
IET Generation, Transmission & Distribution

Research Article

Identification of modal interaction and small
signal stability in autonomous microgrid
operation

ISSN 1751-8687
Received on 2nd August 2017
Accepted on 4th August 2017
E-First on 13th November 2017
doi: 10.1049/iet-gtd.2017.1219
www.ietdl.org

Awan Uji Krismanto1,2, Nadarajah Mithulananthan1 
1School of ITEE, University of Queensland, Brisbane, Australia
2Department of Electrical Engineering, National Institute of Technology, Malang, Indonesia

 E-mail: mithulan@itee.uq.edu.au

Abstract: The detailed models of renewable energy resources based distributed generation (DG) unit, namely, wind energy
conversion system, photovoltaic and diesel engine are presented in this study. Combination of different DG units in three
microgrid (MG) structures is considered to investigate small signal stability and possible interaction between sensitive modes,
particularly in autonomous mode of MG operation. Evaluation of oscillatory condition suggested that gain controller variation
significantly influenced MG stability and system dynamic response. Moreover, since modal interaction potentially occurred due
to gain change, it is necessary to identify the interaction accurately to ensure stable MG operation. The conventional
identification method of eigen-interaction is conducted by observing the movements of engaged eigenvalues. However, the
eigen-trajectories method is less sensitive to identify the occurrence of weak interaction. To provide more sensitive identification
method, cross-participation factor (CPF) and modal interaction index (MII) analysis are proposed. Deviation of eigen-trajectories
after approaching a particular interaction point, higher values of CPF and MII confirmed the occurrence of interactions. The
presented works contribute for MGs gain setting consideration and proposing novel methodologies in identifying modal
interaction.

1 Introduction
Power generation based on renewable energy resources (RES) is
expected to play a significant role in future electric grid due to its
advantages in lowering carbon emission, reducing expansion cost
and enhancing power quality [1]. However, uncertainties of RES
have been a major concern to ensure stable operation and reliability
of electricity supply of individual distributed generation (DG).
Hence, it is necessary to combine a group of DG units into a single
coordinated and controlled power system known as microgrid
(MG). MG system allows seamless connection of more RES
integration. Moreover, it enhances the power quality and continuity
of electricity service for remote area customers.

Even though MG brings advantages for injecting additional
power in the existing grid, it may introduce new challenges in
particular during islanding operation. Small load change, feedback
controller and a limited amount of DG units physical inertia
potentially lead to instability concerns [2, 3]. In conventional
power system with strong inertia features, gain variations do not
introduce significant impact on equilibrium point and stability [4].
Conversely, MG with its less inertia characteristic is very
susceptible to small perturbation on system parameter involving
gain controller. Hence, it is necessary to provide a comprehensive
study of oscillatory conditions in MG due to gain variations to
ensure stable operation of MG [5–7]. Moreover, sophisticated MG
control algorithm introduces more non-linear effect on modal
behaviour which potentially leads to the occurrence of modal
interaction [8]. The interaction may cause more oscillatory and
indeed instability situations [4, 9, 10]. Hence, it is important to
monitor the eigen-interactions to maintain the MG stability.

In this paper, a comprehensive MG model of three different
configurations is investigated to provide a complete understanding
of small signal stability performance and modal interaction.
Commonly, eigen-trajectories monitoring was implemented to
confirm the modal interaction [4, 9, 11]. However, the method is
not sensitive to weak interaction. To enhance the previous
identification process, two analytical procedures comprising of
cross-participation factor (CPF) and modal interaction index (MII)
methods are proposed. The remainder of this paper is organised as
follows. MG structures and their controllers considered in this

research are presented in Section 2. Section 3 describes procedures
for small signal stability and modal interaction analysis. The
simulation results and discussions of MG small signal stability and
modal interaction are provided in Section 4. Conclusions and
contributions of this paper are highlighted in Section 5.

2 MG model
Fig. 1 represents block diagrams of the investigated MG systems.
Three MG structures comprising of wind energy conversion system
(WECS), photovoltaic (PV) and diesel engine (DE) generator and
their controllers are considered. Two-stage converters of DC/DC
and DC/AC are implemented to form PV-based DG. While to
provide full power conversion from available wind resource, fully
rated WECS type incorporating back-to-back AC/DC/AC inverter
is selected. DE is integrated to ensure power balance during
shortfall power from wind and sun. 

Since all DG units are operated in its individual reference
frame, it is necessary to synchronise all of them into a common
reference frame. Synchronisation of DGs is realised using
transformation matrices of Tc, Tcδ, Tv and Tvδ from [3]. In this
paper, DE is considered as common reference frame hence output
state variables of PV, and WECS DGs have to be translated into
DE reference frame. Uppercase and lowercase indices correspond
to the positions of state variables in common and individual
reference frames, respectively, while zero indices are associated
with the initial condition of the state variables.

