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Comparison of Battery Energy Storage Models for
Small Signal Stability in Power System
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Abstract— In the 21st century, integration of large-scale
renewable energy sources (RESs) is increasing significantly.
Although RESs provide clean and sustainable energy, they may
adversely affect the performance of power system due to their
distinct dynamic characteristics and intermittent power output. It
is apparent that the integration of battery energy storage system
(BESS) in power system is inevitable to accommodate more RESs.
BESS could provide additional active and reactive power to the
grid to overcome the energy shortfall. It is reported that the
dynamics associated with BESS may significantly influence the
low-frequency oscillation of the system. Therefore, it is important
to analyze the various models of BESS for power system small
signal stability studies. This paper investigates various models of
BESS and their impacts on low-frequency oscillation for high
penetration of RESs. Analysis has been conducted using Two-area
power system for which the benchmark results are available for
comparison purpose. Both the eigenvalue and time-domain
analyses are employed in this paper to assess the impacts of
various BESS models on low-frequency oscillation. From the
simulation results, it is evident that the detailed model of BESS
(i.e. 5" order model) could reflect the complete influence of BESS
controller on low-frequency oscillation.

Keywords- BESS, damping ratio,
stability, time domain simulation.

eigenvalue, small signal

L INTRODUCTION

In the last decade, integration of RESs in distribution and
transmission level, as well as islanded power system, has
become a reality around the world due to the requirement
clean, affordable, and sustainable energy. Among numerous
type of RESs, photovoltaic (PV) and wind are the promising
sources to produce electricity with the appearance of advanced
technology and their flexibility in operation.

Although RESs based on PV and wind are providing clean
and environmentally friendly electricity, they might adversely
influence stability of power systems. To transform natural
energy into electricity, RESs use power electronics devices
such as DC/AC, AC/DC and DC/DC converter. These devices
could potentially deteriorate the stability performance,
particularly small signal stability of power systems. Moreover,
the uncertainty in the power output of RESs also contributes to
the instability of power system.

To overcome the uncertainty and inertialess characteristics
of RESs, integration of supplementary devices such as energy
storage is considered. Battery energy storage system (BESS)
has become more popular due to the appearance of high power

978-1-5386-3705-0/18/$31.00 ©2018 IEEE
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voltage sourced converter (VSC). In [1], the application of
BESS to augment the frequency stability of the system is
discussed. It has been reported that BESS provides a
promising solution to stabilize the frequency of power systems

[1].

Influence of BESS in small signal stability has been
studied comprehensively in [2]. It is reported that the gain of
the active power controller of BESS has a significant influence
on local and inter-area electromechanical mode. It is also
evident that the damping performance of the system increased
significantly when BESS is installed at the load bus. It is
apparent that the BESS could be used as an additional device
in a large-scale PV for smoothing power output, frequency
support, and voltage regulation. In addition, the small signal
stability performance of the system is also enhanced [3].

From papers cited earlier, it is evident that BESS has
recently received more attention for power system application
as it offers promising result for enhancing the stability
performance during high penetration of RESs. A number of
BESS models floating around for power system stability
studies. However, it is yet to find the suitable and adequate
model for BESS for power system small-signal stability
studies. Hence, this paper aims to investigate the following
key aspects:

e Investigate the existing models of BESS for small signal
stability study.

¢ Findout the impact of the different types of BESS model
on small signal stability performance of power systems.

e Compare the performance of various BESS models for
small signal stability analysis in present of high
penetration of RESs.

The rest of the paper is organized as follows: Section II
provides mathematical modelling of PV, wind power plant,
power system and small signal stability analysis. Section III
briefly explains the influence of RESs and BESS integration
on small signal stability analysis. Section IV provides
mathematical modelling of BESS (e.g. steady-state model,
third order model, fifth order model) for small signal stability
study. Results are presented in Section V. Finally, the paper
concludes with a discussion on results in Section VI.



