebagai komponen pendukung terdiri dari box panel, tombol keypad, elektroda, unit

penampil (LCD) serta driver motor motor dengan menggunakan Transistor TIP 32. Adapun gambar diagram blok nya adalah sbb :

Gambar 3.1 Diagram Blok Sumber: perancangan dan pembuatan alat

Prinsip kerja dari masing - masing blok digram adalah sebagai berikut :

- Elektroda, digunakan sebagai pendeteksi volume air yang ada pada tandon dan sumber air.
- Opto Coupler, digunakan untuk memberi sinyal ke relay.
- Keypad, digunakan sebagai tombol start dan stop pada alat.
- LCD, digunakan sebagai tampilan menu yang ada pada alat.



- Mikrokontroller, berfungsi sebagai pengendali jalannya alat pompa air otomatis.
 Dimana mikrokontroller akan memproses sinyal sinyal masukan baik dari elektroda maupun dari keypad. Serta mengendalikan keluaran berupa jalannya alat dan tampilan pada LCD.
- Relay, digunakan untuk mengoperasikan pompa air.

3.3.2 Perencanaan Rangkaian Keypad

Keypad digunakan sebagai masukan data referensi dan mengubah data yang diinginkan. Data tersebut dirubah dalam bentuk kode biner oleh rangkaian keypad. Keypad yang dipakai yaitu berukuran 4 x 4 (4 bagian kolom dan 4 bagian baris) yang terdiri dari tombol COR sebagai tampilan menu pilihan, tombol 1 untuk *starting* motor dan tombol 2 untuk *stoping* motor.

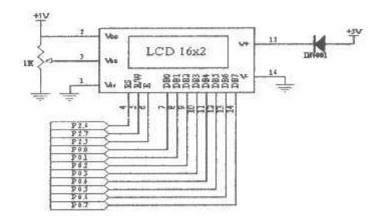
Gambar di bawah ini memperlihatkan suatu keypad matriks 4x4 dengan sebagai berikut

Gambar 3.2 Rangkaian Keypad Matrik 4 x 4 Sumber : Perencanaan system 89S51

3.3.3 Perencanaan Rangkaian Unit Penampil (LCD)

LCD (Liquid Crystal Display) adalah papan informasi / tampilan atau biasa disebut Display. Dengan konsumsi daya yang rendah yang disusun dari dot matrik dan dikontrol oleh internal ROM / RAM generator karakter dan RAM data display. Semua fungsi display dikontrol dengan instruksi dan LCD dapat dengan mudah diinterfacekan dengan MCU / MPU.

Karakteristik dari LCD dot matrik yang digunakan adalah sebagai berikut :

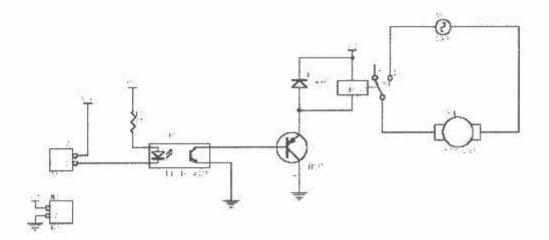

- 16 x 2 karakter dengan 5 x 7 dot matrik + kursor.
- ROM generator karakter dengan 192 tipe karakter.
- RAM generator karakter karakter dengan 8 tipe karakter (untuk program write).
- 80 x 8 bit RAM data display.
- Dapat di interfacekan dengan kemungkinan MPU 4 bit atau 8 bit.
- RAM data atau RAM generator karakter yang dapat dibaca oleh MPU.
- + 5 Volt single power supplay.
- Power On Reset.
- Rangkaian temperature operasi 0°c sampai dengan 50°c.
- Beberapa fungsi instruksi yaitu display clear, cursor home, display ON/OFF, cursor ON/OFF, display blink, cursor shift, dan display shift.

Display LCD mempunyai 16 terminal yang masing masing mempunyai fungsi sebagai berikut :

NO	SYMBOL	LEVEL	FU	NCTION
1	Vss	-		0 V (GND)
2	Vcc	107		5 V ±10%
3	Vec	-		For LCD Drive
4	RC	H/L	H : Data Input L : Instruction Inp	
5	R/W	H/L	H: Read L: Write	
6	E	Н	Enable signal	
7	DB0	H/L	Data bus	
8	DB1	H/L		
9	DB2	H/L		
10	DB3	H/L		
11	DB4	H/L		
12	DB5	H/L		
13	DB6	H/L		
14	DB7	H/L		
15	V+BL	(÷	Back light	4-4.2 V
16	V-BL		Supplay	50 - 200 mA 0 V (GND)

Tabel 3.1. LCD Sumber: perencanaan Sistem 89851

LCD ini dapat menampilkan karakter yang ada pada ROM generator karakter, yang sudah berisi 190 jenis karakter, dengan cara memberikan kode generator. Untuk tiap - tiap karakter yang diinginkan pada bus data dan dengan menggunakan sinyal kontrol E, RS, R/W, dapat diatur berbagai program yang diberikan pada LCD dot matrik.


Gambar 3.3. Rangkaian Penampil (LCD) Sumber: perencanaan Sistem 89S51

3.3.4 Perencanaan Rangkaian Relay

Rangkaian relay motor AC pada alat ini menggunakan transistor TIP 32 yang mampu menghidupkan dan mematikan relay dengan tegangan maksimal 12 volt dengan tahanan 98 Ohm (*Referensi relay*), jadi dapat diketahui arus pada relay yaitu sebesar :

Diketahui	: V relay	= 12 Volt
	R relay	= 98 Ohm
Ditanyakan	;1=A?	
Jawab	: V = I x R	
	$I = \frac{V}{R}$	
	= <u>12 volt</u> 98 Ohr	
	= 0.122 A	

Dengan adanya arus relay sebesar 0.122 A maka transistor TIP 32 dapat menggerakkan relay tersebut karena transistor TIP 32 memiliki arus maksimum sebesar 3 A, hal ini sesuai dengan data sheet transistor TIP 32.

Gambar 3.4 Rangkaian Relay Sumber: perancangan dan pembuatan alat

3.3.5 Pengaman Motor / MCB (Mini Circuit Breaker)

Motor yang dipakai pada alat ini adalah motor satu fasa merk DAB model Aqua

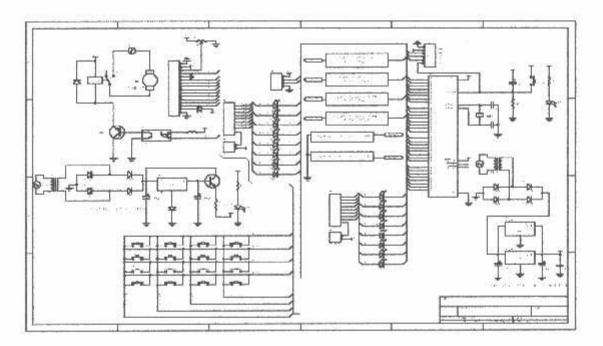
108 C dengan spesifikasi sebagai berikut :

Max Cap	1	32 Ltr/M	Size	32	1" x 1"
Suct Head	:	9 Mtr	Output	:	90 Watt
Disc Head	ž	15 Mtr	V/ Hz / Ph	3	220 / 50 / 1
Total Head	÷	24 Mtr	Rpm	3	2850

MCB yang digunakan berkapasitas 2 ampere. Dari name plate yang tertera pada motor

dapat dihitung arus yang mengalir pada motor, yaitu dengan mengunakan rumus :

Sumber : Zuhal, DASAR TEKNIK TENAGA LISTRIK DAN ELEKTRONIKA DAYA, Gramedia, 1995.

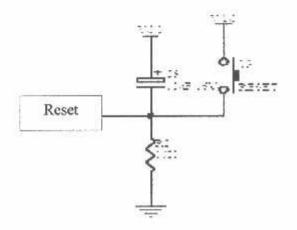

Maka, arus yang mengalir pada motor adalah :

Diketahui : Daya motor (P) = 90 Watt Tegangan motor (V) = 220 Volt Ditanya : Arus motor (I) =Ampere Jawab : P = V.1. Cos φ $I = \frac{P}{V.Cos \varphi}$ $= \frac{90}{220.0.3}$

= 1.36 (
$$\cos \varphi$$
 0.3 diperoleh dari hasil perhitungan)

Karena arus pada motor hanya ± 1.36 A, maka MCB yang digunakan cukup dengan MCB dengan kapasitas 2 Ampere.