2.1 Line impedance and load model

The connection between DGs local and point of common coupling
(PCC) bus are facilitated by distribution lines which can be
modelled as a series RL impedance (Rli and Lli). State equations of
lines currents (ilikD, ilikQ) is given by (see (1)) where
Δxline = ΔilikD ΔilikQ

T, ΔvblinekDQ = ΔvbkD ΔvbkQ
T, ΔvpccDQ

= ΔvpccD ΔvpccQ
T
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Alinek =
−Rlik/Llik −ω0

ω0 −Rlik/Llik
, Blinek =

1/Llik 0
0 1/Llik

,

Blinekpcc =
−1/Llik 0

0 −1/Llik
, BlinekDE =

Ilik0Q

−Ilik0D
, k = 1, 2, 3

The load impedance (Rlo and Llo) is considered to model a central
load. State equation of the load currents (iloD, iloQ) is given by

Δẋlo = AloΔxlo + BloΔvpccDQ + BloDEΔωref (2)

where

Δxlo = ΔiloD ΔiloQ
T, Alo =

−Rlo/Llo ω0

−ω0 −Rlo/Llo
, Blo =

−1/Llo 0
0 −1/Llo

, BloDE =
IloQ

−IloD

The connection between state equations of lines, load currents and
bus voltages are facilitated by applying a virtual resistance (RN) in
the corresponding buses. Hence, estimation of local and PCC bus
voltages can be accurately determined as

ΔvbkDQ = RN ΔiokDQ − RN ΔilikDQ (3)

ΔvpccDQ = RN ΔilikDQ − RN ΔiloDQ (4)

where iokDQ represents the output current of kth DG unit in D and
Q reference frame.

2.2 Diesel engine generator model

A dynamic model of a synchronous generator in DE-based DG unit
is presented in the form of a non-reduced order model involving
dynamics at stator, rotor and damper winding. State variables of
DE are represented by two q-axis (ikq1, ikq2) and one d-axis (ikd)
rotor currents, one d–q-axis (isd, isq) stator currents and excitation
current (ifd). Input variables are mechanical torque (TMde), field
winding voltage (vfd) and stator side terminal voltage (vsd, vsq). It is
assumed that stator voltage is similar to local bus voltage (vbD,
vbQ). The state-space model is then completed with mechanical
equations of the turbine and electromagnetic torque equation. DE is
considered as a standard reference frame which is responsible for
providing a reference for other DGs. Output variables of the DE
are stator current (isD, isQ) and reference angular frequency (ωref).
Development of detailed DE state-space model is derived from [12,
13]. Linearised state-space model of DE is given by

ΔẋDE = ADEΔxDE + BDEΔuDE + BvDEΔvb3

ΔisD

ΔisQ

Δωref

=
CDE1

CDE2
ΔxDE

(5)

where
ΔxDE = Δisd Δisq Δi f d Δikd Δikq1 Δikq2 Δωref ΔδDE

T,
ΔuDE = Δv f d TMDE

T, Δvb3 = Δvb3d Δvb3q
T

BvDE =
1/Lli3 0

0 1/Lli3
, CDE1 = 1 0 01 × 6

0 1 01 × 6
, CDE2 =

01 × 6 1 0

Substitution of (3) into (5) represents the connection between this
DG unit and line impedance. Hence, state equation of DE can be
rewritten as

ΔẋDE = ADE + RNBvDECDE1 ΔxDE + BDEΔuDE + BDElineΔxline
(6)

where BDEline = RN 08 × 4 BvDE .

2.3 Two-stage PV model

Two-stage PV system mainly consists of PV array, DC/DC and
DC/AC power converter. Regulation of fluctuated DC voltage from
PV array is achieved by controlling the duty cycle of DC/DC
converter. The regulated DC voltage is then fed to the DC/AC
voltage source inverter (VSI) to generate a stable output power.
Averaged model of DC/DC considering state variables of input
current (ib), output current (is), output DC/DC voltage (vb) and DC
link capacitor voltage (vdc) are derived from [14]. A general
mathematic model of DC/AC converter is derived from [15]. State
variables of complete DC/AC inverter comprise of DC side current
(is), DC side voltage (vdc), VSI current (iid, iiq), output current (iod,
ioq) and output voltage (vod, voq). Interface low-pass filter and
coupling impedance are then attached to the system to mitigate
high-frequency components.

In general, control algorithms in RES based DGs comprise of
input and grid side power electronic devices controllers as depicted
in Fig. 2. Proposed control scheme of input side DC/DC boost
converter is responsible for ensuring a stable DC link voltage as
shown in Fig. 2a. The reference voltage is compared with the
measured DC link voltage and obtained error is then regulated by
proportional–integral (PI) controller to generate duty cycle (d)
control signal for DC/DC converter. State equation of input side
controller is given by

Fig. 1  Configurations of investigated MG architectures
(a) 2-WECS 1-DE MG, (b) 2-PV 1-DE MG, (c) Hybrid WECS PV DE MG

 

Δẋline = AlineΔxline + BlineΔvblineDQ + Bline+_pccΔvpccDQ + BlineDEΔωref

Δxline = +I6 × 6 Δxline
(1)
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Δ ρ̇pv = 0 Δρpv + 1 −1
Δvdc_ref

Δvdc

Δdpv = Kipv Δρpv + Kppv −Kppv
Δvdc_ref

Δvdc

(7)

where Δρpv represents auxiliary variable of DC/DC controller.
While Δvdc_ref and Δdpv represent the DC link reference voltage
and DC/DC converter duty cycles, respectively. 

The controller of grid side DC/AC inverter as depicted in
Fig. 2c is divided into three parts: power droop, voltage and current
controller. Power droop controller is mainly responsible for
realising voltage regulation and power sharing scheme. Voltage
controller loop is in charge of improving dynamic response and
providing reference values for the current controller loop. Finally,
the current controller generates control signals for DC/AC inverter.

