Enabling Resilient Multi-Mode Controller in Power System With Re and Bes Using Firefly Algorithm

Setiadi, Herlambang and Mithulananthan, Nadarajah and Shah, Rakibuzzaman and Krismanto, Awan Uji (2020) Enabling Resilient Multi-Mode Controller in Power System With Re and Bes Using Firefly Algorithm. Enabling Resilient Multi-Mode Controller in Power System With Re and Bes Using Firefly Algorithm.

[img] Text
Enabling Resilient Multi-Mode Controller in Power.pdf
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (727kB)

Abstract

ABSTRACT This paper proposed a damping method for enhancing oscillatory stability performance of power systems with high penetration of renewable energy by a resilient wide-area multi-mode controller. The resilient wide-area multi-mode controller is used as an additional controller in a renewable energy system with a battery energy storage to enhance the damping of the critically weak modes. The weak modes are likely to be triggered in the event of line outages or any other disturbances, and the system may become unstable in the absence of proper corrective and preventive control. A firefly algorithm has been employed to design such a controller. Eigenvalue analysis and time-domain simulation are used to analyze the performance of the proposed controller in a realistic representative power system. From the simulation results, it is evident that the oscillatory stability performance of the renewable rich power system can be enhanced with the proposed control to keep the damping on critical modes to the industrial standards. Furthermore, renewable energy penetration can be increased significantly in the realistic representative system by introducing the proposed controller without disturbing the oscillatory stability margin. INDEX TERMS: BESS; damping; eigenvalue; firefly algorithm; oscillatory stability; renewable energy

Item Type: Article
Subjects: Engineering > Electrical Engineering
Divisions: Fakultas Teknologi Industri > Teknik Elektro S1
Depositing User: Ms Nunuk Yuli
Date Deposited: 17 Jan 2022 05:33
Last Modified: 17 Jan 2022 05:33
URI: http://eprints.itn.ac.id/id/eprint/6476

Actions (login required)

View Item View Item