3.3.6 Perencanaan Rangkaian Utama Mikrokontroller AT89851


Gambar 3.5 Rangkaian Utama Mikrokontroler AT 89S51 Sumber : Perencanaan system 89S51

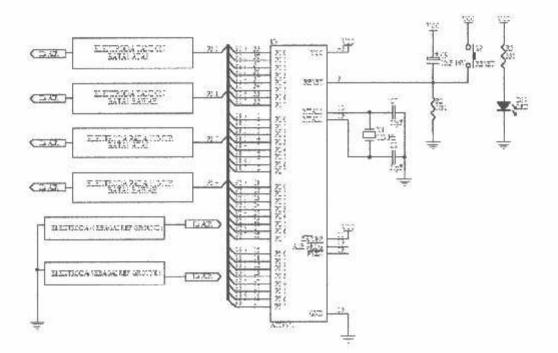
Rangkaian tergeritas IC (Integrated Circuit) mikrokontroller AT89S51 mempunyai 40 penyemat.Penyemat X1 dan X2 dihubungkan dengan kristal yang berfungsi sebagai pembentuk sebuah osilator bagi mikrokontroller.Kristal 12MHZ ini didukung dengan dua kapasitor kramik C1 dan C2 yang nilainya 33pF. Apabila terjadi beda pontensial pada dua kapasitor tersebut kristal akan berisolasi. Pulsa yang keluar adala gigi gergaji sehingga akan dikuatkan oleh rangkaian internal mikrokontroller sehingga akan beruba pulsa clock. Untuk pembagian dan frekuensi dari internal mikrokontroller itu sendiri diinisialisasi dengan program.

Penyemat reset dihubungkan dengan saklar yang digunakan untuk mereset system mikrokontroller.Karena kaki reset ini aktif berlogika tinggi maka diperlukan resistor R1 yang nilainya 10 k yang dihubungkan dengan tegangan 0 volt untuk memastikan penyemat berlogika rendah saat system ini bekerja. Kapasitor C1 10 berfungsi untuk meredam adanya pelintingan akibat penekanan saklar *Reset*.

3.3.7 Prencanaan Rangkaian Reset

Penyemat *reset* dihubungkan dengan saklar yang digunakan untuk mereset system mikrokontroller. Karena kaki *reset* ini aktif berlogika tinggi maka diperlukan resistor R1 yang nilainya 10 K Ω yang dihubungkan dengan tegangan 0 volt untuk memastikan penyemat *reset* berlogika rendah saat sisem ini bekerja. Kapasitor C1 = 10 µF berfungsi untuk meredam adanya percikan bunga api akibat penekanan saklar reset.

Gambar 3.6 Rangkaian Reset Mikrokontroller AT 89851 Sumber : Perencanaan system 89851


3.3.8 Perencanaan Elektroda

Unit ini difungsikan untuk memilih seberapa keinginan untuk meletakkan batas minimum dan batas maksimum air dalam suatu tangki atau bak penampung.

Adapun prinsip kerja dari elektroda pada alat ini adalah sebagai berikut :

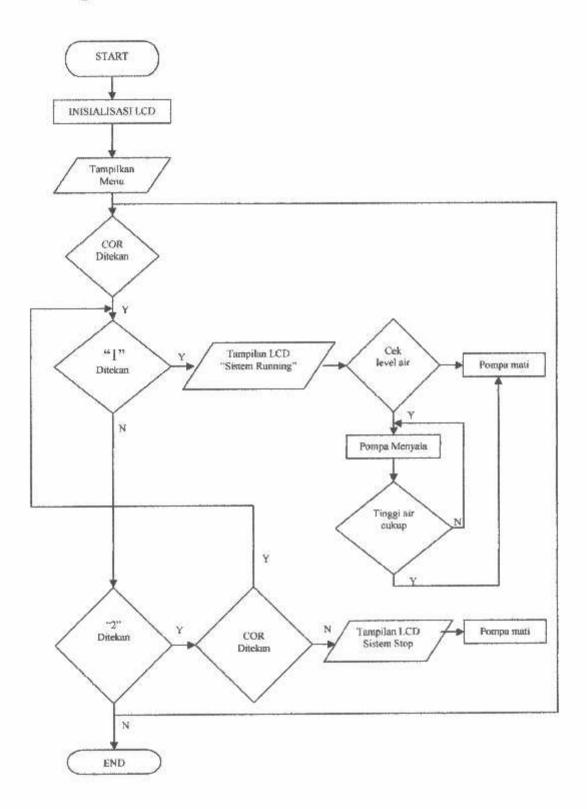
- Ada 6 buah elektroda pada alat ini, 2 elektroda dipasang pada tandon sumber air sebagai batas minimum dan maksimum, 2 elektroda dipasang pada tandon penampung air juga sebagai batas minimum dan maksimum dan 2 elektroda yang lain digunakan sebagai ground.
- Elektroda pada tandon sumber dan tandon penampung air berfungsi sebagai pendeteksi air, apabila pada tandon sumber, air menyentuh elektroda batas maksimum maka pompa akan bekerja mengisi tandon penampung air sampai air menyentuh elektroda batas maksimum tandon penampung air. Dengan kata lain apabila elektroda batas minimum dari tandon penampung air tidak menyentuh air maka pompa akan bekerja

mengisi tandon penampung air sampai air menyentuh elektroda batas maksimum tandon penampung air

Gambar 3.7 Perencanaan Rangkaian Koneksi Elektroda ke MK AT 89851

3.4 Perancangan Perangkat Lunak

Dalam merancang sebuah program yang mempunyai struktur yang baik, biasanya diawali dengan pembuatan *flowchart* (Diagram Alir). Diagram alir digunakan untuk menggambarkan terlebih dahulu mengenai apa yang harus dikerjakan sebelum mulai merancang program. Setelah proses selesai dijalankan, hasil dari proses diperiksa.


Jika hasil proses X, jalankan program X, namun jika hasilnya proses bukan X, maka proses Y yang dijalankan.

3.4.1 Analogi Program

Program yang akan dibuat nantinya, mempunyai analogi sbb:

- Menetukan port yang digunakan dan fungsinya atau inisialisasinya.
- Menentukan subroutine yang akan akan dilaksanakan berdasarkan hasil deteksi sensor atau inputan.

3.4.2 Diagram Alir

BAB IV

HASIL PENGUJIAN ALAT DAN ANALISA

4.1. Umum

Pengujian alat ini dilakukan untuk mengetahui kinerja dari keseluruhan system rangkaian. Jadi pada tahap ini akan kita ketahui nilai – nilai serta parameter-parameter dari setiap bagian yang menyusun system secara keseluruhan.

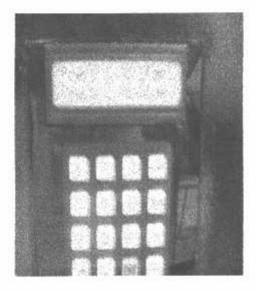
Gambar Alat

Gambar 4.1 Gambar Panel Box

4.2 Pengujian Rangkaian

4.2.1 Tujuan

Mengetahui nilai - nilai dan parameter - parameter dari rangkaian.


4.2.2 Peralatan yang dibutuhkan

- AVO meter digital
- Tang Ampere
- Stop Watch
- Kamera digital

4.3 Hasil Pengujian dan Analisa

4.3.1 Pengujian Rangkaian LCD

Dalam pengujian rangkaian LCD ini memiliki tujuan untuk mengetahui apakah LCD dapat bekerja dengan baik dalam menampilkan huruf dan angka pada layar LCD.

Gambar 4.2. Pengujian Rangkaian LCD

Dari gambar pengujian rangkaian LCD di atas terlihat bahwa LCD dapat menampilkan tulisan dengan baik.

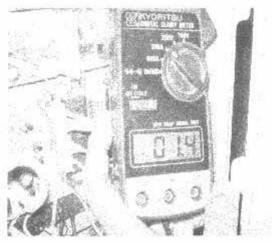
4.3.2 Pengujian Pemicuan Relay

Dalam pengujian relay ini bertujuan untuk mengetahui tegangan relay pada saat sebelum dan setelah kondisi bekerja.

Besar Tegangan p	oada Relay (Volt)
Alat Kondisi Off	Alat Kondisi On
4.95 Volt	0.042 Volt

Tabel 4.1 Tegangan Relay

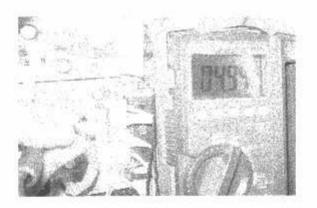
Analisa Pengujian : Berdasarkan hasil pengukuran diatas menunjukkan bahwa tegangan relay lebih besar pada saat alat kondisi off. Hal ini dikarenakan mikrokontroller sebagai system control utama kondisi aktif low.



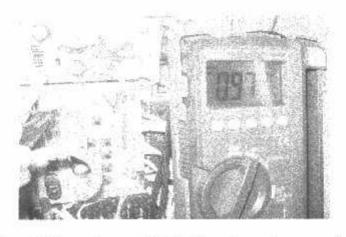
Gambar 4.3 Pengukuran Tegangan Relay pada saat Alat Kondisi Off

Gambar 4.4 Pengukuran Tegangan Relay pada saat Alat Kondisi On

4.3.3 Pengukuran Arus Motor



Gambar 4.5 Pengukuran Arus Motor


<u>Analisa Pengujian</u> : Dari pengukuran arus motor diatas menunjukkan bahwa arus motor pada saat motor tersebut aktif adalah 1.4 Ampere. Hal ini menunjukkan bahwa motor bekerja dengan baik.