2.3.1 Power droop controller: Power droop controller involves
power calculation, low-pass filter and droop control blocks. Power
calculation block calculates instantaneous active and reactive
power from measured output current and voltage. To provide
accurate power gain setting, first-order low-pass filter is employed
to attenuate high-frequency components from DG output power.
Power droop controller emulates governor operation in a
synchronous machine to adjust the amount of active and reactive
power injection from the corresponded DG. System frequency
(Δω) and active power sharing are set by real power droop gain
(np) while d-axis voltage reference (Δv*d) and reactive power

sharing are determined by reactive power droop gain (nq) as given
by

ω = ωn − npΔp

vod
∗ = Vn − nqΔq

(8)

where (ωn) and (Vn) represent nominal values of angular frequency
and voltage, respectively.

Phase angle (δ) is determined from integral operation of the
angular frequency (ω). q-axis voltage reference is assumed to be
zero. Hence, state-space equations of power droop controller are
presented by (see (9)) 

2.3.2 Voltage controller: State equation of voltage controller is
given by (see (10)) where Δϕdq represents the auxiliary variables in
voltage controller. Δv*dqrefers to the reference value of output
voltage. Output variables from the voltage controller (Δi*invd,
Δi*invq) are then applied to the inner current controller as reference
values.

2.3.3 Current controller: The output of the current controller is
modulation indices (m*d, m*q) as a control signal for DC/AC
inverter. Current controller state equations are given by

Fig. 2  Generator side control
(a) DC/DC converter control of PV system, (b) FOC of WECS, (c) Grid side DC/AC inverter control for PV and WECS

 

Δδ
⋅

Δp⋅

Δq⋅
=

0 0 0
0 −ωc 0
0 0 −ωc

Δδ
Δp
Δq

+
0 0 0 0

ωcIod ωcIoq ωcVod ωcVoq

ωcIoq −ωcIod −ωcVoq ωcVod

Δvod

Δvoq

Δiod

Δioq

Δω
Δvd

∗ =
0 −nppv 0
0 0 −nqpv

Δδ
Δp
Δq

(9)
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Δβd
⋅

Δβq
⋅ = 0

Δβd

Δβq
+ 1 0 −1 0

0 1 0 −1

Δiinvd
∗

Δiinvq
∗

Δiinvd

Δiinvq

Δmd
∗

Δmq
∗ =

Kic 0
0 Kic

Δβd

Δβq
+

Kpc 0 −Kpc −ωnL f

0 Kpc ωnL f −Kpc

Δiinvd
∗

Δiinvq
∗

Δiinvd

Δiinvq
(11)

where Δβd and Δβq represent auxiliary variables of the current
controller.

A complete model of PV system is determined by combining
state equations of DC/DC and DC/AC in [14, 15] and state
equations of controllers in (7), (9), (10) and (11). Linearised state-
space model of two-stage PV is given by (see (12)) where

upv = Δvg Δvdc
∗ T, Δvb1dq = Δvb1d Δvb1q

T, Bvpv =
1/Li2 0

0 1/Li2
, Cpv = 02 × 16 I2 × 2

Output currents of PV system have to be aligned with common
reference frame as stated by

ΔiopvDQ = CpvDQΔxpv (13)

where CpvDQ = 02 × 5 Tcδpv 02 × 10 Tcpv .
Input variables of the proposed PV model in (12) are

represented by the input voltage of PV array, reference DC link
voltage (Δv*dc), local bus voltages and Δωref. Substitution of
(3)and (13) into (12) provide complete PV state-space model.
Hence, the state-space PV model in (12) can be further modified as

Δẋpv = Apv + RNBvpvCpvDQ Δxpv + BpvΔupv
+ BpvlineΔxline + BpvDEΔxDE

(14)

where Bpvline = RN Bvpv 018 × 4 , Bpvde+ = BvpvCde2.

2.4 WECS model

State-space model of fully rated WECS mainly consists of a wind
turbine, induction generator, back-to-back AC/DC/AC inverter and
associated controllers. State-space model of AC/DC/AC is
constructed by integrating AC/DC rectifier and DC/AC inverter
model from [16, 17] and [15], respectively. Induction generator

model is derived from [12, 13]. State variables of the induction
machine are comprising of the stator (isd, isq) and rotor current (ird,
irq). While input variables are stator (vsd, vsq) and rotor (vrd, vrq)
voltage. The model is completed by mechanical equations and
electromagnetic torque equation.

Flux oriented control (FOC) method as depicted in Fig. 2b was
applied to the generator side AC/DC rectifier [18]. The control
method supports variable speed operation capability of induction
generator and maintains the stable condition of the terminal
generator and DC link voltage. In this paper, DC link and generator
terminal voltage are controlled by adjusting switching action of
AC/DC rectifier. Reference of DC link voltage is determined from
d-axis stator voltage reference and nominal modulation index of
AC/DC rectifier which can be obtained from this following
equation [19]:

VDC_re f = 6Vds_ref
md0_rec

(15)

The difference between the reference and measured DC link
voltage is regulated through PI controller. The output of this
controller yield reference of d-axis stator current (i*ds). State
equation of FOC can be stated as

Δγ⋅ = 0 Δγ + −1 Δvdcout + 6
md0

Δvds_ref

Δids
∗ = Ki1 Δγ + −Kp1 Δvdcout + Kp1 6

md0
Δvds_ref

(16)

q-axis reference current (i*qs) is obtained based on a torque-speed
characteristic curve. Electromagnetic torque equation can be
simplified by assuming that rotor flux of induction generator is
aligned with the direct axis (ψqr = 0) and optimal operation of a
wind turbine is attained [18]. The linearised q-axis reference
current can be calculated as

Δiqs
∗ = 2ωr0KoptXrr

id0s
∗ Xm

2 Δωr + Ki1Koptωr0
2 Xrr

id0s
∗ 2Xm

2 Δγ

− Kp1Koptωr0
2 Xrr

id0s
∗ 2Xm

2 Δvdcout + Kp1Koptωr0
2 Xrr 6

id0s
∗ 2Xm

2 md0
Δvds_ref

(17)

where Xrr and Xm constitute rotor and mutual inductance of
generator, respectively.

