Soetedjo, Aryuanto and Somawirata, I Komang (2016) Implementation of Face Detection and Tracking on A Low Cost Embedded System Using Fusion Technique. In: International Conference on Computer Science & Education (ICCSE 2016), August 23-25, 2016., Nagoya University, Japan.
| ![[img]](http://eprints.itn.ac.id/style/images/fileicons/text.png) | Text Aryu Proceeding 2016-2 Implementation of Face + cover.1.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Download (1MB) | 
| ![[img]](http://eprints.itn.ac.id/style/images/fileicons/text.png) | Text Aryu_Proceeding_2016-2 Cek plagiat Implementation of Face.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Download (1MB) | 
| ![[img]](http://eprints.itn.ac.id/style/images/fileicons/text.png) | Text Peer review Aryu Proceeding 2016-2 Implementation of Face.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Download (1MB) | 
Abstract
Abstract—This paper presents the fusion techniques for detecting and tracking the face. The proposed method combines the Viola-Jones method, the CamShift tracking, and the Kalman Filter tracking. The objective is to increase the face detection rate, while reduce the computation cost. The proposed method is implemented on a low cost embedded system based-on the Raspberry Pi module. The experimental results show that the average detection rate of 98.3% is achieved, and it is superior compared to the existing techniques. The proposed system achieves the frame rate of 7.09 fps in the real-time face detection. Index Terms—Face detection, Viola-Jones, CamShift, Kalman Filter, Raspberry Pi.
| Item Type: | Conference or Workshop Item (Paper) | 
|---|---|
| Uncontrolled Keywords: | Face detection, Viola-Jones, CamShift, Kalman Filter, Raspberry Pi. | 
| Subjects: | Engineering > Electrical Engineering | 
| Divisions: | Fakultas Teknologi Industri > Teknik Elektro S1 | 
| Depositing User: | Ms Nunuk Yuli | 
| Date Deposited: | 10 Feb 2021 05:28 | 
| Last Modified: | 06 Dec 2021 02:33 | 
| URI: | http://eprints.itn.ac.id/id/eprint/5325 | 
Actions (login required)
|  | View Item | 
 
        