4.3.4 Pengukuran Elektroda

Pengukuran Elektroda ini bertujuan untuk mengetahui tegangan elektroda pada saat sebelum dan sesudah menyentuh air.

Gambar 4.6 Pengukuran Elektroda pada saat belum menyentuh air

Gambar 4.7 Pengukuran Elektroda pada saat menyentuh air


Besar Teganga	n Elektroda (Volt)
Pada saat menyentuh air	Pada saat belum menyentuh air
0.978 Volt	4.94 Volt

Tabel 4.2 Tegangan Elektroda

Analisa Pengujian : Berdasarkan hasil pengukuran elektroda diatas menunjukkan bahwa tegangan elektroda lebih kecil pada saat elektroda menyentuh air. Hal ini disebabkan karena pada saat menyentuh air motor tidak bekerja atau alat dalam kondisi off.

4.3.5 Pengujian Waktu Pengisian air

Pengujian ini bertujuan untuk mengeahui lamanya pengisian air dari sumber ke bak penampung air.

Gambar 4.8 Waktu Pengisian Air

Analisa Pengujian : Berdasarkan hasil pengukuran elektroda diatas menunjukkan bahwa waktu yang dibutuhkan untuk pengisian air ke bak penampungan air adalah 18.04 menit.

BAB V

PENUTUP

5.1. Kesimpulan

- Pada saat elektroda menyentuh air, motor (Pompa Air) akan Off sedangkan besar tegangan elektroda yaitu 0.978 Volt,Pada saat elekroda tidak terkena air, motor (Pompa air) dalam kondisi On (melakukan pengisian) dengan tegangan elektroda sebesar 4,94 Volt.
- 2. Tegangan pada relay pada saat alat/ motor bekerja yaitu sebesar 0.042 Volt sedangkan pada saat alat / motor dalam keadaan off besar tegangan relay 4.95 Volt. Hal ini disebabkan karena alat ini direncanakan dengan kondisi aktif *low*, Waktu yang dibutuhkan untuk pengisian air sampai batas/penuh adalah 18,4 menit.

5.2. Saran - saran

- Agar pompa air dapat bekerja secara tepat terhadap perubahan level ketinggian air pada elektroda batas atas, batas tengah, dan batas bawah, maka perlu diperhatikan jarak antara masing – masing elektroda.
- Alat ini bisa dikembangkan lagi jumlah batas ketinggiannya untuk keperluan ketinggian air yang lebih presisi, dan juga bisa dikurangi sesuai dengan kebutuhan.
- 3. Untuk penggunaan pompa air yang mempunyai daya besar, perlu diperhatikan kemampuan daya maksimal relay yang digunakan. Semakin besar daya pompa air yang digunakan, maka daya relay yang digunakan juga harus besar.
- Dalam pemilihan besarnya kapasitas peralatan kendali ini perlu diperhatikan mengenai arus nominalnya (In motor).
- Adapun Tugas Akhir ini yang dibuat hanyalah simulasi saja. Jadi bila ingin membuat peralatan pompa air secara otomatis yang sesungguhnya diperlukan peralatan dengan beban dan kapasitas yang besar.

DAFTAR ACUAN

- Zuhal, 1995. DASAR TEKNIK TENAGA LISTRIK DAN ELEKTRONIKA DAYA, Gramedia.
- Abdul Manaf, Drs.1999. DESAIN INSTALASI LISTRIK SEMESTER II, Politeknik Malang, Malang.
- Utomo, 1979. ALAT PENGANGKAT DAN POMPA UTAMA, Pradnya Paramita.
- 4. http://www.atmel.com
- Albert Paul Malvino, Hanapi Gunawan, 1990. Prinsip-prinsip Elekronika, Erlangga, Jakarta.
- Andyk Probo, 2006. Tugas Akhir, Perencanaan dan Pembuatan Alat Pompa Air Otomatis dengan Menggunakan WLC.

INSTITUT TEKNOLOGI NASIONAL MALANG FAKULTAS TEKNOLOGI INDUSTRI JURUSAN TEKNIK ELEKTRO D III

LEMBAR ASISTENSI BIMBINGAN TUGAS AKHIR

NAMA	5	Harun Mawadat
NIM		02.52.020
Masa Bimbingan	1	28 Juni 2006 – 15 Juni 2007
Judul Tugas Akhir	ŧ	Perancangan dan Pembuatan Panel Pompa Air Otomatis Dengan Menggunakan MK AT 89S51

No.	Tanggal	Materi	Paraf
1.	10-07- 2006	Konsultasi Bab I, II dan III	S4
2.	27-07-2006	Revisi bab II tambah nama komponen dan gamabar alat	G
3.	12-11-2006	Revisi bab III tambah perhitungan dan gambar rangkaian	G
4.	9- 12 2006	ACC bab II, III	G
5.	6-01- 2007	Konsultasi bab IV dan V	G.
6.	8-02-2007	ACC bab IV, V	Cy o
7.	10-03-2007	ACC Alat	Eq.

Malang, - 2007 Dosen Pembimbing <u>Tr. Eko Nurcahyo</u> NIP.P 1028700172

BERITA ACARA UJIAN TUGAS AKHIR

FAKULTAS TEKNOLOGI INDUSTRI

Nama	: Harun Mawdat.S
NIM	: 02.52.020
JURUSAN	: T.ELEKTRO D III
KONSENTRASI	: T.ENERGI LISTRIK
Judul TA	: Perancangan Dan Pembuatan Panel Pompa Air Otomatis
	Dengan Menggunakan Mikrokontroller AT89S51

Di Pertahankan Di Hadapan Team Penguji Tugas Akhir Jenjang Diploma (D III) Pada :

Hari : Kamis Tanggal : 22 Maret 2007 Dengan Nilai : २८ ৳

EXNOLOG, Kiel Ir. Mochtar Ansori, MSME) (

Panitia Ujian tugas Akhir

Sekretaris

(Ir. H.Choirul Saleh, MT)

Anggota Penguji

Pertama

Kedua

(Ir.H. Choirul Saleh, MT

(Bambang Prio.H. ST, MT)

LEMBAR PERBAIKAN TUGAS AKHIR

Nama	: Harun Mawadat.S
NIM	: 02.52.020
JURUSAN	: T.ELEKTRO D III
KONSENTRASI	: T.ENERGI LISTRIK
HARI/TANGGAL	: Kamis, 29 MARET 2007

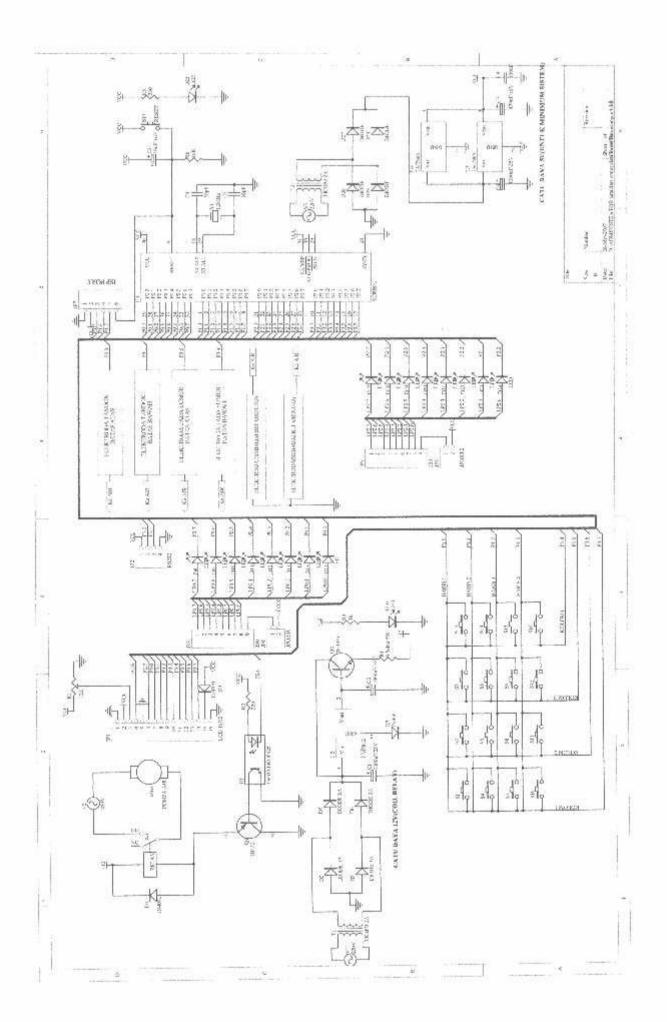
Materi Perbaikan	Paraf
Rangkaian elekroda.	*
Abstraksi.	L L
Perbaikan kesimpulan	12
	Rangkaian elekroda.