Obtained reference currents are compared with the measured q-
axis stator current for generating a control signal of AC/DC

Δφ⋅ d

Δφ⋅ q
= 0

Δφd

Δφq
+ 1 0 −1 0

0 1 0 1

Δvod
∗

Δvoq
∗

Δvod

Δvoq

Δiinvd
∗

Δiinvq
∗ =

Kiv 0
0 Kiv

Δφd

Δφq
+

Kpv 0 −Kpv −ωnC f G 0
0 Kpv ωnC f −Kpv 0 G

Δvod
∗

Δvoq
∗

Δvod

Δvoq

Δiod

Δioq

(10)

Δẋpv = ApvΔxpv + BpvΔupv + BvpvΔvb2 + BωpvΔωref

Δxpv = Δib Δis Δvb Δvdc Δρpv Δδpv Δppv Δqpv Δφpvd Δφpvq

Δβpvd Δβpvq Δiid Δiiq Δvod Δvoq Δiod Δioq
T

Δiopvdq = CpvΔxpv

(12)
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converter (md_rec, mq_rec). By integrating (16) and (17), state
equations of FOC are given by (see (18)) where Δρdq represent
auxiliary variable in FOC controller.

B1FOC =

−1 0 Ki1 −Kp1 0

0 −1 Ki1Koptωr0
2 Xrr

id0s
∗ 2Xm

2 − Kp1Koptωr0
2 Xrr

id0s
∗ 2Xm

2

2ωr0
2 KoptXrr

id0s
∗ 2Xm

2

,

BFOC2 =

Kp1 6
md0

Kp1Koptωr0
2 Xrr 6

id0s
∗ 2Xm

2 md0

DFOC1 =
−Kp2 −ωL Ki1 −Kp1Kp2

ωL −Kp2
Ki1Kp2Koptωr0

2 Xrr

id0s
∗ 2Xm

2 − Kp1Kp2Koptωr0
2 Xrr

id0s
∗ 2Xm

2

,

DFOC2 =
0

2ωr0Kp2KoptXrr

id0s
∗ 2Xm

2
, DFOC3 =

Ki1Kp2 6
md0

Kp1Kp2Koptωr0
2 Xrr 6

id0s
∗ 2Xm

2 md0

Similar control algorithm as grid side DC/AC inverter in two-stage
PV as depicted in Fig. 2c was adopted to develop the grid side
inverter control in WECS. Complete state-space model for fully
rated converter WECS is then derived from the integration of
induction generator model in [12, 13], back-to-back inverter model
in [15–17], FOC in (18) and grid side inverter control in (9), (10)
and (11). Linearised state-space equations of WECS presented as
given by

Δẋw = AwΔxw + BwΔuw + BvwΔvb1 + BwDEΔωref (19)

where (see equation below)

Δvb1 = Δvb1d Δvb1q
T, Bvw =

1/Li1 0
0 1/Li1

, Cw =

02 × 26 I2 × 2

Input state variables of WECS are stator (Δvsdq) and rotor (Δvrdq)
voltage, mechanical input torque (ΔTw) and FOC reference stator
voltage (Δv*sd). Output current of this DG in common reference
frame is given by

ΔiowDQ = CwDQΔxw (20)

where CwDQ = 02 × 13 Tcδw 02 × 12 Tcw .
Similar procedure as in PV system is conducted to determine

the connection between WECS, DE and line impedance. The
complete state-space model of WECS can be stated by

Δẋw = Aw + RNBvwCwDQ Δxw + BwΔuw + BwlineΔxline
+ BwDEΔxde

(21)

where Bwline = RN 025 × 2 Bvw 025 × 2 , Bwde = BvwCde2.

2.5 Connection of lines impedance to DG units and central
load

Input variables of state-space model in (1) indicate the connection
of the lines to the output of DG units and central load. By

substituting (3) and (4) to (1), complete state-space model of line
impedance is given by

Δẋline = Aline + RN Bline_pccClilo − Bline

Δxline + BlipvΔxpv + Bliwxw + BlineDEΔxde + BlineloΔxload
(22)

where (see equation below)

2.6 Connection of load to DG units and line impedances

Complete equation of central load is determined by substituting (4)
to (2) as stated by

Δẋlo+ = AloΔxlo + BloliΔxline + BloDEClDE2ΔxDE (23)

where Bloli = RNBloClilo, BloDE = ClDE2ΔxDE.