II. DYNAMIC MODELS AND SMALL SIGNAL STABILITY

A. Model of WECS

A permanent magnet synchronous generator (PMSG) with
back to back converter and the associated controller, as shown
in Fig. 1, is used in this paper.

Back to back Converter System
Grid

-& AC/DC + DC/AC }
f f
RSC GSC |
controller controller [

Fig. 1. Schematic diagram of WECS based on PMSG.

The mathematical representation of a dynamic model of
wind energy conversion system (WECS) based on PMSG can
be represented by (1)-(5). The detailed modeling procedure of
WECS based on PMSG can be found in [4].

do, 7,-7,, B, ()
—_¢ e _Twg
dt ng Jea ’
di 1 ; j
7: - L, +L, (_Rsld +a, (qu +L, )l4 +u”) @
di 1 : j
7: - Lq.v +L, (_Rl\'lq T, I:(Lds +1L, )lq Ty, ]+u") )
o, = po, 4)
Te = l.sp((L(b +L1s)idiz] +ll]y/f) (5)

In (1)-(4), w, is angular speed (mechanical) of the generator,
and B, corresponds to damping coefficient. 7, o represents
aerodynamic torque. While 7., and Je, are electromechanical
torque and equivalent inertia, respectively. Generator
parameters corresponding to stator resistance (R;), leakage
inductances (LisLig), generator inductances (L4 L,), electrical
rotating speed (w.), magnetic flux () and poles (p) are
considered in this model. The sub-index g described the
parameter of generator side [4].

B.  Model of PV plant

A dynamic model of PV plant comprises of PV array,
converter, and associated controller. The converter is used as
an interface between generated power from PV array and the
network. Converter controller is responsible for controlling the
power output of PV plant. Fig. 2 shows the dynamic control
block diagram of large-scale PV plant. The main dynamics of
the PV plant is converter dynamic and controller dynamic [3].
The converter can be represented as a set of the first order
model corresponding to the aggregated model of the inverter
and low pass filter dynamic. The converter controller consists

38

of converter limit, PI controller, and a reactive power
controller [3]. MPPT of PV plant is a logic algorithm to
tracking maximum power from PV array. Hence, there is no
dynamic characteristics that can be captured from MPPT (can
be assumed as constant value) [5]. Moreover, the DC parts of
this modelled is assumed as a constant value due to the fast
response. The complete model of large-scale PV plant can be
found in [6].

V<6
r-———~>""~""~""7" "7 77777777 == arTTT T T 77 =
} Ppv__, } } 1 i
| ——w o
| Converter ””‘\m | 5Ty |
| Converter | | | K
| Controller Current I | Converter [ INetV\]:or
" Limit N } nterface
Vreff X +£ L BN 1 |
}_ v P "’”W} 1+qu }
I [Vt -
Terminal
Bus

Fig. 2. Schematic diagram of PV system.

C. Model of power system

Small signal model of power system comprises a set of
linearized equations of nonlinear differential and algebraic
equations (DAE). In this study, a multi-machine model will be
developed to investigate the dynamic behavior of local power
plant (local modes) and entire power system (local and inter-
area modes), respectively. A nonlinear mathematical model of
the power system can be captured by (6) and (7) [7].

i=f(x.yu) (6)

0=g(x.y) @)
In (6) and (7), x and y represent the state and algebraic
variables, respectively. Machine and the associated controller
is to be included in the differential equations while load flow
and other network equations are included in algebraic
equations [7].

D. Small signal stability

The complexity and nonlinearity of power systems
increased significantly due to load uncertainty and integration
of RESs. One important concern corresponds to the increment
of RES penetration in the power system is the risk of low-
frequency instability, which potentially results in partial or
even full blackout. Low-frequency oscillation can be
categorized as small disturbance rotor angle stability [8]. This
stability is defined as the ability of power system to maintain
stable condition after being subjected to a small disturbance
[9]. Low-frequency oscillation can be classified as a local and
global or inter-area, depending on the participation of various
devices in power systems. The local mode has a frequency
around 0.7 to 2 Hz. The inter-area mode is associated with
generators in multiple areas. It is characterized by an
oscillatory frequency in the range of 0.1 to 0.7 Hz [9].

