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Abstract. A robust sequential primal-dual linear programming 

formulation for reactive power optimization is developed and discussed in 

this paper. The algorithm has the characteristic that no approximations or 

complicate control logic are required in the basic Sequential Linear 

Programming (SLP) formulation as used by other SLP algorithms reported 

in the literature. Transmission loss minimization is used as the primary 

objective. A secondary feasibility improvement objective is used which 

results in better feasible solution in comparison with the loss minimization 

objective especially when the initial base case has over voltages. 

Modification in the proposed method to obtain the limited amount and 

limited movement of controller solution for real time application is also 

presented. The algorithm has been tested on Ward and Hale 6-Bus system. 

 
Keywords: Generator excitation, power flow, shunt reactive power, 
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1 Introduction 

Proper reactive power dispatch is required for maintaining an acceptable level of the bus 

voltages, reduction in transmission losses, and an increase in static voltage stability margin. 

It is essential that existing reactive power controls viz., generator excitations, transformer 

taps, switchable shunt reactive power compensation are judiciously used to achieve the 

aforesaid objective. A new solution based on successive linear approximation has been used 

for power flow equations, and the quality of initial points regarding voltage magnitude is 

relatively low in the first few iterations [1]. An optimization method using Dynamical 

Thermal Rating (DTR) and linear programming (LP) to minimize generation costs or 

transmission losses derived from a spatially resolved thermal model of the transmission 

system based on actual weather conditions along the line [2]. A linear power flow model 

involving tap changers and phase shift considering transmission loss minimization is one of 

the common objective used in Linear Program (LP) formulations and implementation of 

expert system in solving the voltage stability with tap changers and generation controls  

 
* Corresponding author: abraham@lecturer.itn.ac.id 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 188, 00002 (2020)
ICESTI 2019

https://doi.org/10.1051/e3sconf/202018800002

mailto:abraham@lecturer.itn.ac.id


[3, 4]. The following difficulties are encountered in the LP formulation with this 

minimization objective, (i) Zig-zagging in convergence characteristic of the sequential LP 

formulation, and (ii) Inability to remove over voltages with loss minimization objective. 

To overcome the above difficulties and to avoid zig-zagging of the convergence 

characteristic, the authors in [3, 4] restricted the controller movements by using 

progressively smaller controller ranges in each power flow-LP optimization cycles. An 

efficient approach for solving the optimal reactive power dispatch problem with a non-

linear constraint optimization to find the control variable settings which minimize 

transmission active power losses and load bus voltage deviations [5]. Reference [6] 

presents a novel methods to approximate the nonlinear AC optimal power flow (OPF) into 

tractable linear/quadratic programming (LP/QP) based OPF problems that can be used for 

power system planning and operation. A development of a linear programming approach 

into a truly general purpose with computational of optimal power flow. A linear-

programming models that incorporate reactive power and voltage magnitudes in a linear 

power flow approximation has been presented [7].  

In this paper a numerical robust sequential primal-dual sequential linear programming 

formulation for reactive power optimization is developed. The algorithm has the following 

features. 

i). The algorithm does not require modified controller limits to control zig-zagging of the 

solution. Actual controller limits are used without any modification. 

ii). The solution for the control variables is always within the specified limits and may be 

implemented directly for the power flow solution without any approximation. 

iii). The number of power flow-optimization cycles are very small. Usually, an accurate 

minimum loss solution is obtained in two cycles to three cycles. 

iv). Since modified controller ranges are not used, and controllers are allowed to move 

within their entire specified range, the number of controllers shifted from their initial 

position is small. When restricted control ranges are used as reported in other work  

[3, 4], the loss minimization is restricted due to insufficient control ranges. This 

results in activating more number of controller as well as more number of power flow-

optimization cycles to achieve minimum transmission losses. 

v). A secondary voltage feasibility improvement objective allows the algorithm to correct 

the over/under voltages efficiently. The transmission loss minimization objective is 

inefficient to correct the over voltages with standard LP formulation. 