Telah Diperiksa dan Disetujui

Penguji 1

(Ir.H. Choirul Saleh, MT) Nip.P 1018800190

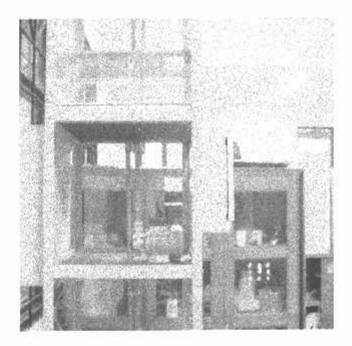
2


(Bambang Privo H, ST,MT)

Penguji II

Mengetahui Dosen Pembimbing

(Ir.Eko Nurcahyo) Nip.P1028700172


LANPIBAN-LAMPIRAN

Miniatur Sistem Panel Pompa Air Otomatis dengan Menggunakan MK AT 89851

Spesifikasi Alat :

- 1. Input Tegangan : 220 Volt AC /60 Hz
- 2. Input Tegangan/Arus DC : + 5V/6.5 A , 12 V / 3.5 A
- 3. Konsumsi Daya Keseluruhan Sistem ± 90 Watt
- 4. Ukuran Tandon dan Sumber :
 - Panjang : 0.60 M
 - Lebar : 0.60 M
 - Tinggi : 0.75 M
 - Tinggi Kontruksi : 2.5 M
- 5. Input:
 - Keypad
 - Kondisi Air
- 6. Output :
 - LCD M1632.
 - Motor satu fasa (Pompa Air)


```
#include <at89x51.h>
#define LCD RS P2_7
#define LCD_CS P2_6
unsigned char keydata, display;
void Delay(long tunggu)
ł
       while(tunggu--);
ł
void LCD_data(unsigned char c,unsigned char dat, bit LCD)
ł
      LCD_RS = C;
      P0 - dat;
       if (LCD == 0)
        1
              LCD_CS = 1;
              LCD CS = 0_{f}
        ł
       Delay(1000);
ş
void cek air()
Ţ
        while(P3_4 -- 1) //tinggi air sumber tidak cukup
        1
         P2_0 = 1; // pompa off
         P1=CXFE;
         if(! P1_7) keydata = Dx0E; //COR
         if(keydata == 0x0E){display=keydata;break;]
        1
'oid stop()
P2 \ 0 = 1;
Pl=0xFE;
if(| Pl_7) keydata = 0x0E; //COR
if(keydata == 0x0E)display=keydata;
oid running()
       while (display == 0x0D)
        Ł
        cek_air();
        Pl=0xFE;
        if(P3_1 -- 1 & P3_5 == 0)P2_0 - 0;//tandon atas belum penuh dan tinggi air sumber
udah cukup >>pompa on
        if(P3_0 == 0 )92_0 = 1;//tandon atas sudah penuh >>pompa off
        if(| P1 7) keydata = 0x0E; //COR
        if(keydata == 0x0E)display=keydata;
```

```
}
}
void init_LCD()
ł
       Delay(50000);
       LCD_data(0,0x3F,C);
       LCD_data(0,0x0D,C);
       LCD_data(0,0x06,0);
       LCD data(0,0x01,0);
       LCD data(0,0x0P,C);
}
void Uulis LCD(char a, char* dat)
l
       char i = 0;
       LCD data(0, a, 0);
       while(dat[i] .= 0)
        f
               LCD_data(1,dat[i],0); i++;
        }
}
void keypad()
ł
  P1=0xFE;
  if(! P1_4) keydata = 0x01; //DOWN
  if(! Pl_5) keydata = 0x04; //UP
  if(! Pl 5) keydata = 0x07; //MEN
  if(! P1_7) keydata = 0x0E; //COR
  P1-0xFD;
  if(! Fl 4) keydata = 0x02; //ENT
  if(| P1_5) keydata = 0x05; //9
  if(! Pl_6) keydata = 0x03; //6
  if(! P1_7) keydata = 0x00; //3
  Pl=CxFB;
  if(! Pl 4) keydata = 0x03; //0
  if(| P1_5; keydata = 0x06; //8
  if(! P1_6) keydata = 0x09; //5
  if(! P1 7) keydata = 0x0F; //2
  P1-0xF7;
  if(| PI 4) keydata - 0x0A; //CAN
  if(! P1_5) keydata = 0x03; //7
  if(1 P1_6) keydata = 0x0C; //4
  if(! P1_7) keydata = 0x0D; //1
```

```
oid main ()
// initialisant LCD
```

```
init LCD();
   Tulis_LCD(0x80," Water Level ");
  Tulis_LCD(0xC0," CONTROL ");
   Delay(900);
   Tulis LCD(0x80," Level Setting ");
   Tulis_LCD(0xC0, "Press COR Button");
   while (1)
          keypad();
   £
          display = keydata;
          while (display -- 0x0E)
          { PZ 0 = 1;
           Tulis LCD(0x80, "Press 1 To Start");
           Tulis LCD(CxCO, "Press 2 To Stop ");
           keypad();
           display = keydata;
           if (display == 0x0D)
              {≈
              Tulis_LCD(0x80," System Running ");
             Tulis_LCD(0xC0,*
                                             ");
             Delay(1000);
             running();
              Ł
            else if (display == 0x0F)
              {
              Tulis_LCD(0x80," System Stop ");
              Tulis_LCD(0xC0,"
                                             "};
              Delay(1000);
              stop();
              Ł
         1
1
```

Ł

eatures

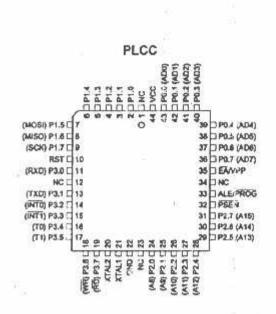
Compatible with MCS-51^e Products 4K Bytes of In-System Programmable (ISP) Flash Memory - Endurance: 1000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz Three-level Program Memory Lock 128 x 8-bit Internal RAM 32 Programmable I/O Lines Two 16-bit Timer/Counters Six Interrupt Sources Full Duplex UART Serial Channel Low-power idle and Power-down Modes interrupt Recovery from Power-down Mode **Natchdog Timer Dual Data Pointer** Power-off Flag Fast Programming Time Rexible ISP Programming (Byte and Page Mode)

escription

e AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K tes of in-system programmable Flash memory. The device is manufactured using nel's high-density nonvolatile memory technology and is compatible with the indusstandard 80C51 instruction set and pinout. The on-chip Flash allows the program mory to be reprogrammed in-system or by a conventional nonvolatile memory prommer. By combining a versatile 8-bit CPU with in-system programmable Flash on a nolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a hly-flexible and cost-effective solution to many embedded control applications.

a AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes of M, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a five-tor two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and ck circuitry. In addition, the AT89S51 is designed with static logic for operation vn to zero frequency and supports two software selectable power saving modes. a Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and srrupt system to continue functioning. The Power-down mode saves the RAM contis but freezes the oscillator, disabling all other chip functions until the next external grupt or hardware reset.

8-bit Microcontroller with 4K Bytes In-System Programmable Flash


AT89S51

Rev. 2487A-10/01

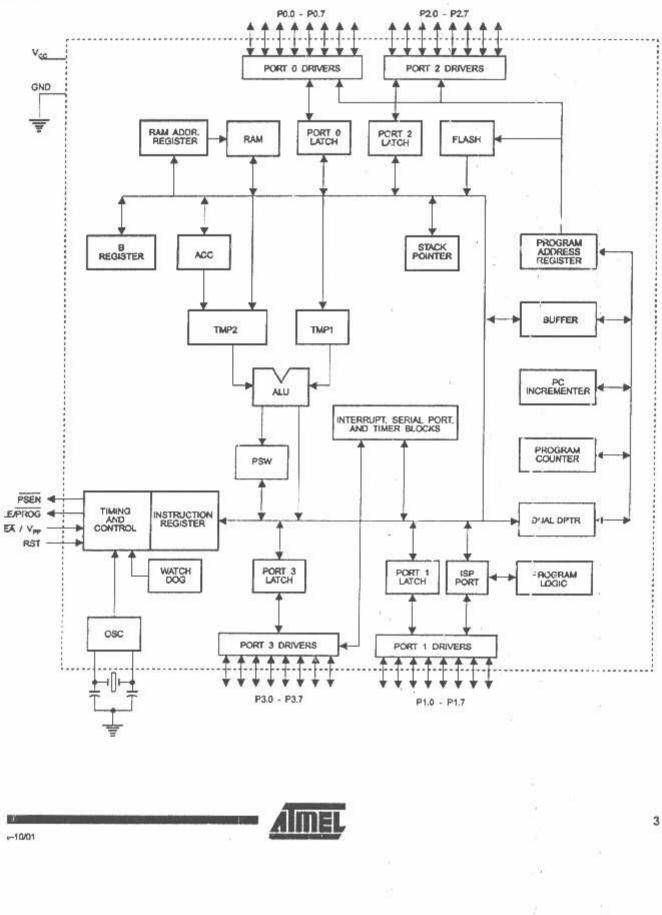
in Configurations

	PDIP	•	
		-	1
P1.0C	1	40	JVCC
P1.1 C	2	30	D P0.0 (AD0)
P1.2 C	3	38	P0.1 (AD1)
P1.3 [4	37	D PO.2 (AD2)
P1,4 C	5	36	D P0.3 (AD3)
(MOSI) P1.5 C	6	35	DP0.4 (AD4)
(MISO) PT.& C	7	34	DP0.5 (AD5)
(SCK) P1.7 C	8	33	D P0.6 (AD6)
RST	9	32	D PO.7 (AD7)
(RXD) P3.0 C	10	31	EANPP
(TXD) P3.1 C	11	30	DALEAPROG
(INTO) P3.2 C	12	29	D PISEN
(INTI) P3.3 C	13	28	2 P2.7 (A15)
(TO) P3.4 C	14	27	3 P2.8 (A14)
(T1) P3.5 C	15	26] P2.5 (A13)
(WR) P3.6	16	25	3 P2.4 (A12)
(RD) P3.7 L	17	24] P2.3 (A11)
XTAL21	16	23	3P2.2 (A10)
ATAL 1 C		22	3 P2.1 (AD)
GND C	20	21	DP20(A8)
			13

ALC: NO

AT89S51

No. Loss


2487A-10/01

1. . .