Low-frequency oscillation can be examined by monitoring
system eigenvalues of the reduced system state matrix. The
eigenvalues will reflect various modes in the system, including



oscillatory and non-oscillatory modes. State space
representation of the system can be determined using (8) by

linearizing equations (6) and (7) [10].

Ax Ax

+E[Au]

0 Ay
In (8), 4x is a vector of state variables. 4y represents a vector
of algebraic variables. 4u corresponds to the input vector. Jir
is the load-flow Jacobian. 4 and B are plant and control or
input matrices, respectively. While output and feedforward
matrices are denoted by C and D, respectively. Furthermore,

the reduced system state matrix of the entire system can be
defined using (9) [10].

-1

] ¢

N [Dll
Dy,
The eigenvalues of the system matrix carry the key
information about the system stability, and they can be
determined using (10) [10]:

A B
Dy Dy, |=

D21 JLF

c (®)

D,
4 12

Sys

)

JLF

det(A1—4,,) (10)

SYS

In equation number (10), / is the identity matrix and 4 is
eigenvalues of matrix A, Furthermore, complex eigenvalue
indicates frequency oscillation (f) and damping ratio (¢) which
can be described as given in (11), (12), and (13) [11].

A=0tjo (11)
o,

fi = (12)

— (13)

J-o? +—a?

INFLUENCE OF BESS AND RES ON SMALL SIGNAL
STABILITY

II1.

In recent years, the integration of RESs is increasing
significantly due to the global warming and climate change
concerns. The integration of RESs is resulting in emerging
new problems in power system. As reported on [12], the low
inertia or inertia-less characteristics of RESs could have a
significant impact on frequency stability of power system. The
high penetrations of RESs also have a negative influence on
small signal stability. As reported in [13], the high penetration
of PV plant resulting on deteriorating damping performance of
power system due to the inertia-less characteristic of PV plant.

The impact of power system based on a wind turbine is
reported [14]. In those papers, the integration of power system
based on wind power plant could bring positive and negative
influence on low-frequency oscillation. Furthermore, another
majors problems of RESs is the uncertainty and intermittent
power output [15]. The uncertainty characteristic of RESs
could potentially bring negative influence on the damping
performance of power systems [16]. For handling the
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uncertainty on the power output of RESs additional devices
such as BESS is essential.

BESS can be used for storing and releasing energy to the
grid to provide frequency support [17]. As reported in [18],
BESS has been implemented to maintain the frequency in
Microgrid. Conversely, integration of BESS also influences
small signal stability performance of power systems. As
reported in [19], integration of BESS has a significant
influence on the dynamic behavior of the power systems.
Another research reported that by integrating BESS, the
damping performance of the system is increased [20].
Furthermore, the variation of BESS controller could also
introduce negative impact on the system regarding possible
interaction with other elements in the power system [21].
Considering the above fact, integration of RESs and BESS has
a significant influence on small signal stability performance of
power system. Hence, it is essential to deeply study the
significant impact of RESs and BESS. Moreover,
determination of a suitable and adequate model of BESS is
also important for capturing the dynamic behavior of BESS
which would influence small signal stability performance of
power systems.

IV. BESS MODEL FOR SMALL SIGNAL STABILITY

A. Steady state model (Type-1)

The steady state model of BESS can be assumed as an
active and reactive power injection/absorption considering all
four quadrants operations. Hence the energy variation of
BESS in a given period can be expressed as (14) [22].

disch
BESS (t) At

yr
Epss (1) = Eggss (1-1) -1, Pyiss (r)Ar

Eppgs (1) = Epggs (1) - (14)

In (14), Epess and At are the total energy stored in the BESS

disch

unit and the time duration. Piect and Pepg are the charge and

discharge power of the BESS unit. While #; and #. are
discharge and charge efficiencies of the BESS [22]. In this
model, the dynamics of BESS are neglected.