2.7 Comprehensive state-space model of MG

Three MG structures that consist of two RES-based DGs and one
DE are considered. Full state-space model of the studied MG is
derived by combining state equations of DGs, lines and load. In
general, linearised state-space model of MG is given by

ΔẋMG = AMGΔxMG + BMGΔuMG (24)

where ΔxMG = ΔxDG1 ΔxDG2 ΔxDE Δxline Δxload
T, ΔuMG

= ΔuDG1 ΔuDG2 ΔuDE
T

BMG =
BDG1 0 0

0 BDG2 0
0 0 BDE

,

AMG =

A11 0 BDG1DE BDG1line 0
0 A22 BDG2DE BDG2line 0
0 0 A33 BDEline 0

BliDG1 BliDG2 BlineDE A44 Blilo

0 0 BloDE Blilo A55

A11 = ADG1 + RNBvDG1CDG1DQ

A22 = ADG2 + RNBvDG2CDG2DQ

A33 = ADE + RNBvDECDE1

A44 = Aline + RN Bline_pccClilo − Bline

A55 = Alo

where DG1 and DG2 notations represent RES-based DGs as
depicted in Fig. 1.

3 Small signal stability analysis and identification
of modal interaction
3.1 Small signal stability

Eigen-properties of state matrix reveal valuable information
regarding system stability after being subjected to a small
perturbation. The eigenvalues of state matrix provide an accurate
estimation of system stability performance. Complex eigenvalues
(λ) indicate oscillatory frequency (f) and damping ratio (ζ) of
critical modes as follows:

λi = σi ± jωi

f = ωi/2π

ζ = − σi/ σi
2 + ωi

2

(25)
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3.2 Identification of modal interaction

Interaction among eigenvalues might emerge in a stressed power
system under heavy loading or small system damping conditions
[20]. In those circumstances, some sensitive modes might be
situated firmly and potentially interact. As a result, deterioration of
system damping indicated by more oscillatory condition possibly
happen. In this paper, three analytical methods are used to identify
and confirm the occurrence of modal interaction which could be
one of the mechanisms to instability.

3.2.1 Observation of eigen-trajectories: Modal interaction is
characterised by a particular eigen-trajectories of the engaged
modes. The simplest procedure to identify the occurrence of
interaction is by monitoring the eigenvalues movement. Primarily,
two or more interacting modes were approaching close together.
When the interacting modes situated around an interaction point,
the corresponded modes are extremely sensitive to parameter
variations or disturbance. After approaching interaction point, the
involved modes departed quickly and deviate significantly [4, 9,
11, 21], and result in deterioration of system stability.

3.2.2 Cross-participation factor: Participation factor
corresponded to the relative contribution of the kth state variables
in a particular ith eigenvalues. Let participation factor of kth state
variables in ith modes is denoted by pki and defined as

pki = ϕkiψki (26)

where ϕki and ψki, respectively, represent the kth element on the
right eigenvector and left eigenvector in ith modes.

The interaction among neighbouring eigenvalues can be
recognised by observing contribution of state variables in the
engaged modes [10]. The interaction between two modes is
expected when CPF is identified. CPF is defined as the
involvement of states variables in both of the interacting
eigenvalues [8]. The occurrence of interaction is confirmed when
at least one state variable participates in each of the interacting
modes. Far from the interaction point, the cross-participation
values are relatively small. When the engaged modes moved closer
and approached the interaction point, the CPT increased gradually
and reached the highest values at the nearest distance around the

interaction point. The CPT would decrease significantly as the
interacting modes were leaving the resonance point.

3.2.3 Modal interaction index (MII): Activity and contribution of
state variables xk in the dynamic response of ith mode can be
represented by the kth element of right (ϕi) and left (ψi)
eigenvectors, respectively [22]. Therefore, dynamic response of
state variables is stated in this following equation [22]:

x t = ∑
i = 1

n
ϕiψiΔxi 0 eλit (27)

For a particular state variable of xk, the dynamic response of the
corresponded modes is given by

xk t = ∑
i = 1

n
ϕiψiΔxki 0 eλit (28)

According to (28), more oscillatory condition as a consequence of
modal interaction is reflected by increasing values of right and left
eigenvector product. A novel index namely MII is considered to
provide more accurate identification method for modal interaction.
The proposed index identifies occurrence and quantifies the extent
of interaction. MII between two engaged modes of λi and λj is
characterised by eigenvector product as

MII = ψiϕj + ψ jϕi (29)

Higher values of MII indicated the occurrence of stronger modal
interaction. MII can vary between 0 and MIImax denoting the
condition of modal interaction. In the normalised form, the
maximum value of left and right eigenvector product is one. Since
the proposed index comprising of two parts product of left and
right eigenvector, MIImax is decided equal to 1. This situation
occurred when two eigenvalues exactly coincided in one
interaction point. The normalised form of MII can be stated in the
following equation:

Δρ⋅ d

Δρ⋅ q
= 0 0

0 0
Δρd

Δρq
+ B1FOC

ids

iqs

Δγ
Δvdc

Δω

+ B2FOC Δvds
∗

Δmd_rec

Δmq_rec
=

Ki2 0
0 Ki2

Δρd

Δρq
+ DFOC1

Δids
∗

Δiqs
∗

Δids

Δiqs

+ DFOC2 Δωr + DFOC3 Δvds
∗

(18)

Δxw = Δisd Δisq Δird Δirq Δωr Δγ Δρd Δρq

Δiid Δiiq Δvdin Δvqin Δvdcout Δδ Δp Δq Δφd Δφq

Δβd Δβq Δis Δvdc Δiinvd Δiinvq Δvod Δvoq Δiod Δioq
T

Δiodq = CwΔxw, Δuw = Δvsd Δvsq Δvrd Δvrq ΔTw Δvsd
∗ T

Clilo = 1 0 1 0 1 0
0 1 0 1 0 1 , Blipv = RN

Bli1

04 × 2
Cpv,

Bliw = RN

02 × 2

Bli2

02 × 2

Cw, BlineDE =
04 × 2

Bli3
Cde1 + BlineDECde2+, Blilo = RNBline_pcc
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Norm_MII = ψiϕj+ + ψ jϕi

∑
k = 1

n
ψk

2 ∑
k = 1

n
ϕk

2 (30)

where Norm_MII and n are the normalised MII and the number of
state variables, respectively.