AT89S51

I I

lock Diagram

in Description

- CC Supply voltage.
- ND Ground.

ort 0 Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.

Port 0 can also be configured to be the multiplexed low-order address/data ous during accesses to external program and data memory. In this mode, P0 has internal pull-ups.

12.8.30

Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.

Fort 1 Port 1 is an 8-bit bidirectional I/O port with Internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the Internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}) because of the internal pull-ups.

Port 1 also receives the low-order address bytes during Flash programming and verification.

Port Pin	Alternate Functions
P1.5	MOSI (used for In-System Programming)
P1.6	MISO (used for In-System Programming)
P1.7	SCK (used for In-System Programming)

rt 2

t 3

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{II}) because of the internal pull-ups.

Port 2 emits the nigh-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{IL}) because of the pull-ups.

Port 3 receives some control signals for Flash programming and verification.

Port 3 also serves the functions of various special features of the AT89351, as shown in the following table.

AT89S51 2487A-10/01

AT89S51

5

	Port Pin	Alternate Functions				
	P3.0	RXD (serial input port)				
	P3.1	TXD (serial output port)				
	P3.2	INTO (external interrupt 0)				
	P3.3	INT1 (external interrupt 1)				
	P3.4	T0 (timer 0 external input)				
	P3.5	T1 (timer 1 external input)				
	P3.6	WR (external data memory write strobe)				
	P3.7	RD (external data memory read strobe)				
T E/PROG	device. This pin RTO bit in SFR / of bit DISRTO, th Address Latch Er	gh on this pin for two machine cycles while the oscillator is running resets the drives High for 98 oscillator periods after the Watchdog times out. The DIS AUXR (address 8EH) can be used to disable this feature. In the default state is RESET HIGH out feature is enabled. nable (ALE) is an output pulse for latching the low byte of the address during mal memory. This pin is also the program pulse input (PROG) during Flash				
	In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.					
	If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit se ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulle high. Setting the ALE-disable bit has no effect if the microcontroller is in external executio mode.					
IN	Program Store Enable (PSEN) is the read strobe to external program memory.					
		551 is executing code from external program memory, PSEN is activated ne cycle, except that two PSEN activations are skipped during each access				
	to external data m	iemory.				
VPP	to external data m External Access to code from externa	Enable. EA must be strapped to GND in order to enable the device to fetch				
VPP	to external data m External Access I code from externa that if lock bit 1 is	Enable. EA must be strapped to GND in order to enable the device to fetch al program memory locations starting at 0000H up to FFFFH. Note, however,				
VPP	to external data m External Access I code from externa that if lock bit 1 Is EA should be stra	Enable. EA must be strapped to GND in order to enable the device to fetch al program memory locations starting at 0000H up to FFFFH. Note, however, programmed, EA will be internally latched on reset. pped to V _{CC} for internal program executions.				
VPP	to external data m External Access to code from externa that if lock bit 1 is EA should be strat This pin also re programming.	Enable. EA must be strapped to GND in order to enable the device to fetch al program memory locations starting at 0000H up to FFFFH. Note, however, programmed, EA will be internally latched on reset.				

-10/01

∋ecial inction ∋gisters

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

2487A-10/01

Ť					8				
Ī	B 00000000								
ſ								-	
	ACC 0000000								
							(f)		
	PSW 00000000								
							5		
ſ				4					
	IP XX000000						G		
	P3 11111111						(L)		
	IE 0X000000								
	P2 11111111		AUXR1 XXXXXXXX		141		WDTRST XXXXXXXX		
	SCON 00000000	SBUF XXXXXXXXX							
	P1 11111111								1
	TCON 00000000	TMOD 0000000	TL0 00000000	TL1 00000000	0HT 0000000	TH1 00000000	AUXR XXX00XX0		
	P0	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 0000000	DP1H 00000000		PCON 0XXX0000	1

se 1. AT89S51 SFR Map and Reset Values

AT89S51

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the five interrupt sources in the IP register.

AUXR	4	Address	= 8EH				Reset \	/alua = XXX00XX08		
Not B Addressat								ся 1		
	-	-	-	WDIDLE	DISRTO		-	DISALE		
Bit	7	6	5	4	3	2	1	0		
-	Rese	rved for	future	expansion						
DISALE	Disab	le/Enab	le ALE					5. 1		
	DISALE Operating Mode									
	0 ALE is emitted at a constant rate of 1/6 the oscillator frequency									
	1	ALE	is acti	ve only durin	g a MOVX or	MOVC	Instruction			
DISRTO	Disable/Enable Reset out									
	DISRTO									
	0 Reset pin is driven High after WDT times out									
	1	Res	et pin i	s input only						
WDIDLE	Disabl	le/Enabl	le WDT	in IDLE mod	de					
WDIDLE										
2	WDT	l continu	ues to e	count in IDLE	mode					
1	WDT	halts c	ounting	in IDLE mo	de	23				

Table 2. AUXR: Auxiliary Register

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

0/01

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 3.	AUXR1: Au	uxiliary	Register 1
----------	-----------	----------	------------

							Reset Va	alue = XXXXXX
Not E Addressa								
	.7		1.75	-	10.00	-	-	DPS
Bit	7	6	5	4	3	2	1 .	0
- DPS		ed for futu binter Reg	1.124.126.2486.6756.64				Ę	
	0	Selec	ts DPTR	Registers	DPOL, DF	юн	을 받는 것	

 mory
 MCS-51 devices have a separate address space for Program and Data Memory. Up to 64K

 janization
 bytes each of external Program and Data Memory can be addressed.

gram Memory If the EA pin is connected to GND, all program fetches are directed to external memory.

On the AT89S51, if EA is connected to V_{CC}, program fetches to addresses 0000H through FFFH are directed to internal memory and fetches to addresses 1000H through FFFFH are directed to external memory.

a Memory The AT89S51 implements 128 bytes of on-chip RAM. The 128 bytes are accessible via direct and indirect addressing modes. Stack operations are examples of indirect addressing, so the 128 bytes of data RAM are available as stack space.

:chdog
er
e-timeThe WDT is intended as a recovery method in situations where the CPU may be subjected to
software upsets. The WDT consists of a 14-bit counter and the Watchdog Timer Reset
(WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a
user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H).
When the WDT is enabled, it will increment every machine cycle while the oscillator is running.
The WDT timeout period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When
WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the VDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 98xTOSC, where TOSC=1/FOSC. To make the ber', use of the WDT, it

:2487A-10/01

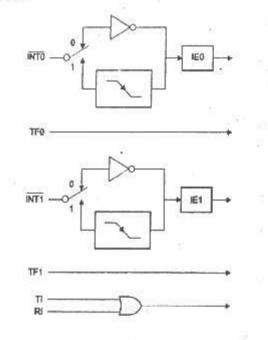
	should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.
DT During wer-down d Idle	In Power-down mode the oscillator stops, which means the WDT also stops. While in Power- down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt, which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89S51 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To pre- vent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the inter- rupt service for the interrupt used to exit Power-down mode.
	To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.
	Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89S51 while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.
	With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.
RT	The UART in the AT89S51 operates the same way as the UART in the AT89C51. For further information on the UART operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.
ier 0 and 1	Timer 0 and Timer 1 in the AT89S51 operate the same way as Timer 0 and Timer 1 in the AT89C51. For further information on the timers' operation, refer to the ATMEL Web site (http://www.atmel.com). From the home page, select 'Products', then '8051-Architecture Flash Microcontroller', then 'Product Overview'.
rrupts	The AT89S51 has a total of five interrupt vectors: two external interrupts (INT0 and INT1), two timer interrupts (Timers 0 and 1), and the serial port interrupt. These interrupts are all shown in Figure 1.
	Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.
	Note that Table 4 shows that bit position IE.6 is unimplemented. In the AT89S51, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products
	The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle

D/01

AIMEL

÷

Table 4. Interrupt Enable (IE) Register

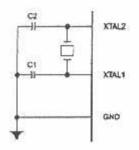

2425		 1224	100000	Sec.	121212	
EA	-	 ES	ET1	EX1	£.TO	EX0

Enable Bit = 0 disables the interrupt.