B.  Third order model (type-2)

Fig. 3 shows the block diagram of BESS comprises of
battery cells, converter, and the associated controller [23].
This is the dynamic model widely used for stability studies in
power system, on particular, frequency stability of power
system.

In this model, the battery cells are modelled into second
order time delay and gain while the converter and the
associated controller are modelled into the first-order model of
gain and time delay. Since the model is initially developed for
the frequency stability studies in power system, therefore, only
the active power controller is used for this model.
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Fig. 3. Block diagram of third order model of BESS [23].

C. Fifth order model (type-3)

The fifth order model of BESS was first introduced by C
Liu in 1995 [24]. The model consist of battery cells, converter
and power control dynamic model. The battery cell is modeled
into the second order model, while the converter dynamic is
modeled into first order model. Furthermore, the power
control dynamic is consist of active and reactive model and
each controller is presented as first order model with gain
constant. The main advantage of this model is the easy
implementation of the BESS control system than steady-state
or third order model. The active power controller of BESS can
be calculated using (15) [24]:

Kgp
+s5Tpp

(15)

BES —
1

In (15), Kzp and Tpp are the control loop gain and rotor speed
measurement device time constant respectively. The changes
in the reactive power of the converter can be determined by
(16) [24].

Ko
1+sTBQ

AQgps = AV, (16)

In (16), Kgp and Tpp are the control loop gain and terminal
voltage measurement device time constant respectively. The
firing angle of the converter can be calculated using (17) [24].

(17)

In (17), Kz and Ty are the converter loop gain and the firing
angle time delay constant respectively. Ky and Ipgss are used
to stabilize the BESS under constant current operation so that

BESS can release more power from batteries. The 0{; can be
described using (18) [24].
BES ]
Pprs

* -1
o =tan
In (18), Py and is active and reactive power output of

(18)

converter controller. The dynamic behavior of battery cells
can be calculated using (19) and (20) [24].

R
V = "BP g 19
BOC =T R Cpr  BES (19)
R
Voyy=——BL | 20
Bl 1+ Ry Cyr BES (20)

In (19) and (20), Rgp and Cpp are used to describe the self-
discharging of a battery. While Rp; and Cp; are the
representation of energy and voltage during charging and
discharging. Moreover, Vgoc and Vs, corresponded to battery
open-circuit voltage, and battery voltage [24]. Fig. 4
illustrates the block diagram of BESS dynamic model.

V. SIMULATION RESULTS

This section aims to investigate the impact of different
models of BESS on small signal stability considering high
RES integration. The analysis has been carried out using
MATLAB/SIMULINK. The multi-machine power system is
considered in this research. Two area system popularly known
as “Kundur” power system has been used. A modification has
been made to the system by replacing one synchronous
generator with 350 MW WECS aggregated model (wind farm)
and 350 MW PV plant. Furthermore 100 MW BESS has been
installed in load bus in area 1 as shown in Fig 5. Eigenvalue
analysis has been conducted to identify the impact of various
BESS models on the small signal stability of the system. Later,

" ’®g8}0 | Paess | |
| , \ | |
sign — K
| TBEsso r_____i/[_;rl | |
X
Wref%—_ Kap +¥+ | simdp +—0 | |
X
@ I+sT | | |
| + BP a1 2BESS Kp J:
s [ [FOT] ey [ 80 |
B
i e Fo—— | |
i ' | |
| o N
I r |
| Omesso I
Control Scheme Converter Battery

40



time-domain simulations are used to validate the results.
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Fig. 5. AC test system with renewable energy generation and BESS.