The implemented algorithm in a production grade program does not use any restriction 

on the magnitude of the floating point variables. Even the smallest possible pivot or the 

different possible floating point ratios computed in the primal-dual sequential linear 

programming algorithm are considered. 

2 The algorithm 

Standard LP formulation solves an optimization problem either as maximization or as 

minimization problem. The minimization problem is a dual of the maximization problem 

and essentially gives the same optimum results as the maximization problem. The LP 

algorithm for the maximization problem is the primal (simplex) algorithm and for the 

minimization problem is the dual (dual simplex) algorithm. A primal algorithm requires a 

sub optimal but feasible tableau. A dual algorithm requires optimal tableau with 

infeasibilities [8]. A primal pivot improves the feasibility while attempting to maintain 

optimality. When the initial tableau is neither optimal nor feasible a straight forward 

implementation of the primal or the dual algorithm is not possible. Under these conditions a 

primal-dual algorithm may be used. A primal and dual pivots in terms of their influence on 

the objective and accordingly selects either the primal or dual pivot. The following basic 
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difference between the primal and the dual algorithm is of importance to the transmission 

loss minimization problem. 

i) When the initial tableau is upper bound feasible, a primal algorithm will always 

provide feasible controller solutions that may be implemented directly for the 

subsequent power flow solution. Further, the lower bound infeasibilities, such as low 

voltage will improve with the improvement in the objective. Hence, there is no need to 

use restricted or modified controller ranges as used in other reported works. 

ii) There is no guarantee that a straightforward implementation of the dual algorithm will 

result in feasible controller solutions. This appears to be the main reason for the use of 

the approximations on controller limits as reported in the earlier literature. In the 

primal-dual algorithm presented in this paper a check is introduced to see whether a 

given pivot will result in infeasible controller solution. If so, this particular pivot is 

discarded and the next possible pivot is considered. This ensures that the final solution 

for the controller variables will always be within the specified range. 

3 Problem statement 

The transmission loss minimization problem may be stated as follows, in Equation (1) to 

Equation (5). 

 Minimize 
),( uxf
        (1) 

 Subject to 
0),( =uxg

       (2) 

  maxmin uuu 
         (3) 

  maxmin xxx 
         (4) 

  maxmin hhh 
          (5) 

The power flow equation constraints defined in Equation (2) to be satisfied at any 

operating point. The vectors u and x represent set of control variables (generator 

excitations, transformer taps etc.) and dependent variables (bus voltage magnitudes). 

Constraints defined in Equation (3) and Equation (4) are dependent variable permissible 

control limits. Constraints defined in Equation (5) are security constraints with the 

limitation of MVAR loading of generators and MVA loading of transmission lines in the 

system. 

The algorithm presented in this paper minimizes active power of the slack generator. 

This is equivalent to transmission loss minimization, when the active power generations of 

the remaining generators are determined from economic dispatch. 

4 Reduced formulation 

Linearizing the power flow equations around its solution [9], it describes in Equation (6) to 

Equation (8) that is obtained: 
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   uSx x −=            (8) 

Equation (8) gives the sensitivity of dependent bus voltage magnitude and phase angles 

as a function of specified control variables, in Equation (9). 
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Equation (9) gives the sensitivity of slack generation as a function of the specified 

variables (Equations 10 and 11). 
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Equation (11) gives the sensitivity of system security monitoring variables such as 

generator reactive power limits, line loading as functions of specified control variables. 

4.1. Simplex tableau formulation 

The transmission loss minimization LP problem [10] can be stated in Equation (12) to 

Equation (16). 