Symbol	Position	Function				
EA	IE.7	Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.				
-	IE.6	Reserved				
-	IE.5	Reserved				
ES	IE.4	Serial Port interrupt enable bit				
ET1	IE.3	Timer 1 interrupt enable bit				
EX1	IE.2	External Interrupt 1 enable bit				
ETO	IE.1	Timer 0 interrupt enable bit				
EX0	IE.0	External interrupt 0 enable bit				

User software should never write 1s to reserved bits, because they may be used in future A(89 products.

Figure 1. Interrupt Sources



AT89S51

scillator naracteristics

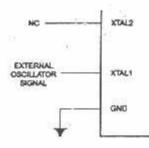

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 3. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Figure 2. Oscillator Connections

Note: C1, C2 = 30 pF ± 10 pF for Crystals = 40 pF ± 10 pF for Ceramic Resonators

Figure 3. External Clock Drive Configuration

a Mode

-10/01

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special function registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory.

ver-down deIn the Power-down mode, the oscillator is stopped, and the instruction that invokes Powerdown is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down mode can be initiated either by a hardware reset or by activation of an enabled external interrupt into INT0 or INT1. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

11

Table 5.	Status of	External	Pins	During Idle	and	Power-down	Modes
----------	-----------	----------	------	-------------	-----	------------	-------

Mode	Program Memory	ALE	PSEN	PORTO	PORT1	PORT2	PORTS
Idie	Internal	1	1	Data	Duta	Data	Data
Idie	External	1	1	Float	Oata	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Da'a	Data	Data

ogram mory Lock

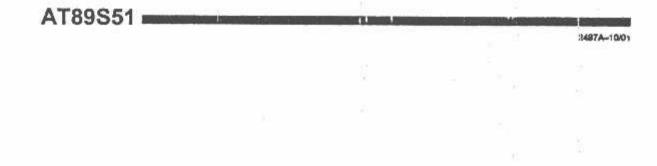
The AT89S51 has three lock bits that can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table.

Table 6. Lock Bit Protection Modes

	Program Lock Bits			
	LB1	LB2	LB3	Protection Type
1	U	υ	U	No program lock features
2	P	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from interna memory, EA is sampled and latched on reset, and further programming of the Flash memory is disabled
3	P	Р	U	Same as mode 2, but verify is also disabled
4	р	P	Р	Same as mode 3, but external execution is also disabled

When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value and holds that value until reset is activated. The latched value of EA must agree with the current logic level at that pin in order for the device to function property.

gramming Flash – allel Mode


The AT89S51 is shipped with the on-chip Flash memory analy ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers.

The AT89S51 code memory array is programmed byte-by-byte.

Programming Algorithm: Before programming the AT89S51, the address, data, and control signals should be set up according to the Flash programming mode table and Figures 13 and 14. To program the AT89S51, take the following steps:

- 1. Input the desired memory location on the address lines.
- 2. Input the appropriate data byte on the data lines.
- 3. Activate the correct combination of control signals.
- 4. Raise EAV pp to 12V.
- Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The bytewrite cycle is self-timed and typically takes no more than 50 µs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.

Data Polling: The AT89S51 features Data Polling to indicate the end of a byte write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate EUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (100H) = 51H Indicates 89S51 (200H) = 06H

Chip Erase: In the parallel programming mode, a chip erase operation is initiated by using the proper combination of control signals and by pulsing ALE/PROG low for a duration of 200 ns -500 ns.

In the serial programming mode, a chip erase operation is initiated by issuing the Chip Erase instruction. In this mode, chip erase is self-timed and takes about 500 ms.

During chip erase, a serial read from any address location will return 00H at the data output.

gramming Flash ial Mode

The Code memory array can be programmed using the serial ISP interface while RST is pulled to Vcc. The serial interface consists of pins SCK, MOSI (Input) and MISO (output). After RST is set high, the Programming Enable instruction needs to be executed first before other operations can be executed. Before a reprogramming sequence can occur, a Chip Erase operation is required.

The Chip Erase operation turns the content of every memory location in the Code array into FFH.

Either an external system clock can be supplied at pin XTAL1 or a crystal needs to be connected across pins XTAL1 and XTAL2. The maximum serial clock (SCIO frequency should be less than 1/16 of the crystal frequency. With a 33 MHz oscillator clock, the maximum SCK frequency is 2 MHz.

To program and verify the AT89S51 in the serial programming mode, the following sequence

ramming rithm

al

is recommended: 1. Power-up sequence:

Apply power between VCC and GND pins. Set RST pin to "H".

If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 33 MHz clock to XTAL1 pin and wait for at least 10 milliseconds.

- 2. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5. The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at XTAL1 divided by 16.
- 3. The Code array is programmed one byte at a time in either the Byte or Page mone. The write cycle is self-timed and typically takes less than 0.5 ms at 5V.
- 4. Any memory location can be verified by using the Read instruction that returns the content at the selected address at serial output MISO/P1.6.
- 5. At the end of a programming session, RST can be set low to commerce normal device operation.

13

3/01

Power-off sequence (if needed):

Set XTAL1 to "L" (If a crystal is not used).

Set RST to "L".

on page 18.

Turn Voc power off.

Data Polling: The Data Polling feature is also available in the serial mode. In this mode, during a write cycle an attempted read of the last byte written will result in the complement of the MSB of the serial output byte on MISO.

The Instruction Set for Serial Programming follows a 4-byte protocol and is shown in Table 8

ial gramming ruction Set

gramming srface – allel Mode

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

a 7. Flash Programming Modes

				ALE	EA/						P0.7-0	P2.3-0	P1.7-0
•	Vcc	RST	PSEN	PROG	V _{pp}	P2.6	P2.7	P3.3	P3.6	P3.7	Detn	Add	ress
Code Data	5V	н	L	\sim	12V	L	н	н	н	н	Dw	A11-8	A7-0
i Code Data	5V	н	L	н	н	L	L	L	н	н	Dout	A11-8	A7-0
Lock Bit 1	5V	н	L	(3)	12V	н	н	H	н	н	x	x	x
Lock Bit 2	5V	н	L	\sim^{a_i}	12V	н	н	н	L	L	×	x	×
Lock Bit 3	5V	н	L	~ a	12V	н	ι	н	н	L	x	x	x
I Lock Bits 3	5V	н	L	н	н	н	н	Ŀ	'н	L	P0.2, P0.3, P0.4	×	х
Erase	5V	н	L	\sim°	12V	н	L	н	L	L	x	x	x
Atmel ID	5V	н	L	н	н	L	L	L	L	L	15H	0000	OOH
Device ID	5∨	н	L	н	н	L	L	L	L	L	51H	0001	00H
Device ID	5V	н	L	н	н	L	L	L	L	L	06H	0010	00H

1. Each PROG pulse is 200 ns - 500 ns for Chip Erase.

2. Each PROG pulse is 200 ns - 500 ns for Write Code Data.

3. Each PROG pulse is 200 ns - 500 ns for Write Lock Bits.

4. RDY/BSY signal is output on P3.0 during programming.

5. X = don't care,

AT89S51

2487A-10/01

AT89S51

15

1.1

1700

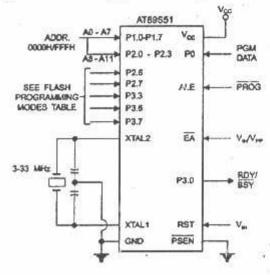
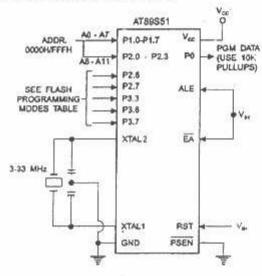
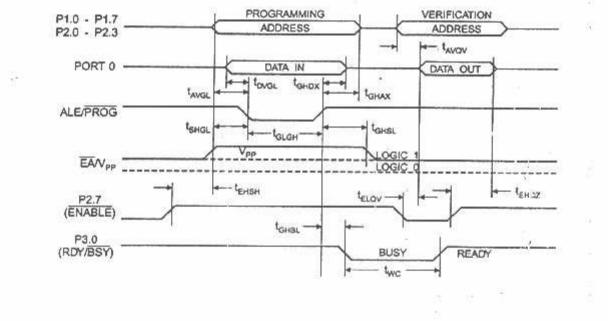



Figure 5. Verifying the Flash Memory (Parallel Mode)