4 Results and discussions
4.1 Small signal stability

4.1.1 Eigenvalues analysis: A complete state-space model of
three MG architectures as depicted in Fig. 1 is considered. In each
MG structure, 5 MW load is supplied by two RES-based DG unit
and DE. The MG1 architecture was represented by a 72-order
model. While, MG2 and MG2 structures were represented by 52-
and 62-order models, respectively. Parameters of WECS and DE
were derived from [19, 12], respectively. Furthermore, power
electronic devices, line impedances and load parameters are
presented in Appendix.

This research is focused on sensitive modes which significantly
influenced MG stability. The critical eigenvalues in the frequency
range of 1–3 Hz are mainly originated from power sharing
controller. It was assumed that modes associated with DE are
asymptotically stable and did not contribute to the stability, hence
only critical modes from WECS- and PV-based DGs were
considered. Table 1 represents characteristics of the investigated
modes of each MG structure. According to participation factor
analysis, active power, phase angle and reactive power state
variables from WECS and PV participated in those sensitive
modes. λ50,51 and λ52,53 corresponded to sensitive modes from
MG1. While the dynamic performance of MG2 and MG3 is
represented by λ36,37, λ38,39 and λ42,43, λ45,46, respectively. It was
observed that based on the eigenvalues analysis, overall critical
modes from MG2 had much better damping ratio than other two
MGs 

Fig. 3 represents trajectories of the sensitive eigenvalues under
variation of active power droop gain (np) and reactive power droop
gain (nq). As np decreased from 1.57 × 10−5 to 1.05 × 10−6, the
modes with higher damping ratio from MG2(a2) and MG3(a3)
moved to the right, implies a deterioration of dynamic response.

Moreover, only slight stability improvement was monitored in
more damped modes from MG1(a1). Enhancement of stability was
observed in MG2 and MG3 indicated by the left movement of
eigenvalues of λ38,39 and λ45,46, respectively. However, a
significant decrease of damping was observed in modes λ52,53.
Furthermore, oscillatory frequency of λ45,46 drastically reduced
from 7.408 rad/s or 1.17 Hz to 4.01 rad/s or 0.63 Hz. A similar
trend was observed in the frequency of modes λ50,51 which
decreased significantly from 16.035 rad/s or 2.55 Hz to 4.36 rad/s
or 0.69 Hz. On the other hand, the frequency of both sensitive
modes in MG2 did not change significantly around 6.303 rad/s or
1.01 Hz as a result of gain variation. 

As reactive power droop gain (nq) was varied in the range of
0.0005–0.00001, enhancement of dynamic response was
monitored, designated by left movement of λ38,39 and λ45,46 as
depicted in Fig. 4b. While, the slight left motion of λ42,43 as
presented in Fig. 4c was observed during this variation. It was also
monitored that deterioration of dynamic response occurred in
MG2, indicated by the right movement of λ36,37 in Fig. 4b.
Moreover, Fig. 4a indicated that both of sensitive modes from
MG1 were relatively fixed in their positions. Only small left
movement of modes of λ50,51 was monitored under nq variation. 

4.1.2 Time-domain simulation: The eigenvalue analyses were
validated through time-domain simulations in MATLAB Simulink
environment. To excite and investigate dynamic response of the
observed modes, a small perturbation of input variables associated
with a voltage reference of WECS (v*ds) and PV (v*dc) controllers
were applied.

Fig. 5 represents dynamic response of RES-based DGs active
power in three MG architectures at various np setting. In MG1, as
depicted in Fig. 5a, the output power of WECS 1 and WECS 2 has
a similar dynamic response. Primarily, the output power from
WECS 1 and WECS oscillated in 1.67 and 1.43 Hz, respectively.
According to previous modal analysis, the eigenvalues from WECS
1 had higher damping ratio than eigenvalues from WECS 2. Hence,
the oscillatory condition of WECS 1 subsided immediately, and the
corresponded modes started to oscillate in the range frequency of
1.43 Hz. A lower oscillatory state in MG2 was visualised in
Fig. 5b. The corresponded active power from PV1 and PV2 DG

Table 1 Sensitive eigenvalues in MG architectures
MG architectures Sensitive modes, λ Frequency, Hz Damping, ζ Participation factor
MG1: 2-WECS 1-DE MG
WECS-1 (λ50,51) −2.88 ± i11.35 1.81 24.59% PWECS1, δWECS1, QWECS1
WECS-2 (λ52,53) −0.43 ± i9.08 1.44 4.73% PWECS2, δWECS2, QWECS2
MG2: 2-PV 1-DE MG
PV-1 (λ36,37) −3.98 ± i4.61 0.73 65.34% PPV1, δPV1, QPV1, PPV2, δPV2, QPV2
PV-2 (λ38,39) −1.41 ± i4.41 0.70 30.45% PPV2, δPV2, QPV2, PPV1, δPV1, QPV1
MG3: WECS, PV, DE MG
WECS (λ42,43) −1.67 ± i8,51 1.36 19.25% PWECS, δWECS, QWECS, PPV, δPV, QPV
PV (λ45,46) −0.49 ± 10.44 1.66 4.71% PPV, δPV, QPV, PWECS, δWECS, QWECS

 

Fig. 3  Trajectories of sensitive modes when np varied from 1.57 × 10−5 to 1.05 × 10−6 in
(a) MG1: 2-WECS 1-DE MG, (b) MG2: 2-PV 1-DE MG, (c) MG3: hybrid WECS PV DE MG
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unit were oscillating at the frequency of 0.76 and 0.71 Hz,
respectively. 