Minimize   uCP T
sl =          (12) 

Subject to     minxuSx          (13) 

    

        maxxuSx −−          (14) 

 

   minuu =           (15) 

   maxuu −=−           (16) 

where Equation (13) and Equation (14) include the linearized sensitivity relations 

Equation (7) and Equation (11). In the actual implementation, negative of the objective 

function (12) is maximized and the sign of the inequalities in Equation (13) to Equation 

(16) is reversed. With these modifications a condensed simplex tableau can be readily 

formed and is shown in the tableau Equation (17), 
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= 

 

 

A 

 

 

r 

CT 0.0  CT 0.0 

(17) 

 

Where r is a column vector representing the negative of the right hand side of the 

inequalities Equation (13) to Equation (16) and A is the coefficient matrix of control 

variables representing the negative of the left-hand side of the inequalities Equation (13) to 

Equation (16). 
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4.2. Sensitivities 

4.2.1. Sensitivities with respect to dependent bus voltage magnitudes and angles 

To obtain the sensitivities of the injection buses with respect to the voltages magnitude and 

angles of the dependent bus (|V|,) and the voltage magnitude of the independent bus 

(generator excitations), a partial derivatives in the formulation of the Jacobian power flow 

are used Equation [11]. The following terms Equation (18) to Equation (20) are used in the 

partial derivatives.  

 

 

)( kmkmkm jBGY =           (18) 

)( mmm jfeE +=         (19) 

)( mmm jbaI +=          (20) 

 

The partial derivatives when k  m are given by Equation (21) and Equation (22) 
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The partial derivatives when k = m are given by Equation (23) to Equation (26) 
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The sensitivities is ignored with respect to the slack bus. 

4.2.2. Sensitivities with respect to shunt reactive power compensation 

If Bsh and Vsh are defined as the reactive power compensation susceptance and the voltage at 

a bus respectively, the reactive power absorbed by the shunt component is given by 

Equation (27) 

shshsh BVQ
2

−=
         (27) 

The reactive power absorption sensitivity as a function of shunt susceptance is given by 

Equation (28) 

 

2
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Q
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∂

         (28) 

The right-hand side of Equation (28) is -1.0 for constant power compensation.  

5

E3S Web of Conferences 188, 00002 (2020)
ICESTI 2019

https://doi.org/10.1051/e3sconf/202018800002



4.2.3. Sensitivities with respect to transformer tap 

Let p and q are defined as the transformer terminal buses with the off nominal turn ratio 

T:1. With the relation T = 1/, the sensitivities of the transformer power flow with respect to 

the transformer tap are given by the following Equations (29) to Equation (32): 
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--
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Where pqpqpq jBGy += , is the series admittance between the buses p and q. pq is the 

phase angle of ypq. 

4.3. Primal-dual algorithm 

The pivot selection in the primal - dual algorithm is explained with reference to Equation 

(17). Let A(p,q) represents the pivot. r(p) is the corresponding entry in the vector r and C(q) 

is the corresponding entry in the objective row. Then a primal pivot must satisfy the 

following conditions. First, C(q) is the most negative entry in the objective row. Second, 

The ratio r(p)/A(p,q) is the smallest positive ratio for all possible pivots in column q. 

A dual pivot must satisfy the following conditions: i) r(p) is the most violated basis 

variable. ii) The ratio -(C(q)/A(p,q)) is the smallest positive ratio among all possible pivots 

in row p. Once a primal and a dual pivot are found, whichever pivot influences the 

objective most is chosen as the pivot.  

4.3.1. Implementation 

In the actual implementation the following two restrictions are added. 

i). The pivot should not result in any control infeasibility. 

ii). After pivoting, a new tableau obtained and more feasible compare the previous one. 

This requires the simulation of the effect of the pivot on the vector r. 

The first condition is always satisfied with a primal pivot, provided that the initial state 

has feasible controller positions. A dual pivot does not necessarily satisfy the two 

restrictions stated above. There is no guarantee that it will result in feasible controller 

solution. Hence a check is required to ensure the same. Although the dual pivot forces the 

most violated variable to its limit, there is no guarantee that the overall feasibility of the 

tableau improves. When the two restrictions stated above are implemented, it is guaranteed 

that the algorithm will result in implementable solution for the control variables with 

improved optimality feasibility. For practical large systems, the final tableau will be usually 

optimal with some infeasibility. 
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5 Test case and results 

The proposed algorithm is tested on Ward and Hale 6 Bus system. This case system is taken 

from reference [12]. The sensitivity matrix Sx is shown in Table 1. The sensitivity 

information is obtained from coupled load flow Jacobian formulation. 