Table 1 shows the comparison of electromechanical mode
with different BESS models. In general, the BESS installation
results in improvement of the system damping. It is evident
from Table I that integration of BESS in load bus in area 1
makes the eigenvalues of local mode area 1 and inter-area
mode move towards the left half plane, indicating
enhancement of system damping and dynamic response. This
movement is due to additional power from BESS to the load
which reduces the stress on other synchronous machines.

Table 1. Eigenvalue comparison of the cases

Local mode Local mode Inter-area
| 2

Without BESS -0.28+6.58i -0.34+7.011 -0.03+3.03i

With Type-1 -0.29+6.291 -0.34+7.011 -0.04+3.031
BESS

With Type-2 -3.73+4.481 -0.34+7.011 -0.29+3.41i
BESS

With Type-3 -0.3+6.3i -0.34+7.011 -0.04+2.911
BESS

The damping performance of the system with different
BESS models is illustrated in Fig. 6. It can be observed that
Type-1 BESS could enhance the damping performance of the
system. It is also found that the damping performance of the
system with Type-2 BESS increase significantly from 0.0429
to 0.6397 for the local mode in area 1. Furthermore, the inter-
area mode is also enhanced significantly from 0.0105 to
0.0855. It is also observed that that Type-3 BESS could
enhance the damping performance of the system gradually
from 0.0429 to 0.0474 for the local mode in area 1. The
increased damping is also observed in inter-area mode (from
0.0429 to 0.0474) when fifth-order model BESS utilized in
bus load area 1. As can be seen from the results different
model of BESS give different results and it is important to
choose the most appropriate model for small signal stability
considering BESS capabilities and dynamics. It was also

observed that regardless of the model proximity of BESS play
an important role in the system dynamic indicated by the
damping performance on local mode area 2 remains in its
position.
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Fig. 6. Damping comparison of different scenarios.

To wvalidate the eigenvalue analysis, time domain
simulation has been carried out. A small perturbation is made
in the system by giving 0.05 pu step input of load. Fig 7 show
the rotor speed of generator 1. As observed from Fig. 7, a
system with type-2 BESS and type-3 BESS experienced lower
rotor speed oscillations than a system with the steady-state
BESS model. Table 2 illustrate the detailed overshoot and
settling time comparison of different scenarios. From table 2,
it can be seen that the system experienced the worst overshoot
and settling time when Type-1 BESS is considered.
Furthermore, When BESS is represented by Type-3 model, the
magnitude of the oscillation can be decreased (i.e. damped).

From the results, it is found that the different model of
BESS provides different results. It is evident that the dynamic
presentation of BESS influences the system dynamic.
Furthermore, Type-2 BESS only considers active power and
this model usually used for load frequency control study [23].
Moreover, the advantages of fifth order model is easy to add
and modify the controller compare to the third order model.
Hence, it is suggested that fifth order model is more suitable
for small signal stability study [25].
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Fig. 7. The oscillatory condition of rotor speed G1.



Table 2. Detailed features of overshoot and settling time G1

Steady Third Fifth order
state model order model
model
Overshoot -0.002412 -0.001192 -0.00206
Settling time >40 19.53 >40
VI. CONCLUSIONS

In this paper, the various BESS system models and their
impacts on small signal stability performance of power system
are investigated. Three different BESS models (Type-1, Type-
2, and Type-3) are integrated into the test system to examine
and compare the effect on the system dynamic performance.
From the simulation results, it is found that the integration of
BESS at load bus could enhance the damping performance of
the system. It is also found that different dynamic
representation has a different impact on the small signal
stability performance of power system. Hence, for small signal
stability study, the authors suggested to utilize Type-3 BESS
rather than Type-2 BESS due to more detail representation.

The time domain simulation is used to validate the
eigenvalue analysis results. Both the time domain and
eigenvalue analysis results are agreeing on each other. Further
research is needed to investigate more detail about what
dynamic of Type-3 BESS is influenced in the system
performance. Utilizing additional power oscillation damping
(POD) controller in BESS for enhancing the small signal
stability performance of power system can also considered as
further research.
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