AIMEL

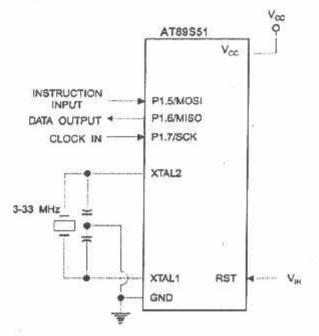
-10/01

÷. I): -

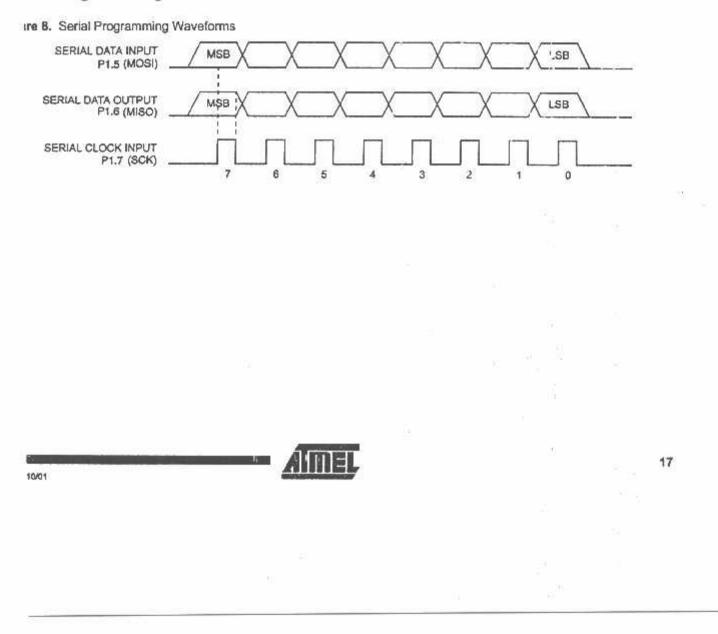

ish Programming and Verif	ication Characteristics (Parallel Mode)
---------------------------	---

: 20°C to 30°C, $V_{\rm CC}$ = 4.5 to 5.5V

nbol	Parameter	Min	Мах	Units
6	Programming Supply Voltzige	11.5	12.5	v
	Programming Supply Current		10	mA
	V _{cc} Supply Current		00	mA
LĊL	Oscillator Frequency	3	33	MHz
L	Address Setup to PROG Low	48tcici		
x	Address Hold After PROG	48t _{oLOL}		
Ł	Data Setup to PROG Low	48tcici		
×	Data Hold After PROG	48torer		
н	P2.7 (ENABLE) High to VPP	48t _{CLCL}		
L	Vpp Setup to PROG Low	10		μs
L	V _{PP} Hold After PROG	10		μs
ы	PROG Width	0.2	1	μs
v	Address to Data Valid		48toici	
v	ENABLE Low to Data Valid		48LCICL	
z	Data Float After ENABLE	0 .	48touci	
L,	PROG High to BUSY Low		1.0	μs
	Byte Write Cycle Time		50	μs


11.20

re 6. Flash Programming and Verification Waveforms - Parallel Mode



AT89S51		New Part	all starts	1 ¹ 1
			54 U	2487A-10/0
			15	
			91) 	
		53		

ure 7. Flash Memory Serial Downloading

sh Programming and Verification Waveforms - Serial Mode

15 (12)

STREET, BAR

Ile 8. Serial Programming Instruction Set

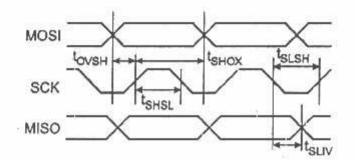
	Instruction Format				
struction	Byte 1	Byte 2	Byte 3	Byte 4	Operation
ogramming Enable	1010 1100	0101 0011	XXXX XXXX	xxxx xxxx 0110 1001 (Output)	Enable Serial Programming while RST is high
ip Erase	1010 1100	100x xxxx	XXXXX XXXXX	XXXX XXXXX	Chip Erase Flash memory array
ad Program Memory te Mode)	0010 0000	xxxx ****	2552 2525	6666 6666	Read data from Program memory in the byte mode
ite Program Memory te Mode)	0100 0000	X00X 1008	2555 2555	දියසිදු දිසිසුදු	Write data to Program memory in the byte mode
ite Lock Bits ⁽²⁾	1010 1100	1110 00 58	X000X X000X	X00XX X00X	Write Lock bits. See Note (2).
ad Lock Bits	0010 0100	XOCOX XOCOX	XXXX XXXXX	x8 88	Read back current status of the lock bits (a programmed lock bit reads back as a "1")
3d Signature Bytes ⁽¹⁾	0010 1000	xxx \$ \$2555	5 xxx xxxx	Signature Byte	Read Signature Byte
ad Program Memory ge Mode)	0011 0000	XXXX 1000	Byte 0	Byte 1 Byte 255	Read data from Program memory in the Page Mode (256 bytes)
te Program Memory ge Mode)	0101 0000	xxxx ======	Byte 0	Byte 1 Byte 255	Write data to Program memory in the Page Mode (256 bytes)

3: 1. The signature bytes are not readable in Lock Bit Modes 3 and 4.

B1 = 0, B2 = 0 — Mode 1, no lock protection B1 = 0, B2 = 1 — Mode 2, lock bit 1 activated

B1 = 1, B2 = 0 --- Mode 3, lock bit 2 activated B1 = 1, B1 = 1 - Mode 4, lock bit 3 activated Each of the lock bits needs to be activated sequentially before Mode 4 can be executed.

After Reset signal is high, SCK should be low for at least 64 system clocks before it goes high to clock in the unable data bytes. No pulsing of Reset signal is necessary. SCK should be no faster than 1/16 of the system clock at XTAL1.


For Page Read/Write, the data always starts from byte 0 to 255. After the command byte and upper address byte are latched, each byte thereafter is treated as data until all 256 bytes are shifted in/out. Then the next instruction will be ready to be decoded.

AT89S51

24874-10/01

Serial Programming Characteristics

Figure 9. Serial Programming Timing

able 9. Serial Programming Characteristics, $T_A = -40^{\circ}$ C to 85° C, $V_{CC} = 4.0 - 5.5$ V (Unless Otherwise Noted)

AIMEL

Symbol	Parameter	Min	Тур	Max	Units
1ACLCL	Oscillator Frequency	0		33	MHz
CLCL	Oscillator Period	30			ns
SHSL	SCK Pulse Width High	8 tolou			ns
SLSH	SCK Pulse Width Low	8 tcici			ns
юузн	MOSI Setup to SCK High	tala			ns
SHOX	MOSI Hold after SCK High	2 tolor			ns
SL#V	SCK Low to MISO Valid	10	16	32	ns
ERASE	Chip Erase Instruction Cycle Time			500	ms
SWC	Serial Byte Write Cycle Time			64 t _{CLCL} + 400	μs

237 -10/01

solute Maximum Ratings*

serating Temperature55°C to +125°C	
orage Temperature65°C to +150°C	
Itage on Any Pin th Respect to Ground1.0V to +7.0V	
szimum Operating Voltage	
Cutput Current 15.0 mA	

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

: Characteristics

values shown in this table are valid for T_A = -40°C to 85°C and V_{CC} = 4.0V to 5.5V, unless otherwise noted.

mbol	Parameter	Condition	Min	Max	Units
	Input Low Vollage	(Except EA)	-0.5	0.2 V _{cc} -0.1	v
	Input Low Voltage (EA)		-0.5	0.2 Vcc-0.3	v
	Input High Voltage	(Except XTAL1, RST)	0.2 Vcc+0.9	V _{cc} +0.5	v
1	Input High Voltage	(XTAL1, RST)	0.7 V _{CC}	V _{cc} +0.5	٧
	Output Low Voltage ⁽¹⁾ (Ports 1,2,3)	l _{ot} = 1.6 mA		0.45	۷
1	Output Low Voltage ⁽¹⁾ (Port 0, ALE, PSEN)	l _{oL} = 3.2 mA		0,45	۷
		I _{OH} = -60 μA, V _{CC} = 5V ± 10%	2.4		٧
	Output High Voltage	l _{он} = -25 µА	0.75 V _{cc}		v
·	(Ports 1,2,3, ALE, PSEN)	l _{он} = -10 µА	0.9 V _{cc}		٧
		$I_{OH} = -800 \ \mu A, V_{CC} = 5V \pm 10\%$	2.4		v
	Output High Voltage	l _{он} = -300 µA	0.75 V _{CC}		٧
1	(Port 0 in External Bus Mode)	1 _{0H} = -80 μA	0.9 V _{CC}	/	٧
	Logical 0 Input Current (Ports 1,2,3)	V _{IN} = 0.45V		-50	μA
	Logical 1 to 0 Transition Current (Ports 1,2,3)	V _{IN} = 2V, V _{CC} = 5V ± 10%		-650	μA
	Input Leakage Current (Port 0, EA)	0.45 < V _{IN} < V _{CC}		±10	μA
3T	Reset Pulldown Resistor		50	300	KΩ
	Pin Capacitance	Test Freq. = 1 MHz, T _A = 25°C		10	pF
		Active Mode, 12 MHz		25	mA
	Power Supply Current	Idle Mode, 12 MHz		6.5	mA
	Power-down Mode ⁽²⁾	V _{CC} = 5.5V		50	μA

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum IoL per port pin: 10 mA

Maximum IoL per 8-bit port:

Port 0: 26 mA Ports 1, 2, 3: 15 mA

Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum V_{cc} for Power-down is 2V.