The first two columns correspond to generator excitation controls |V1| and |V2|. The next 

two columns correspond to the shunt reactive power controls at buses 4 and 6. The last two 

columns correspond to the transformer tap controls. The first two rows of Table 1 

correspond to the generator reactive power sensitivity with respect to the specified 

controllers. 

The last four rows give the sensitivity of the dependent bus voltages (magnitudes) or the 

buses 3 to 6 concerning the specified controllers. The convergence characteristic of the 

algorithm is listed in Table 2. The last column of the tableau (Sv) represents the absolute 

sum of voltage infeasibilities. Accurate convergence is obtained in two load flow 

optimization cycles. Further improvement in the loss reduction was not possible since two 

of the bus voltages reached upper bound limits. The algorithm does not experience any 

oscillations with further power flow optimization cycles. 

 

Table 1. Calculated parameters of ward-hale 6 bus system 

|V1| |V2| QC4 QC6 Tap 6-5 Tap 4-3 

.84875E+00 

-.16784E+01 

.75541E+00 

.90441E+00 

.58742E+00 

.85948E+00 

-.17305E+01 

.15604E+01 

.40950E+00 

.33739E+00 

.66880E+00 

.40240E+00 

-.92173E+00 

-.32603E+00 

.20617E+00 

.24566E+00 

.81089E-01 

.12223E+00 

-.86877E+00 

-.40574E+00 

.10027E+00 

.12116E+00 

.18831E+00 

.27130E+00 

.71902E+00 

-.79242E+0 

-.96008E-01 

-.10332E+0 

.52592E+00 

-.21841E+0 

.43818E+00 

-.60662E+00 

.79354E+00 

-.11531E+00 

-.69034E-01 

-.58726E-01 

 

Table 2. Parameter performed of Ward-Hale 6 Bus system. 

Optimization 

Cycle No. 
Loss (MW) 

Compensation 

(MVAR) 
Sv (p.u) 

0 

1 

2 

11.612 

9.283 

9.200 

00.000 

10.500 

10.500 

0.045 

0.000 

0.000 

Sv = Absolute sum of voltage infeasibilities 

 

Table 3. Parameter optimization of ward-hale 6 bus system. 

Control Initial Final 

|V1| (p.u) 

|V2| (p.u) 

TAP 6-5 

TAP 4-3 

MVAR at bus 4 

MVAR at bus 6 

1.050 0 

1.100 0 

1.025 0 

1.100 0 

0.000 0 

0.000 0 

1.100 0 

1.107 0 

0.912 5 

0.962 5 

5.000 0 

5.500 0 
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6 Conclusion 

A numerically robust primal-dual sequential LP algorithm for transmission loss 

minimization is presented in this paper. The algorithm does not use any approximations on 

the controller limits or intricate control logic as suggested by other previous algorithms 

presented in the literature. 

The algorithm has excellent convergence characteristics towards minimum losses with 

improved feasibility. Accurate minimum loss solutions were obtained from point 2 and 3 in 

LP load flow cycles. While minimizing losses, overvoltages are seldom introduced.  

For practical large scale systems, only marginal over voltages were present at the point 

of convergence. The algorithm has the basic characteristic of curtailing significant number 

of controller movement. Modification to the basic algorithm to reduce the number of 

controllers are easier and straight forward to implement. The algorithm strictly respects any 

specified ranges for the control variables movement to any desired degree by specifying 

appropriate controller ranges. The algorithm, when used with a secondary feasibility 

improvement objective, results in better loss reduction with improved feasibility. Further 

over voltages are effectively removed by the algorithm. Operator's control priorities may be 

very easily incorporated in the algorithm, while arriving at the effective subset of the 

controllers. 
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