Fig. 5c represents dynamic response of MG3. The output power
of WECS and PV had an oscillatory frequency of 1.701 and 1.17 
Hz, respectively. Primarily, WECS active power oscillated at the
frequency of 1.67 Hz and PV power output oscillated at 1.1 Hz.
Since the dynamic response of WECS damped instantaneously,
both of the observed modes started to oscillate in the frequency
around 1.1 Hz. This condition persisted until a stable operating
point was achieved. Furthermore, it was noticeable that in hybrid
system of MG3, WECS was characterised by less damped dynamic
response than PV-based DG unit.

4.2 Identification of modal interaction

The following session provides identification procedures of modal
interaction which potentially emerges due to non-linear behaviour
of sensitive eigenvalues under a stressed condition, small
disturbance and parameter variations. It could be a significant
concern since it may cause a deterioration of system stability. In his
paper, three analytical methods: observation of eigen-trajectories,
CPT and MII are proposed to identify and confirm the event of
eigen-interaction.

4.2.1 Observation of eigen-trajectories: Modal interaction is
characterised by a typical eigenvalues movements. Hence,
recognition of the interaction event can be approached through
observation of eigenvalues trajectories. The engaged modes are
approaching each other and coinciding in a particular point when
an interaction took place. Around an interaction point, the
interacting modes were very sensitive to parameter variations.
After being aligned, the involved modes departed oppositely and
may diverge in damping. Indeed, one of the eigenvalues potentially
become unstable as a consequence of passing near an intense
interaction [9].

One of the features in MG is a complex control system of each
DGs. Tuning procedures of the gain controller of DG unit
significantly influenced the behaviour of the sensitive eigenvalues.
As a result, modal interaction possibly happened due to the
variations. In this paper, proportional gain control of voltage (Kpv)
and current controllers (Kpc) of RES-based DGs in each MG

structure were varied to investigate possible occurrence of modal
interaction. Fig. 6 depicts trajectories of the investigated modes
under variation of np in a different setting of Kpv and Kpc. In
Fig. 6a, it was monitored that at various gain setting, the eigen-
trajectories did not deviate significantly. Hence, it can be
considered only weak or negligible modal interaction event
occurred in MG1. The occurrence of modal interactions in MG2
and MG3 were confirmed as depicted in Figs. 6b and c,
respectively. It was shown that under a similar range of np
variation, different setting of Kpv and Kpc introduced a significant
impact on the eigen-trajectories. In both MGs, primarily, two
interacting eigenvalues came closer together and interacted when
Kpv and Kpc in MG2 and MG3 were tuned at 0.355 and 1.04,
respectively. Around an interaction point, as marked by a circle,
those two modes diverged significantly. One of the engaged modes
departed to the left while the other one moved toward the right
side, indicated enhancement and deterioration of system stability in
those respective modes. 

4.2.2 Cross-participation factor (CPF): Participation factor
indicates activity and contribution of state variables in distinct
eigenvalues. Hence, the modal interaction can be further confirmed
through analysis of state variables contributions in the engaged
modes. The interaction between two eigenvalues was expected
when one or more state variables participated in both of engaged
modes which can be defined as CPF.

Fig. 7 represents participation factor of the investigated modes
in three MG structures. As depicted in Fig. 7a, CPF was not
monitored in both modes. State variables from DG-1 only
contributed in the modes-1 while state variables from DG-2
participated in the modes-2. Hence, it can be considered that modal
interaction did not happen in MG1. This observation was
confirmed by eigen-trajectories in Fig. 6a. CPF were identified in
MG2 and MG3structures as shown in Figs. 7b and c, respectively.
Away from the interaction point, CPF were relatively small. This
situation confirmed an occurrence of weak interaction. When the
engaged modes moved closer and approached an interaction point,
CPF increased gradually and reached the highest values at the
nearest distance around an interaction point. From the observed
CPF values, moreover, it was monitored that the interaction event

Fig. 4  Trajectories of sensitive modes when nq varied from 0.0005 to 0.00001 in
(a) MG1: 2-WECS 1-DE MG, (b) MG2: 2-PV 1-DE MG, (c) MG3: hybrid WECS PV DE MG

 

Fig. 5  Active power of RES-based DGs at various setting of active droop gain npw  in
(a) MG1: 2-WECS 1-DE MG, (b) MG2: 2-PV 1-DE MG, (c) MG3: hybrid WECS PV DE MG
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in MG2 was more intense than in MG3 since, at the interaction
point in MG2, all of the state variables relatively had similar
participation factor in both of engaged modes. After interaction
point, the involved eigenvalues deviated significantly hence the
distance between two modes gradually increased which was
reflected by the decrease of CPT in those corresponded modes. 