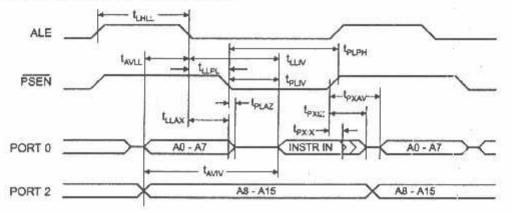
2487A-10/01

Lin I

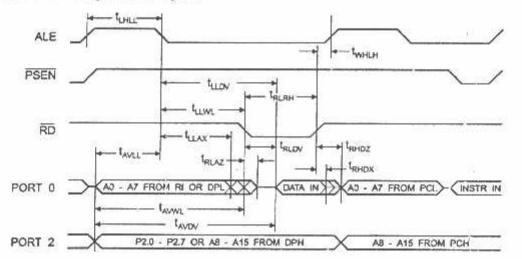
LARY I

Characteristics

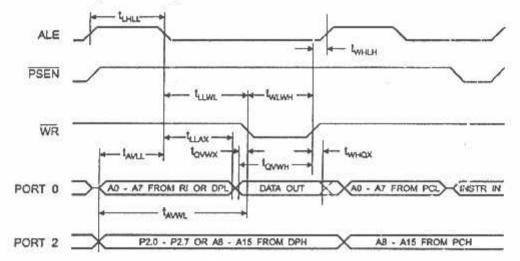
er operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other sts = 80 pF.

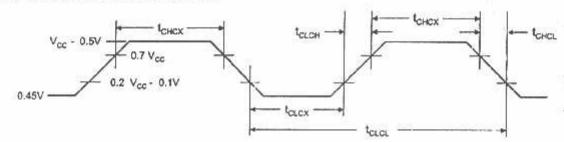

		12 MHz	Oscillator	Variable	Oscillator	≈ [≥]
lod	Parameter	Min	Max	Min	Max	Units
CL.	Oscillator Frequency			0	33	MHz
	ALE Pulse Width	127		2tcLcL-40		- ns
	Address Valid to ALE Low	43		toloi-25		F4S
	Address Hold After ALE Low	48		t _{cLCL} -25		ns
	ALE Low to Valid Instruction In		233		41aa-65	ns
	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
	PSEN Pulse Width	205		3taci-45		ns
	PSEN Low to Valid Instruction In		145		31 _{CLCL} -60	ns
	Input Instruction Hold After PSEN	0		0		ns
	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns
	PSEN to Address Valid	75		taa-8		ns
	Address to Valid Instruction In		312		5t _{cici} -80	ns
	PSEN Low to Address Float		10		10	ns
921-5-11-5- 	RD Pulse Width	400	dia 14150e9 teditotta: National National	61 _{CLCL} -100		ns
1	WR Pulse Width	400		61 _{CLCL} -100		ns
	RD Low to Valid Data In		252		5tore-90	ns
	Data Hold After RD	0		0		ns
	Data Float After RD		97		2t _{cupt} -28	ns
	ALE Low to Valid Data In	1	517		8t _{c1.c1} -150	ns
	Address to Valid Data In		585		9tci.ci - 165	ns
	ALE Low to RD or WR Low	200	300	31 ₀₁₀₁ -50	3t 101+50	រាទ
	Address to RD or WR Low	203		4tc.cl-75		ns
	Data Valid to WR Transition	23		taca-30	17	ns
	Data Valid to WR High	433		7t _{cLCL} -130	0	п\$
	Data Hold After WR	33		t _{clcl} -25		ns
	RD Low to Address Float		0		0	ns
	RD or WR High to ALE High	43	123	t _{cici} -25	laa+25	ns

ernal Program and Data Memory Characteristics


AIMEL

21


cternal Data Memory Read Cycle


AT89S51 ________

Contraction of the

tternal Data Memory Write Cycle

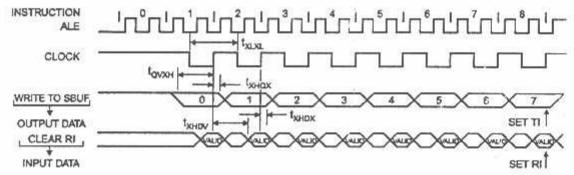
ternal Clock Drive Waveforms

ernal Clock Drive

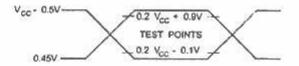
10/01

nbol	Parameter	Min	Мах	Units
LCL	Oscillator Frequency	0 .	33	MHz
L	Clock Period	30		ns
x	High Time	12		ns
x	Low Time	12	//////////////////////////////////////	ns
4	Rise Time		5	ns
L	Fall Time		5	ns

AIMEL

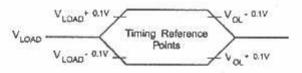


rial Port Timing: Shift Register Mode Test Conditions


mbol	Parameter	12 MHz Osc		Variable Oscillator		
		Min	Max	Min	Max	Units
xL	Serial Port Clock Cycle Time	1.0		12t _{CLCL}		μs
хн	Output Data Setup to Clock Rising Edge	700		10tclcl-133		ns
ax	Output Data Hold After Clock Rising Edge	50		2tcici-80	-	ns
ох	Input Data Hold After Clock Rising Edge	0		0	4	ns
DV	Clock Rising Edge to Input Data Valid		700		10tcLCL-133	ns

+ values in this table are valid for V_{cc} = 4.0V to 5.5V and Load Capacitance = 80 pF.

ift Register Mode Timing Waveforms



Testing Input/Output Waveforms⁽¹⁾

AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0.

at Waveforms⁽¹⁾

 For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs.

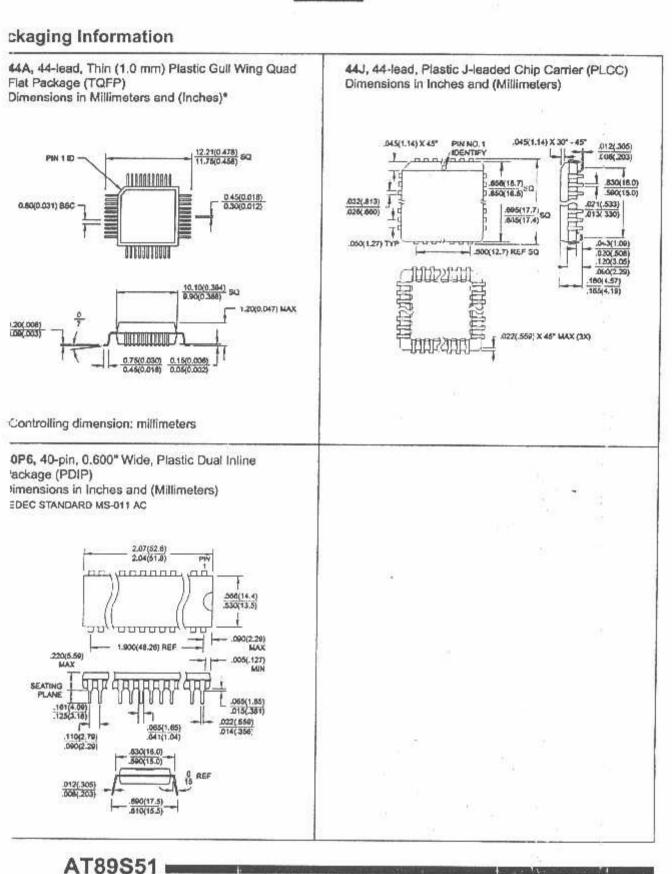
AT89S51 (B)1 2487A-10/01

APRIL DO

10.000

dering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
24	4.0V to 5.5V	AT89S51-24AC AT89S51-24JC AT89S51-24PC	44A 44J 40P6	Commercial (0° C to 70° C)
		AT89S51-24Al AT89S51-24Jl AT89S51-24Pl	44A 44J 40P6	Industrial (-40°C to 85°C)
33.	4.5V to 5.5V	AT89551-33AC AT89551-33JC AT89551-33PC	44A 44J 40P6	Committeel) ; (0/Gxb//0/Gil) ;


= Preliminary Availability

Package Type	
44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)	
44-lead, Plastic J-leaded Chip Carrier (PLCC)	
 40-pin, 0.600* Wide, Plastic Dual Inline Package (PDIP)	

10/01

25

2487A-10/01

tmel Headquarters

orporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

urope Almel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

sia Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

nan Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Product Operations

Atmel Colorado Springs 1150 E. Cheyenne Min. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Grenoble Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480

Atmel Heilbronn Theresienstrasse 2 POB 3535 D-74025 Heilbronn, Germany TEL (49) 71 31 67 25 94 FAX (49) 71 31 67 24 23

Atmel Nantes La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 0 2 40 18 18 18 FAX (33) 0 2 40 18 19 60

Atmel Rousset Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Atmel Smart Card ICs Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-357-000 FAX (44) 1355-242-743

> e-mail literature@atmel.com

Web Site http://www.atmel.com

Printed on recycled paper.

2487A-10/01/xM

mel Corporation 2001.

I Corporation zoon. I Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors i may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does take any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted. Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical onents in life support devices or systems.

L[®] is the registered trademark of Atmel.

51[®] is the registered trademark of Intel Corporation. Terms and product names in this document may be narks of others.