4.2.3 Modal interaction index: Weak or neglected modal
interaction is expected when the trajectories of the engaged modes
did not deviate significantly. As a consequence, it was difficult to
identify the occurrence of modal interaction through eigen-
trajectories method. To overcome this limitation, identification
method based on eigen-properties is needed to provide more
accurate and sensitive detection of modal interaction. Hence, a
normalised MII (Norm_MII) based on right and left eigenvector
product as in (30) is proposed.

Fig. 8 represents Norm_MII of the interacting modes at
different gain setting under a certain range of np variation. As
shown in Fig. 8a, it was monitored that under Kpv and Kpc variation
in MG1, small MII value was obtained and it did not change
significantly during the changes. Hence, it can be considered that
only weak or negligible modal interaction took place in the MG1.
Conversely, strong modal interactions were identified in MG2 and
MG3 as presented in Figs. 8b and c, respectively. The engaged
modes in MG2 and MG3 primarily come closer together, indicated

by a gradual increase of MII. Modes alignment was marked by a
remarkable increase of MII. At the alignment point, the interacting
modes nearly coincide in both of damping and frequency and were
very sensitive to small variations. After coinciding, the engaged
modes diverged oppositely, and the MII decreased significantly
corresponded to weaker modal interaction. As indicated by the
highest value of MII, the resonance point in MG2 occurred in the
setting of droop gain control of 4.18 × 10−6 with Kpv and Kpc
tuning of 0.34. While the interaction point in MG3 happened when
the droop gain was tuned in 8.37 × 10−6 while Kpv and Kpc were set
at 1.04. 

According to Fig. 8, the MII in MG1 was smaller than MG2
and MG3. Hence, it was suggested that interaction in MG1 was
much weaker than in MG2 and M3. That weak interaction was not
identified by eigen-trajectories and cross-participation methods.
However, the occurrence of weak interaction still could be detected
by MII method. From the obtained result, it was notable that the
MII method was more sensitive to identify the modal interaction
event compared with eigen-trajectories and cross-participation
methods.

5 Conclusions
A comprehensive model of WECS, PV and DE based DGs were
presented to develop MG system. Since the different architecture of

Fig. 6  Trajectories of modes under variation of active power droop gain in various setting of voltage and current controller loops proportional gain in
(a) 2-WECS 1-DE MG, (b) 2-PV 1-DE MG, (c) Hybrid WECS PV DE MG

 

Fig. 7  Participation factor of investigated modes in
(a) 2-WECS 1-DE MG, (b) 2-PV 1-DE MG, (c) Hybrid WECS PV DE MG

 

Fig. 8  Normalised MII (Norm_MII) under variation of active power droop gain in different setting of voltage and current controller loops proportional gain
in
(a) 2-WECS 1-DE MG, (b) 2-PV 1-DE MG, (c) Hybrid WECS PV DE MG
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DGs provided a distinct dynamic response, evaluation of MG
stability in three distinct structures (2-WECS 1-DE, 2-PV 1-DE
and WECS, PV, DE) were investigated. From MGs small signal
stability performance, it was reported that low-frequency critical
modes corresponded to DGs output power were very sensitive to
gain controller variation. To ensure MGs stability during the
autonomous mode of operation, stability boundaries of the MGs
were determined under change of active and reactive power droop
gains of power sharing strategies in MG. It was noticeable that
different droop gain control settings may result in either
enhancement or deterioration of system damping and dynamic
responses.

Moreover, non-linear behaviour of sensitive modes in MGs
potentially leads to the occurrence of modal interaction. In the
investigated system, the interaction between two critical modes
possibly happens due to the variation of gain parameters of inverter
controllers. Interactions among sensitive modes were then
monitored through three analytical methods. Significant deviation
of eigen-trajectories, higher values of CPF and MII indicated
occurrence of modal interaction event in the MGs. From three case
studies in different MG architectures, it was emphasised that the
proposed methodologies could be implemented as a framework for
analysing, identifying and quantifying such potential modal
interactions. Obtained result regarding the comprehensive analysis
of small signal stability in autonomous operation and modal
interaction identification methods contribute to the design
consideration and stability margin prediction of hybrid MG system.
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7 Appendix
 
See Table 2 overleaf. 
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Table 2 System parameters
Parameter Symbol Value
rated voltage Vbase 690 V
parasitic resistance of DC/DC inductor Rb 1 mΩ
DC/DC inductor Lb 2 mH
parasitic resistance of DC/DC capacitor Rcb 1 mΩ
DC/DC capacitor Cb 1000 μF
AC input side inductance of AC/DC Lsw 1 mH
AC input side capacitor of AC/DC Cinw 1000 μF
AC side resistance of AC/DC converter Rsdcw 10 mΩ
DC side capacitor of DC/AC converter Ccoutw 1000 μF
DC side inductance of DC/AC inverter Lsdcw 6.43 mH
DC link inductance Llink 0.01 mH
DC link resistance Rlink 1 mΩ
DC link capacitance Cd 6500 μF
low-pass filter inductance Lf 1 mH
low-pass filter capacitance Cf 100 μF
low-pass filter resistance Rf 1 mΩ
coupling inductance Lc 0.1 mH
coupling resistance Rc 1 mΩ
load resistance Rlo 0.95 Ω
load inductance Llo 10 mH
line resistance (buses 1, 2 and 3) Rli 10 mΩ
line inductance (buses 1, 2 and 3) Lli 1 mH
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